Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clocksource/timer-atmel-tcb.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include <linux/init.h>
3
#include <linux/clocksource.h>
4
#include <linux/clockchips.h>
5
#include <linux/interrupt.h>
6
#include <linux/irq.h>
7
8
#include <linux/clk.h>
9
#include <linux/delay.h>
10
#include <linux/err.h>
11
#include <linux/ioport.h>
12
#include <linux/io.h>
13
#include <linux/of_address.h>
14
#include <linux/of_irq.h>
15
#include <linux/sched_clock.h>
16
#include <linux/syscore_ops.h>
17
#include <soc/at91/atmel_tcb.h>
18
19
20
/*
21
* We're configured to use a specific TC block, one that's not hooked
22
* up to external hardware, to provide a time solution:
23
*
24
* - Two channels combine to create a free-running 32 bit counter
25
* with a base rate of 5+ MHz, packaged as a clocksource (with
26
* resolution better than 200 nsec).
27
* - Some chips support 32 bit counter. A single channel is used for
28
* this 32 bit free-running counter. the second channel is not used.
29
*
30
* - The third channel may be used to provide a clockevent source, used in
31
* either periodic or oneshot mode. For 16-bit counter its runs at 32 KiHZ,
32
* and can handle delays of up to two seconds. For 32-bit counters, it runs at
33
* the same rate as the clocksource
34
*
35
* REVISIT behavior during system suspend states... we should disable
36
* all clocks and save the power. Easily done for clockevent devices,
37
* but clocksources won't necessarily get the needed notifications.
38
* For deeper system sleep states, this will be mandatory...
39
*/
40
41
static void __iomem *tcaddr;
42
static struct
43
{
44
u32 cmr;
45
u32 imr;
46
u32 rc;
47
bool clken;
48
} tcb_cache[3];
49
static u32 bmr_cache;
50
51
static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128 };
52
53
static u64 tc_get_cycles(struct clocksource *cs)
54
{
55
unsigned long flags;
56
u32 lower, upper;
57
58
raw_local_irq_save(flags);
59
do {
60
upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
61
lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
62
} while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
63
64
raw_local_irq_restore(flags);
65
return (upper << 16) | lower;
66
}
67
68
static u64 tc_get_cycles32(struct clocksource *cs)
69
{
70
return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
71
}
72
73
static void tc_clksrc_suspend(struct clocksource *cs)
74
{
75
int i;
76
77
for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
78
tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
79
tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
80
tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
81
tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
82
ATMEL_TC_CLKSTA);
83
}
84
85
bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
86
}
87
88
static void tc_clksrc_resume(struct clocksource *cs)
89
{
90
int i;
91
92
for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
93
/* Restore registers for the channel, RA and RB are not used */
94
writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
95
writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
96
writel(0, tcaddr + ATMEL_TC_REG(i, RA));
97
writel(0, tcaddr + ATMEL_TC_REG(i, RB));
98
/* Disable all the interrupts */
99
writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
100
/* Reenable interrupts that were enabled before suspending */
101
writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
102
/* Start the clock if it was used */
103
if (tcb_cache[i].clken)
104
writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
105
}
106
107
/* Dual channel, chain channels */
108
writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
109
/* Finally, trigger all the channels*/
110
writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
111
}
112
113
static struct clocksource clksrc = {
114
.rating = 200,
115
.read = tc_get_cycles,
116
.mask = CLOCKSOURCE_MASK(32),
117
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
118
.suspend = tc_clksrc_suspend,
119
.resume = tc_clksrc_resume,
120
};
121
122
static u64 notrace tc_sched_clock_read(void)
123
{
124
return tc_get_cycles(&clksrc);
125
}
126
127
static u64 notrace tc_sched_clock_read32(void)
128
{
129
return tc_get_cycles32(&clksrc);
130
}
131
132
static struct delay_timer tc_delay_timer;
133
134
static unsigned long tc_delay_timer_read(void)
135
{
136
return tc_get_cycles(&clksrc);
137
}
138
139
static unsigned long notrace tc_delay_timer_read32(void)
140
{
141
return tc_get_cycles32(&clksrc);
142
}
143
144
#ifdef CONFIG_GENERIC_CLOCKEVENTS
145
146
struct tc_clkevt_device {
147
struct clock_event_device clkevt;
148
struct clk *clk;
149
u32 rate;
150
void __iomem *regs;
151
};
152
153
static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
154
{
155
return container_of(clkevt, struct tc_clkevt_device, clkevt);
156
}
157
158
static u32 timer_clock;
159
160
static int tc_shutdown(struct clock_event_device *d)
161
{
162
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
163
void __iomem *regs = tcd->regs;
164
165
writel(0xff, regs + ATMEL_TC_REG(2, IDR));
166
writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
167
if (!clockevent_state_detached(d))
168
clk_disable(tcd->clk);
169
170
return 0;
171
}
172
173
static int tc_set_oneshot(struct clock_event_device *d)
174
{
175
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
176
void __iomem *regs = tcd->regs;
177
178
if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
179
tc_shutdown(d);
180
181
clk_enable(tcd->clk);
182
183
/* count up to RC, then irq and stop */
184
writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
185
ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
186
writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
187
188
/* set_next_event() configures and starts the timer */
189
return 0;
190
}
191
192
static int tc_set_periodic(struct clock_event_device *d)
193
{
194
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
195
void __iomem *regs = tcd->regs;
196
197
if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
198
tc_shutdown(d);
199
200
/* By not making the gentime core emulate periodic mode on top
201
* of oneshot, we get lower overhead and improved accuracy.
202
*/
203
clk_enable(tcd->clk);
204
205
/* count up to RC, then irq and restart */
206
writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
207
regs + ATMEL_TC_REG(2, CMR));
208
writel((tcd->rate + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
209
210
/* Enable clock and interrupts on RC compare */
211
writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
212
213
/* go go gadget! */
214
writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
215
ATMEL_TC_REG(2, CCR));
216
return 0;
217
}
218
219
static int tc_next_event(unsigned long delta, struct clock_event_device *d)
220
{
221
writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
222
223
/* go go gadget! */
224
writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
225
tcaddr + ATMEL_TC_REG(2, CCR));
226
return 0;
227
}
228
229
static struct tc_clkevt_device clkevt = {
230
.clkevt = {
231
.features = CLOCK_EVT_FEAT_PERIODIC |
232
CLOCK_EVT_FEAT_ONESHOT,
233
/* Should be lower than at91rm9200's system timer */
234
.rating = 125,
235
.set_next_event = tc_next_event,
236
.set_state_shutdown = tc_shutdown,
237
.set_state_periodic = tc_set_periodic,
238
.set_state_oneshot = tc_set_oneshot,
239
},
240
};
241
242
static irqreturn_t ch2_irq(int irq, void *handle)
243
{
244
struct tc_clkevt_device *dev = handle;
245
unsigned int sr;
246
247
sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
248
if (sr & ATMEL_TC_CPCS) {
249
dev->clkevt.event_handler(&dev->clkevt);
250
return IRQ_HANDLED;
251
}
252
253
return IRQ_NONE;
254
}
255
256
static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
257
{
258
int ret;
259
struct clk *t2_clk = tc->clk[2];
260
int irq = tc->irq[2];
261
int bits = tc->tcb_config->counter_width;
262
263
/* try to enable t2 clk to avoid future errors in mode change */
264
ret = clk_prepare_enable(t2_clk);
265
if (ret)
266
return ret;
267
268
clkevt.regs = tc->regs;
269
clkevt.clk = t2_clk;
270
271
if (bits == 32) {
272
timer_clock = divisor_idx;
273
clkevt.rate = clk_get_rate(t2_clk) / atmel_tcb_divisors[divisor_idx];
274
} else {
275
ret = clk_prepare_enable(tc->slow_clk);
276
if (ret) {
277
clk_disable_unprepare(t2_clk);
278
return ret;
279
}
280
281
clkevt.rate = clk_get_rate(tc->slow_clk);
282
timer_clock = ATMEL_TC_TIMER_CLOCK5;
283
}
284
285
clk_disable(t2_clk);
286
287
clkevt.clkevt.cpumask = cpumask_of(0);
288
289
ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
290
if (ret) {
291
clk_unprepare(t2_clk);
292
if (bits != 32)
293
clk_disable_unprepare(tc->slow_clk);
294
return ret;
295
}
296
297
clockevents_config_and_register(&clkevt.clkevt, clkevt.rate, 1, BIT(bits) - 1);
298
299
return ret;
300
}
301
302
#else /* !CONFIG_GENERIC_CLOCKEVENTS */
303
304
static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
305
{
306
/* NOTHING */
307
return 0;
308
}
309
310
#endif
311
312
static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
313
{
314
/* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
315
writel(mck_divisor_idx /* likely divide-by-8 */
316
| ATMEL_TC_WAVE
317
| ATMEL_TC_WAVESEL_UP /* free-run */
318
| ATMEL_TC_ASWTRG_SET /* TIOA0 rises at software trigger */
319
| ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
320
| ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
321
tcaddr + ATMEL_TC_REG(0, CMR));
322
writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
323
writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
324
writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
325
writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
326
327
/* channel 1: waveform mode, input TIOA0 */
328
writel(ATMEL_TC_XC1 /* input: TIOA0 */
329
| ATMEL_TC_WAVE
330
| ATMEL_TC_WAVESEL_UP, /* free-run */
331
tcaddr + ATMEL_TC_REG(1, CMR));
332
writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
333
writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
334
335
/* chain channel 0 to channel 1*/
336
writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
337
/* then reset all the timers */
338
writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
339
}
340
341
static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
342
{
343
/* channel 0: waveform mode, input mclk/8 */
344
writel(mck_divisor_idx /* likely divide-by-8 */
345
| ATMEL_TC_WAVE
346
| ATMEL_TC_WAVESEL_UP, /* free-run */
347
tcaddr + ATMEL_TC_REG(0, CMR));
348
writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
349
writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
350
351
/* then reset all the timers */
352
writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
353
}
354
355
static struct atmel_tcb_config tcb_rm9200_config = {
356
.counter_width = 16,
357
};
358
359
static struct atmel_tcb_config tcb_sam9x5_config = {
360
.counter_width = 32,
361
};
362
363
static struct atmel_tcb_config tcb_sama5d2_config = {
364
.counter_width = 32,
365
.has_gclk = 1,
366
};
367
368
static const struct of_device_id atmel_tcb_of_match[] = {
369
{ .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, },
370
{ .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, },
371
{ .compatible = "atmel,sama5d2-tcb", .data = &tcb_sama5d2_config, },
372
{ /* sentinel */ }
373
};
374
375
static int __init tcb_clksrc_init(struct device_node *node)
376
{
377
struct atmel_tc tc;
378
struct clk *t0_clk;
379
const struct of_device_id *match;
380
u64 (*tc_sched_clock)(void);
381
u32 rate, divided_rate = 0;
382
int best_divisor_idx = -1;
383
int bits;
384
int i;
385
int ret;
386
387
/* Protect against multiple calls */
388
if (tcaddr)
389
return 0;
390
391
tc.regs = of_iomap(node->parent, 0);
392
if (!tc.regs)
393
return -ENXIO;
394
395
t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
396
if (IS_ERR(t0_clk))
397
return PTR_ERR(t0_clk);
398
399
tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
400
if (IS_ERR(tc.slow_clk))
401
return PTR_ERR(tc.slow_clk);
402
403
tc.clk[0] = t0_clk;
404
tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
405
if (IS_ERR(tc.clk[1]))
406
tc.clk[1] = t0_clk;
407
tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
408
if (IS_ERR(tc.clk[2]))
409
tc.clk[2] = t0_clk;
410
411
tc.irq[2] = of_irq_get(node->parent, 2);
412
if (tc.irq[2] <= 0) {
413
tc.irq[2] = of_irq_get(node->parent, 0);
414
if (tc.irq[2] <= 0)
415
return -EINVAL;
416
}
417
418
match = of_match_node(atmel_tcb_of_match, node->parent);
419
if (!match)
420
return -ENODEV;
421
422
tc.tcb_config = match->data;
423
bits = tc.tcb_config->counter_width;
424
425
for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
426
writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
427
428
ret = clk_prepare_enable(t0_clk);
429
if (ret) {
430
pr_debug("can't enable T0 clk\n");
431
return ret;
432
}
433
434
/* How fast will we be counting? Pick something over 5 MHz. */
435
rate = (u32) clk_get_rate(t0_clk);
436
i = 0;
437
if (tc.tcb_config->has_gclk)
438
i = 1;
439
for (; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
440
unsigned divisor = atmel_tcb_divisors[i];
441
unsigned tmp;
442
443
tmp = rate / divisor;
444
pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
445
if ((best_divisor_idx >= 0) && (tmp < 5 * 1000 * 1000))
446
break;
447
divided_rate = tmp;
448
best_divisor_idx = i;
449
}
450
451
clksrc.name = kbasename(node->parent->full_name);
452
clkevt.clkevt.name = kbasename(node->parent->full_name);
453
pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
454
((divided_rate % 1000000) + 500) / 1000);
455
456
tcaddr = tc.regs;
457
458
if (bits == 32) {
459
/* use appropriate function to read 32 bit counter */
460
clksrc.read = tc_get_cycles32;
461
/* setup only channel 0 */
462
tcb_setup_single_chan(&tc, best_divisor_idx);
463
tc_sched_clock = tc_sched_clock_read32;
464
tc_delay_timer.read_current_timer = tc_delay_timer_read32;
465
} else {
466
/* we have three clocks no matter what the
467
* underlying platform supports.
468
*/
469
ret = clk_prepare_enable(tc.clk[1]);
470
if (ret) {
471
pr_debug("can't enable T1 clk\n");
472
goto err_disable_t0;
473
}
474
/* setup both channel 0 & 1 */
475
tcb_setup_dual_chan(&tc, best_divisor_idx);
476
tc_sched_clock = tc_sched_clock_read;
477
tc_delay_timer.read_current_timer = tc_delay_timer_read;
478
}
479
480
/* and away we go! */
481
ret = clocksource_register_hz(&clksrc, divided_rate);
482
if (ret)
483
goto err_disable_t1;
484
485
/* channel 2: periodic and oneshot timer support */
486
ret = setup_clkevents(&tc, best_divisor_idx);
487
if (ret)
488
goto err_unregister_clksrc;
489
490
sched_clock_register(tc_sched_clock, 32, divided_rate);
491
492
tc_delay_timer.freq = divided_rate;
493
register_current_timer_delay(&tc_delay_timer);
494
495
return 0;
496
497
err_unregister_clksrc:
498
clocksource_unregister(&clksrc);
499
500
err_disable_t1:
501
if (bits != 32)
502
clk_disable_unprepare(tc.clk[1]);
503
504
err_disable_t0:
505
clk_disable_unprepare(t0_clk);
506
507
tcaddr = NULL;
508
509
return ret;
510
}
511
TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);
512
513