Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/counter/ti-ecap-capture.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* ECAP Capture driver
4
*
5
* Copyright (C) 2022 Julien Panis <[email protected]>
6
*/
7
8
#include <linux/atomic.h>
9
#include <linux/clk.h>
10
#include <linux/counter.h>
11
#include <linux/err.h>
12
#include <linux/interrupt.h>
13
#include <linux/io.h>
14
#include <linux/module.h>
15
#include <linux/mod_devicetable.h>
16
#include <linux/mutex.h>
17
#include <linux/platform_device.h>
18
#include <linux/pm_runtime.h>
19
#include <linux/regmap.h>
20
21
#define ECAP_DRV_NAME "ecap"
22
23
/* ECAP event IDs */
24
#define ECAP_CEVT1 0
25
#define ECAP_CEVT2 1
26
#define ECAP_CEVT3 2
27
#define ECAP_CEVT4 3
28
#define ECAP_CNTOVF 4
29
30
#define ECAP_CEVT_LAST ECAP_CEVT4
31
#define ECAP_NB_CEVT (ECAP_CEVT_LAST + 1)
32
33
#define ECAP_EVT_LAST ECAP_CNTOVF
34
#define ECAP_NB_EVT (ECAP_EVT_LAST + 1)
35
36
/* Registers */
37
#define ECAP_TSCNT_REG 0x00
38
39
#define ECAP_CAP_REG(i) (((i) << 2) + 0x08)
40
41
#define ECAP_ECCTL_REG 0x28
42
#define ECAP_CAPPOL_BIT(i) BIT((i) << 1)
43
#define ECAP_EV_MODE_MASK GENMASK(7, 0)
44
#define ECAP_CAPLDEN_BIT BIT(8)
45
#define ECAP_CONT_ONESHT_BIT BIT(16)
46
#define ECAP_STOPVALUE_MASK GENMASK(18, 17)
47
#define ECAP_TSCNTSTP_BIT BIT(20)
48
#define ECAP_SYNCO_DIS_MASK GENMASK(23, 22)
49
#define ECAP_CAP_APWM_BIT BIT(25)
50
#define ECAP_ECCTL_EN_MASK (ECAP_CAPLDEN_BIT | ECAP_TSCNTSTP_BIT)
51
#define ECAP_ECCTL_CFG_MASK (ECAP_SYNCO_DIS_MASK | ECAP_STOPVALUE_MASK \
52
| ECAP_ECCTL_EN_MASK | ECAP_CAP_APWM_BIT \
53
| ECAP_CONT_ONESHT_BIT)
54
55
#define ECAP_ECINT_EN_FLG_REG 0x2c
56
#define ECAP_EVT_EN_MASK GENMASK(ECAP_NB_EVT, ECAP_NB_CEVT)
57
#define ECAP_EVT_FLG_BIT(i) BIT((i) + 17)
58
59
#define ECAP_ECINT_CLR_FRC_REG 0x30
60
#define ECAP_INT_CLR_BIT BIT(0)
61
#define ECAP_EVT_CLR_BIT(i) BIT((i) + 1)
62
#define ECAP_EVT_CLR_MASK GENMASK(ECAP_NB_EVT, 0)
63
64
#define ECAP_PID_REG 0x5c
65
66
/* ECAP signals */
67
#define ECAP_CLOCK_SIG 0
68
#define ECAP_INPUT_SIG 1
69
70
static const struct regmap_config ecap_cnt_regmap_config = {
71
.reg_bits = 32,
72
.reg_stride = 4,
73
.val_bits = 32,
74
.max_register = ECAP_PID_REG,
75
};
76
77
/**
78
* struct ecap_cnt_dev - device private data structure
79
* @enabled: device state
80
* @lock: synchronization lock to prevent I/O race conditions
81
* @clk: device clock
82
* @regmap: device register map
83
* @nb_ovf: number of overflows since capture start
84
* @pm_ctx: device context for PM operations
85
* @pm_ctx.ev_mode: event mode bits
86
* @pm_ctx.time_cntr: timestamp counter value
87
*/
88
struct ecap_cnt_dev {
89
bool enabled;
90
struct mutex lock;
91
struct clk *clk;
92
struct regmap *regmap;
93
atomic_t nb_ovf;
94
struct {
95
u8 ev_mode;
96
u32 time_cntr;
97
} pm_ctx;
98
};
99
100
static u8 ecap_cnt_capture_get_evmode(struct counter_device *counter)
101
{
102
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
103
unsigned int regval;
104
105
pm_runtime_get_sync(counter->parent);
106
regmap_read(ecap_dev->regmap, ECAP_ECCTL_REG, &regval);
107
pm_runtime_put_sync(counter->parent);
108
109
return regval;
110
}
111
112
static void ecap_cnt_capture_set_evmode(struct counter_device *counter, u8 ev_mode)
113
{
114
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
115
116
pm_runtime_get_sync(counter->parent);
117
regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_EV_MODE_MASK, ev_mode);
118
pm_runtime_put_sync(counter->parent);
119
}
120
121
static void ecap_cnt_capture_enable(struct counter_device *counter)
122
{
123
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
124
125
pm_runtime_get_sync(counter->parent);
126
127
/* Enable interrupts on events */
128
regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG,
129
ECAP_EVT_EN_MASK, ECAP_EVT_EN_MASK);
130
131
/* Run counter */
132
regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_ECCTL_CFG_MASK,
133
ECAP_SYNCO_DIS_MASK | ECAP_STOPVALUE_MASK | ECAP_ECCTL_EN_MASK);
134
}
135
136
static void ecap_cnt_capture_disable(struct counter_device *counter)
137
{
138
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
139
140
/* Stop counter */
141
regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_ECCTL_EN_MASK, 0);
142
143
/* Disable interrupts on events */
144
regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG, ECAP_EVT_EN_MASK, 0);
145
146
pm_runtime_put_sync(counter->parent);
147
}
148
149
static u32 ecap_cnt_count_get_val(struct counter_device *counter, unsigned int reg)
150
{
151
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
152
unsigned int regval;
153
154
pm_runtime_get_sync(counter->parent);
155
regmap_read(ecap_dev->regmap, reg, &regval);
156
pm_runtime_put_sync(counter->parent);
157
158
return regval;
159
}
160
161
static void ecap_cnt_count_set_val(struct counter_device *counter, unsigned int reg, u32 val)
162
{
163
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
164
165
pm_runtime_get_sync(counter->parent);
166
regmap_write(ecap_dev->regmap, reg, val);
167
pm_runtime_put_sync(counter->parent);
168
}
169
170
static int ecap_cnt_count_read(struct counter_device *counter,
171
struct counter_count *count, u64 *val)
172
{
173
*val = ecap_cnt_count_get_val(counter, ECAP_TSCNT_REG);
174
175
return 0;
176
}
177
178
static int ecap_cnt_count_write(struct counter_device *counter,
179
struct counter_count *count, u64 val)
180
{
181
if (val > U32_MAX)
182
return -ERANGE;
183
184
ecap_cnt_count_set_val(counter, ECAP_TSCNT_REG, val);
185
186
return 0;
187
}
188
189
static int ecap_cnt_function_read(struct counter_device *counter,
190
struct counter_count *count,
191
enum counter_function *function)
192
{
193
*function = COUNTER_FUNCTION_INCREASE;
194
195
return 0;
196
}
197
198
static int ecap_cnt_action_read(struct counter_device *counter,
199
struct counter_count *count,
200
struct counter_synapse *synapse,
201
enum counter_synapse_action *action)
202
{
203
*action = (synapse->signal->id == ECAP_CLOCK_SIG) ?
204
COUNTER_SYNAPSE_ACTION_RISING_EDGE :
205
COUNTER_SYNAPSE_ACTION_NONE;
206
207
return 0;
208
}
209
210
static int ecap_cnt_watch_validate(struct counter_device *counter,
211
const struct counter_watch *watch)
212
{
213
if (watch->channel > ECAP_CEVT_LAST)
214
return -EINVAL;
215
216
switch (watch->event) {
217
case COUNTER_EVENT_CAPTURE:
218
case COUNTER_EVENT_OVERFLOW:
219
return 0;
220
default:
221
return -EINVAL;
222
}
223
}
224
225
static int ecap_cnt_clk_get_freq(struct counter_device *counter,
226
struct counter_signal *signal, u64 *freq)
227
{
228
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
229
230
*freq = clk_get_rate(ecap_dev->clk);
231
232
return 0;
233
}
234
235
static int ecap_cnt_pol_read(struct counter_device *counter,
236
struct counter_signal *signal,
237
size_t idx, enum counter_signal_polarity *pol)
238
{
239
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
240
int bitval;
241
242
pm_runtime_get_sync(counter->parent);
243
bitval = regmap_test_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx));
244
pm_runtime_put_sync(counter->parent);
245
246
*pol = bitval ? COUNTER_SIGNAL_POLARITY_NEGATIVE : COUNTER_SIGNAL_POLARITY_POSITIVE;
247
248
return 0;
249
}
250
251
static int ecap_cnt_pol_write(struct counter_device *counter,
252
struct counter_signal *signal,
253
size_t idx, enum counter_signal_polarity pol)
254
{
255
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
256
257
pm_runtime_get_sync(counter->parent);
258
if (pol == COUNTER_SIGNAL_POLARITY_NEGATIVE)
259
regmap_set_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx));
260
else
261
regmap_clear_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx));
262
pm_runtime_put_sync(counter->parent);
263
264
return 0;
265
}
266
267
static int ecap_cnt_cap_read(struct counter_device *counter,
268
struct counter_count *count,
269
size_t idx, u64 *cap)
270
{
271
*cap = ecap_cnt_count_get_val(counter, ECAP_CAP_REG(idx));
272
273
return 0;
274
}
275
276
static int ecap_cnt_cap_write(struct counter_device *counter,
277
struct counter_count *count,
278
size_t idx, u64 cap)
279
{
280
if (cap > U32_MAX)
281
return -ERANGE;
282
283
ecap_cnt_count_set_val(counter, ECAP_CAP_REG(idx), cap);
284
285
return 0;
286
}
287
288
static int ecap_cnt_nb_ovf_read(struct counter_device *counter,
289
struct counter_count *count, u64 *val)
290
{
291
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
292
293
*val = atomic_read(&ecap_dev->nb_ovf);
294
295
return 0;
296
}
297
298
static int ecap_cnt_nb_ovf_write(struct counter_device *counter,
299
struct counter_count *count, u64 val)
300
{
301
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
302
303
if (val > U32_MAX)
304
return -ERANGE;
305
306
atomic_set(&ecap_dev->nb_ovf, val);
307
308
return 0;
309
}
310
311
static int ecap_cnt_ceiling_read(struct counter_device *counter,
312
struct counter_count *count, u64 *val)
313
{
314
*val = U32_MAX;
315
316
return 0;
317
}
318
319
static int ecap_cnt_enable_read(struct counter_device *counter,
320
struct counter_count *count, u8 *enable)
321
{
322
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
323
324
*enable = ecap_dev->enabled;
325
326
return 0;
327
}
328
329
static int ecap_cnt_enable_write(struct counter_device *counter,
330
struct counter_count *count, u8 enable)
331
{
332
struct ecap_cnt_dev *ecap_dev = counter_priv(counter);
333
334
mutex_lock(&ecap_dev->lock);
335
336
if (enable == ecap_dev->enabled)
337
goto out;
338
339
if (enable)
340
ecap_cnt_capture_enable(counter);
341
else
342
ecap_cnt_capture_disable(counter);
343
ecap_dev->enabled = enable;
344
345
out:
346
mutex_unlock(&ecap_dev->lock);
347
348
return 0;
349
}
350
351
static const struct counter_ops ecap_cnt_ops = {
352
.count_read = ecap_cnt_count_read,
353
.count_write = ecap_cnt_count_write,
354
.function_read = ecap_cnt_function_read,
355
.action_read = ecap_cnt_action_read,
356
.watch_validate = ecap_cnt_watch_validate,
357
};
358
359
static const enum counter_function ecap_cnt_functions[] = {
360
COUNTER_FUNCTION_INCREASE,
361
};
362
363
static const enum counter_synapse_action ecap_cnt_clock_actions[] = {
364
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
365
};
366
367
static const enum counter_synapse_action ecap_cnt_input_actions[] = {
368
COUNTER_SYNAPSE_ACTION_NONE,
369
};
370
371
static struct counter_comp ecap_cnt_clock_ext[] = {
372
COUNTER_COMP_FREQUENCY(ecap_cnt_clk_get_freq),
373
};
374
375
static const enum counter_signal_polarity ecap_cnt_pol_avail[] = {
376
COUNTER_SIGNAL_POLARITY_POSITIVE,
377
COUNTER_SIGNAL_POLARITY_NEGATIVE,
378
};
379
380
static DEFINE_COUNTER_AVAILABLE(ecap_cnt_pol_available, ecap_cnt_pol_avail);
381
static DEFINE_COUNTER_ARRAY_POLARITY(ecap_cnt_pol_array, ecap_cnt_pol_available, ECAP_NB_CEVT);
382
383
static struct counter_comp ecap_cnt_signal_ext[] = {
384
COUNTER_COMP_ARRAY_POLARITY(ecap_cnt_pol_read, ecap_cnt_pol_write, ecap_cnt_pol_array),
385
};
386
387
static struct counter_signal ecap_cnt_signals[] = {
388
{
389
.id = ECAP_CLOCK_SIG,
390
.name = "Clock Signal",
391
.ext = ecap_cnt_clock_ext,
392
.num_ext = ARRAY_SIZE(ecap_cnt_clock_ext),
393
},
394
{
395
.id = ECAP_INPUT_SIG,
396
.name = "Input Signal",
397
.ext = ecap_cnt_signal_ext,
398
.num_ext = ARRAY_SIZE(ecap_cnt_signal_ext),
399
},
400
};
401
402
static struct counter_synapse ecap_cnt_synapses[] = {
403
{
404
.actions_list = ecap_cnt_clock_actions,
405
.num_actions = ARRAY_SIZE(ecap_cnt_clock_actions),
406
.signal = &ecap_cnt_signals[ECAP_CLOCK_SIG],
407
},
408
{
409
.actions_list = ecap_cnt_input_actions,
410
.num_actions = ARRAY_SIZE(ecap_cnt_input_actions),
411
.signal = &ecap_cnt_signals[ECAP_INPUT_SIG],
412
},
413
};
414
415
static DEFINE_COUNTER_ARRAY_CAPTURE(ecap_cnt_cap_array, ECAP_NB_CEVT);
416
417
static struct counter_comp ecap_cnt_count_ext[] = {
418
COUNTER_COMP_ARRAY_CAPTURE(ecap_cnt_cap_read, ecap_cnt_cap_write, ecap_cnt_cap_array),
419
COUNTER_COMP_COUNT_U64("num_overflows", ecap_cnt_nb_ovf_read, ecap_cnt_nb_ovf_write),
420
COUNTER_COMP_CEILING(ecap_cnt_ceiling_read, NULL),
421
COUNTER_COMP_ENABLE(ecap_cnt_enable_read, ecap_cnt_enable_write),
422
};
423
424
static struct counter_count ecap_cnt_counts[] = {
425
{
426
.name = "Timestamp Counter",
427
.functions_list = ecap_cnt_functions,
428
.num_functions = ARRAY_SIZE(ecap_cnt_functions),
429
.synapses = ecap_cnt_synapses,
430
.num_synapses = ARRAY_SIZE(ecap_cnt_synapses),
431
.ext = ecap_cnt_count_ext,
432
.num_ext = ARRAY_SIZE(ecap_cnt_count_ext),
433
},
434
};
435
436
static irqreturn_t ecap_cnt_isr(int irq, void *dev_id)
437
{
438
struct counter_device *counter_dev = dev_id;
439
struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
440
unsigned int clr = 0;
441
unsigned int flg;
442
int i;
443
444
regmap_read(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG, &flg);
445
446
/* Check capture events */
447
for (i = 0 ; i < ECAP_NB_CEVT ; i++) {
448
if (flg & ECAP_EVT_FLG_BIT(i)) {
449
counter_push_event(counter_dev, COUNTER_EVENT_CAPTURE, i);
450
clr |= ECAP_EVT_CLR_BIT(i);
451
}
452
}
453
454
/* Check counter overflow */
455
if (flg & ECAP_EVT_FLG_BIT(ECAP_CNTOVF)) {
456
atomic_inc(&ecap_dev->nb_ovf);
457
for (i = 0 ; i < ECAP_NB_CEVT ; i++)
458
counter_push_event(counter_dev, COUNTER_EVENT_OVERFLOW, i);
459
clr |= ECAP_EVT_CLR_BIT(ECAP_CNTOVF);
460
}
461
462
clr |= ECAP_INT_CLR_BIT;
463
regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_CLR_FRC_REG, ECAP_EVT_CLR_MASK, clr);
464
465
return IRQ_HANDLED;
466
}
467
468
static void ecap_cnt_pm_disable(void *dev)
469
{
470
pm_runtime_disable(dev);
471
}
472
473
static int ecap_cnt_probe(struct platform_device *pdev)
474
{
475
struct device *dev = &pdev->dev;
476
struct ecap_cnt_dev *ecap_dev;
477
struct counter_device *counter_dev;
478
void __iomem *mmio_base;
479
unsigned long clk_rate;
480
int ret;
481
482
counter_dev = devm_counter_alloc(dev, sizeof(*ecap_dev));
483
if (!counter_dev)
484
return -ENOMEM;
485
486
counter_dev->name = ECAP_DRV_NAME;
487
counter_dev->parent = dev;
488
counter_dev->ops = &ecap_cnt_ops;
489
counter_dev->signals = ecap_cnt_signals;
490
counter_dev->num_signals = ARRAY_SIZE(ecap_cnt_signals);
491
counter_dev->counts = ecap_cnt_counts;
492
counter_dev->num_counts = ARRAY_SIZE(ecap_cnt_counts);
493
494
ecap_dev = counter_priv(counter_dev);
495
496
mutex_init(&ecap_dev->lock);
497
498
ecap_dev->clk = devm_clk_get_enabled(dev, "fck");
499
if (IS_ERR(ecap_dev->clk))
500
return dev_err_probe(dev, PTR_ERR(ecap_dev->clk), "failed to get clock\n");
501
502
clk_rate = clk_get_rate(ecap_dev->clk);
503
if (!clk_rate) {
504
dev_err(dev, "failed to get clock rate\n");
505
return -EINVAL;
506
}
507
508
mmio_base = devm_platform_ioremap_resource(pdev, 0);
509
if (IS_ERR(mmio_base))
510
return PTR_ERR(mmio_base);
511
512
ecap_dev->regmap = devm_regmap_init_mmio(dev, mmio_base, &ecap_cnt_regmap_config);
513
if (IS_ERR(ecap_dev->regmap))
514
return dev_err_probe(dev, PTR_ERR(ecap_dev->regmap), "failed to init regmap\n");
515
516
ret = platform_get_irq(pdev, 0);
517
if (ret < 0)
518
return dev_err_probe(dev, ret, "failed to get irq\n");
519
520
ret = devm_request_irq(dev, ret, ecap_cnt_isr, 0, pdev->name, counter_dev);
521
if (ret)
522
return dev_err_probe(dev, ret, "failed to request irq\n");
523
524
platform_set_drvdata(pdev, counter_dev);
525
526
pm_runtime_enable(dev);
527
528
/* Register a cleanup callback to care for disabling PM */
529
ret = devm_add_action_or_reset(dev, ecap_cnt_pm_disable, dev);
530
if (ret)
531
return dev_err_probe(dev, ret, "failed to add pm disable action\n");
532
533
ret = devm_counter_add(dev, counter_dev);
534
if (ret)
535
return dev_err_probe(dev, ret, "failed to add counter\n");
536
537
return 0;
538
}
539
540
static void ecap_cnt_remove(struct platform_device *pdev)
541
{
542
struct counter_device *counter_dev = platform_get_drvdata(pdev);
543
struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
544
545
if (ecap_dev->enabled)
546
ecap_cnt_capture_disable(counter_dev);
547
}
548
549
static int ecap_cnt_suspend(struct device *dev)
550
{
551
struct counter_device *counter_dev = dev_get_drvdata(dev);
552
struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
553
554
/* If eCAP is running, stop capture then save timestamp counter */
555
if (ecap_dev->enabled) {
556
/*
557
* Disabling capture has the following effects:
558
* - interrupts are disabled
559
* - loading of capture registers is disabled
560
* - timebase counter is stopped
561
*/
562
ecap_cnt_capture_disable(counter_dev);
563
ecap_dev->pm_ctx.time_cntr = ecap_cnt_count_get_val(counter_dev, ECAP_TSCNT_REG);
564
}
565
566
ecap_dev->pm_ctx.ev_mode = ecap_cnt_capture_get_evmode(counter_dev);
567
568
clk_disable(ecap_dev->clk);
569
570
return 0;
571
}
572
573
static int ecap_cnt_resume(struct device *dev)
574
{
575
struct counter_device *counter_dev = dev_get_drvdata(dev);
576
struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev);
577
int ret;
578
579
ret = clk_enable(ecap_dev->clk);
580
if (ret) {
581
dev_err(dev, "Cannot enable clock %d\n", ret);
582
return ret;
583
}
584
585
ecap_cnt_capture_set_evmode(counter_dev, ecap_dev->pm_ctx.ev_mode);
586
587
/* If eCAP was running, restore timestamp counter then run capture */
588
if (ecap_dev->enabled) {
589
ecap_cnt_count_set_val(counter_dev, ECAP_TSCNT_REG, ecap_dev->pm_ctx.time_cntr);
590
ecap_cnt_capture_enable(counter_dev);
591
}
592
593
return 0;
594
}
595
596
static DEFINE_SIMPLE_DEV_PM_OPS(ecap_cnt_pm_ops, ecap_cnt_suspend, ecap_cnt_resume);
597
598
static const struct of_device_id ecap_cnt_of_match[] = {
599
{ .compatible = "ti,am62-ecap-capture" },
600
{},
601
};
602
MODULE_DEVICE_TABLE(of, ecap_cnt_of_match);
603
604
static struct platform_driver ecap_cnt_driver = {
605
.probe = ecap_cnt_probe,
606
.remove = ecap_cnt_remove,
607
.driver = {
608
.name = "ecap-capture",
609
.of_match_table = ecap_cnt_of_match,
610
.pm = pm_sleep_ptr(&ecap_cnt_pm_ops),
611
},
612
};
613
module_platform_driver(ecap_cnt_driver);
614
615
MODULE_DESCRIPTION("ECAP Capture driver");
616
MODULE_AUTHOR("Julien Panis <[email protected]>");
617
MODULE_LICENSE("GPL");
618
MODULE_IMPORT_NS("COUNTER");
619
620