Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/cpufreq/brcmstb-avs-cpufreq.c
26278 views
1
/*
2
* CPU frequency scaling for Broadcom SoCs with AVS firmware that
3
* supports DVS or DVFS
4
*
5
* Copyright (c) 2016 Broadcom
6
*
7
* This program is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU General Public License as
9
* published by the Free Software Foundation version 2.
10
*
11
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
12
* kind, whether express or implied; without even the implied warranty
13
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
* GNU General Public License for more details.
15
*/
16
17
/*
18
* "AVS" is the name of a firmware developed at Broadcom. It derives
19
* its name from the technique called "Adaptive Voltage Scaling".
20
* Adaptive voltage scaling was the original purpose of this firmware.
21
* The AVS firmware still supports "AVS mode", where all it does is
22
* adaptive voltage scaling. However, on some newer Broadcom SoCs, the
23
* AVS Firmware, despite its unchanged name, also supports DFS mode and
24
* DVFS mode.
25
*
26
* In the context of this document and the related driver, "AVS" by
27
* itself always means the Broadcom firmware and never refers to the
28
* technique called "Adaptive Voltage Scaling".
29
*
30
* The Broadcom STB AVS CPUfreq driver provides voltage and frequency
31
* scaling on Broadcom SoCs using AVS firmware with support for DFS and
32
* DVFS. The AVS firmware is running on its own co-processor. The
33
* driver supports both uniprocessor (UP) and symmetric multiprocessor
34
* (SMP) systems which share clock and voltage across all CPUs.
35
*
36
* Actual voltage and frequency scaling is done solely by the AVS
37
* firmware. This driver does not change frequency or voltage itself.
38
* It provides a standard CPUfreq interface to the rest of the kernel
39
* and to userland. It interfaces with the AVS firmware to effect the
40
* requested changes and to report back the current system status in a
41
* way that is expected by existing tools.
42
*/
43
44
#include <linux/cpufreq.h>
45
#include <linux/delay.h>
46
#include <linux/interrupt.h>
47
#include <linux/io.h>
48
#include <linux/module.h>
49
#include <linux/of_address.h>
50
#include <linux/platform_device.h>
51
#include <linux/semaphore.h>
52
53
/* Max number of arguments AVS calls take */
54
#define AVS_MAX_CMD_ARGS 4
55
/*
56
* This macro is used to generate AVS parameter register offsets. For
57
* x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
58
* access outside of the parameter range. (Offset 0 is the first parameter.)
59
*/
60
#define AVS_PARAM_MULT(x) ((x) < AVS_MAX_CMD_ARGS ? (x) : 0)
61
62
/* AVS Mailbox Register offsets */
63
#define AVS_MBOX_COMMAND 0x00
64
#define AVS_MBOX_STATUS 0x04
65
#define AVS_MBOX_VOLTAGE0 0x08
66
#define AVS_MBOX_TEMP0 0x0c
67
#define AVS_MBOX_PV0 0x10
68
#define AVS_MBOX_MV0 0x14
69
#define AVS_MBOX_PARAM(x) (0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
70
#define AVS_MBOX_REVISION 0x28
71
#define AVS_MBOX_PSTATE 0x2c
72
#define AVS_MBOX_HEARTBEAT 0x30
73
#define AVS_MBOX_MAGIC 0x34
74
#define AVS_MBOX_SIGMA_HVT 0x38
75
#define AVS_MBOX_SIGMA_SVT 0x3c
76
#define AVS_MBOX_VOLTAGE1 0x40
77
#define AVS_MBOX_TEMP1 0x44
78
#define AVS_MBOX_PV1 0x48
79
#define AVS_MBOX_MV1 0x4c
80
#define AVS_MBOX_FREQUENCY 0x50
81
82
/* AVS Commands */
83
#define AVS_CMD_AVAILABLE 0x00
84
#define AVS_CMD_DISABLE 0x10
85
#define AVS_CMD_ENABLE 0x11
86
#define AVS_CMD_S2_ENTER 0x12
87
#define AVS_CMD_S2_EXIT 0x13
88
#define AVS_CMD_BBM_ENTER 0x14
89
#define AVS_CMD_BBM_EXIT 0x15
90
#define AVS_CMD_S3_ENTER 0x16
91
#define AVS_CMD_S3_EXIT 0x17
92
#define AVS_CMD_BALANCE 0x18
93
/* PMAP and P-STATE commands */
94
#define AVS_CMD_GET_PMAP 0x30
95
#define AVS_CMD_SET_PMAP 0x31
96
#define AVS_CMD_GET_PSTATE 0x40
97
#define AVS_CMD_SET_PSTATE 0x41
98
99
/* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
100
#define AVS_MODE_AVS 0x0
101
#define AVS_MODE_DFS 0x1
102
#define AVS_MODE_DVS 0x2
103
#define AVS_MODE_DVFS 0x3
104
105
/*
106
* PMAP parameter p1
107
* unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
108
*/
109
#define NDIV_INT_SHIFT 0
110
#define NDIV_INT_MASK 0x3ff
111
#define PDIV_SHIFT 10
112
#define PDIV_MASK 0xf
113
#define MDIV_P0_SHIFT 16
114
#define MDIV_P0_MASK 0xff
115
/*
116
* PMAP parameter p2
117
* mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
118
*/
119
#define MDIV_P1_SHIFT 0
120
#define MDIV_P1_MASK 0xff
121
#define MDIV_P2_SHIFT 8
122
#define MDIV_P2_MASK 0xff
123
#define MDIV_P3_SHIFT 16
124
#define MDIV_P3_MASK 0xff
125
#define MDIV_P4_SHIFT 24
126
#define MDIV_P4_MASK 0xff
127
128
/* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
129
#define AVS_PSTATE_P0 0x0
130
#define AVS_PSTATE_P1 0x1
131
#define AVS_PSTATE_P2 0x2
132
#define AVS_PSTATE_P3 0x3
133
#define AVS_PSTATE_P4 0x4
134
#define AVS_PSTATE_MAX AVS_PSTATE_P4
135
136
/* CPU L2 Interrupt Controller Registers */
137
#define AVS_CPU_L2_SET0 0x04
138
#define AVS_CPU_L2_INT_MASK BIT(31)
139
140
/* AVS Command Status Values */
141
#define AVS_STATUS_CLEAR 0x00
142
/* Command/notification accepted */
143
#define AVS_STATUS_SUCCESS 0xf0
144
/* Command/notification rejected */
145
#define AVS_STATUS_FAILURE 0xff
146
/* Invalid command/notification (unknown) */
147
#define AVS_STATUS_INVALID 0xf1
148
/* Non-AVS modes are not supported */
149
#define AVS_STATUS_NO_SUPP 0xf2
150
/* Cannot set P-State until P-Map supplied */
151
#define AVS_STATUS_NO_MAP 0xf3
152
/* Cannot change P-Map after initial P-Map set */
153
#define AVS_STATUS_MAP_SET 0xf4
154
/* Max AVS status; higher numbers are used for debugging */
155
#define AVS_STATUS_MAX 0xff
156
157
/* Other AVS related constants */
158
#define AVS_LOOP_LIMIT 10000
159
#define AVS_TIMEOUT 300 /* in ms; expected completion is < 10ms */
160
#define AVS_FIRMWARE_MAGIC 0xa11600d1
161
162
#define BRCM_AVS_CPUFREQ_PREFIX "brcmstb-avs"
163
#define BRCM_AVS_CPUFREQ_NAME BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
164
#define BRCM_AVS_CPU_DATA "brcm,avs-cpu-data-mem"
165
#define BRCM_AVS_CPU_INTR "brcm,avs-cpu-l2-intr"
166
#define BRCM_AVS_HOST_INTR "sw_intr"
167
168
struct pmap {
169
unsigned int mode;
170
unsigned int p1;
171
unsigned int p2;
172
unsigned int state;
173
};
174
175
struct private_data {
176
void __iomem *base;
177
void __iomem *avs_intr_base;
178
struct device *dev;
179
struct completion done;
180
struct semaphore sem;
181
struct pmap pmap;
182
int host_irq;
183
};
184
185
static void __iomem *__map_region(const char *name)
186
{
187
struct device_node *np;
188
void __iomem *ptr;
189
190
np = of_find_compatible_node(NULL, NULL, name);
191
if (!np)
192
return NULL;
193
194
ptr = of_iomap(np, 0);
195
of_node_put(np);
196
197
return ptr;
198
}
199
200
static unsigned long wait_for_avs_command(struct private_data *priv,
201
unsigned long timeout)
202
{
203
unsigned long time_left = 0;
204
u32 val;
205
206
/* Event driven, wait for the command interrupt */
207
if (priv->host_irq >= 0)
208
return wait_for_completion_timeout(&priv->done,
209
msecs_to_jiffies(timeout));
210
211
/* Polling for command completion */
212
do {
213
time_left = timeout;
214
val = readl(priv->base + AVS_MBOX_STATUS);
215
if (val)
216
break;
217
218
usleep_range(1000, 2000);
219
} while (--timeout);
220
221
return time_left;
222
}
223
224
static int __issue_avs_command(struct private_data *priv, unsigned int cmd,
225
unsigned int num_in, unsigned int num_out,
226
u32 args[])
227
{
228
void __iomem *base = priv->base;
229
unsigned long time_left;
230
unsigned int i;
231
int ret;
232
u32 val;
233
234
ret = down_interruptible(&priv->sem);
235
if (ret)
236
return ret;
237
238
/*
239
* Make sure no other command is currently running: cmd is 0 if AVS
240
* co-processor is idle. Due to the guard above, we should almost never
241
* have to wait here.
242
*/
243
for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
244
val = readl(base + AVS_MBOX_COMMAND);
245
246
/* Give the caller a chance to retry if AVS is busy. */
247
if (i == AVS_LOOP_LIMIT) {
248
ret = -EAGAIN;
249
goto out;
250
}
251
252
/* Clear status before we begin. */
253
writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
254
255
/* Provide input parameters */
256
for (i = 0; i < num_in; i++)
257
writel(args[i], base + AVS_MBOX_PARAM(i));
258
259
/* Protect from spurious interrupts. */
260
reinit_completion(&priv->done);
261
262
/* Now issue the command & tell firmware to wake up to process it. */
263
writel(cmd, base + AVS_MBOX_COMMAND);
264
writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);
265
266
/* Wait for AVS co-processor to finish processing the command. */
267
time_left = wait_for_avs_command(priv, AVS_TIMEOUT);
268
269
/*
270
* If the AVS status is not in the expected range, it means AVS didn't
271
* complete our command in time, and we return an error. Also, if there
272
* is no "time left", we timed out waiting for the interrupt.
273
*/
274
val = readl(base + AVS_MBOX_STATUS);
275
if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
276
dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
277
cmd);
278
dev_err(priv->dev, " Time left: %u ms, AVS status: %#x\n",
279
jiffies_to_msecs(time_left), val);
280
ret = -ETIMEDOUT;
281
goto out;
282
}
283
284
/* Process returned values */
285
for (i = 0; i < num_out; i++)
286
args[i] = readl(base + AVS_MBOX_PARAM(i));
287
288
/* Clear status to tell AVS co-processor we are done. */
289
writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
290
291
/* Convert firmware errors to errno's as much as possible. */
292
switch (val) {
293
case AVS_STATUS_INVALID:
294
ret = -EINVAL;
295
break;
296
case AVS_STATUS_NO_SUPP:
297
ret = -ENOTSUPP;
298
break;
299
case AVS_STATUS_NO_MAP:
300
ret = -ENOENT;
301
break;
302
case AVS_STATUS_MAP_SET:
303
ret = -EEXIST;
304
break;
305
case AVS_STATUS_FAILURE:
306
ret = -EIO;
307
break;
308
}
309
310
out:
311
up(&priv->sem);
312
313
return ret;
314
}
315
316
static irqreturn_t irq_handler(int irq, void *data)
317
{
318
struct private_data *priv = data;
319
320
/* AVS command completed execution. Wake up __issue_avs_command(). */
321
complete(&priv->done);
322
323
return IRQ_HANDLED;
324
}
325
326
static char *brcm_avs_mode_to_string(unsigned int mode)
327
{
328
switch (mode) {
329
case AVS_MODE_AVS:
330
return "AVS";
331
case AVS_MODE_DFS:
332
return "DFS";
333
case AVS_MODE_DVS:
334
return "DVS";
335
case AVS_MODE_DVFS:
336
return "DVFS";
337
}
338
return NULL;
339
}
340
341
static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
342
unsigned int *ndiv)
343
{
344
*mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
345
*pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
346
*ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
347
}
348
349
static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
350
unsigned int *mdiv_p2, unsigned int *mdiv_p3,
351
unsigned int *mdiv_p4)
352
{
353
*mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
354
*mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
355
*mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
356
*mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
357
}
358
359
static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
360
{
361
u32 args[AVS_MAX_CMD_ARGS];
362
int ret;
363
364
ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, 0, 4, args);
365
if (ret || !pmap)
366
return ret;
367
368
pmap->mode = args[0];
369
pmap->p1 = args[1];
370
pmap->p2 = args[2];
371
pmap->state = args[3];
372
373
return 0;
374
}
375
376
static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
377
{
378
u32 args[AVS_MAX_CMD_ARGS];
379
380
args[0] = pmap->mode;
381
args[1] = pmap->p1;
382
args[2] = pmap->p2;
383
args[3] = pmap->state;
384
385
return __issue_avs_command(priv, AVS_CMD_SET_PMAP, 4, 0, args);
386
}
387
388
static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
389
{
390
u32 args[AVS_MAX_CMD_ARGS];
391
int ret;
392
393
ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, 0, 1, args);
394
if (ret)
395
return ret;
396
*pstate = args[0];
397
398
return 0;
399
}
400
401
static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
402
{
403
u32 args[AVS_MAX_CMD_ARGS];
404
405
args[0] = pstate;
406
407
return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, 1, 0, args);
408
409
}
410
411
static u32 brcm_avs_get_voltage(void __iomem *base)
412
{
413
return readl(base + AVS_MBOX_VOLTAGE1);
414
}
415
416
static u32 brcm_avs_get_frequency(void __iomem *base)
417
{
418
return readl(base + AVS_MBOX_FREQUENCY) * 1000; /* in kHz */
419
}
420
421
/*
422
* We determine which frequencies are supported by cycling through all P-states
423
* and reading back what frequency we are running at for each P-state.
424
*/
425
static struct cpufreq_frequency_table *
426
brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
427
{
428
struct cpufreq_frequency_table *table;
429
unsigned int pstate;
430
int i, ret;
431
432
/* Remember P-state for later */
433
ret = brcm_avs_get_pstate(priv, &pstate);
434
if (ret)
435
return ERR_PTR(ret);
436
437
/*
438
* We allocate space for the 5 different P-STATES AVS,
439
* plus extra space for a terminating element.
440
*/
441
table = devm_kcalloc(dev, AVS_PSTATE_MAX + 1 + 1, sizeof(*table),
442
GFP_KERNEL);
443
if (!table)
444
return ERR_PTR(-ENOMEM);
445
446
for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
447
ret = brcm_avs_set_pstate(priv, i);
448
if (ret)
449
return ERR_PTR(ret);
450
table[i].frequency = brcm_avs_get_frequency(priv->base);
451
table[i].driver_data = i;
452
}
453
table[i].frequency = CPUFREQ_TABLE_END;
454
455
/* Restore P-state */
456
ret = brcm_avs_set_pstate(priv, pstate);
457
if (ret)
458
return ERR_PTR(ret);
459
460
return table;
461
}
462
463
/*
464
* To ensure the right firmware is running we need to
465
* - check the MAGIC matches what we expect
466
* - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
467
* We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
468
*/
469
static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
470
{
471
u32 magic;
472
int rc;
473
474
rc = brcm_avs_get_pmap(priv, NULL);
475
magic = readl(priv->base + AVS_MBOX_MAGIC);
476
477
return (magic == AVS_FIRMWARE_MAGIC) && (rc != -ENOTSUPP) &&
478
(rc != -EINVAL);
479
}
480
481
static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
482
{
483
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
484
struct private_data *priv;
485
486
if (!policy)
487
return 0;
488
489
priv = policy->driver_data;
490
491
cpufreq_cpu_put(policy);
492
493
return brcm_avs_get_frequency(priv->base);
494
}
495
496
static int brcm_avs_target_index(struct cpufreq_policy *policy,
497
unsigned int index)
498
{
499
return brcm_avs_set_pstate(policy->driver_data,
500
policy->freq_table[index].driver_data);
501
}
502
503
static int brcm_avs_suspend(struct cpufreq_policy *policy)
504
{
505
struct private_data *priv = policy->driver_data;
506
int ret;
507
508
ret = brcm_avs_get_pmap(priv, &priv->pmap);
509
if (ret)
510
return ret;
511
512
/*
513
* We can't use the P-state returned by brcm_avs_get_pmap(), since
514
* that's the initial P-state from when the P-map was downloaded to the
515
* AVS co-processor, not necessarily the P-state we are running at now.
516
* So, we get the current P-state explicitly.
517
*/
518
ret = brcm_avs_get_pstate(priv, &priv->pmap.state);
519
if (ret)
520
return ret;
521
522
/* This is best effort. Nothing to do if it fails. */
523
(void)__issue_avs_command(priv, AVS_CMD_S2_ENTER, 0, 0, NULL);
524
525
return 0;
526
}
527
528
static int brcm_avs_resume(struct cpufreq_policy *policy)
529
{
530
struct private_data *priv = policy->driver_data;
531
int ret;
532
533
/* This is best effort. Nothing to do if it fails. */
534
(void)__issue_avs_command(priv, AVS_CMD_S2_EXIT, 0, 0, NULL);
535
536
ret = brcm_avs_set_pmap(priv, &priv->pmap);
537
if (ret == -EEXIST) {
538
struct platform_device *pdev = cpufreq_get_driver_data();
539
struct device *dev = &pdev->dev;
540
541
dev_warn(dev, "PMAP was already set\n");
542
ret = 0;
543
}
544
545
return ret;
546
}
547
548
/*
549
* All initialization code that we only want to execute once goes here. Setup
550
* code that can be re-tried on every core (if it failed before) can go into
551
* brcm_avs_cpufreq_init().
552
*/
553
static int brcm_avs_prepare_init(struct platform_device *pdev)
554
{
555
struct private_data *priv;
556
struct device *dev;
557
int ret;
558
559
dev = &pdev->dev;
560
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
561
if (!priv)
562
return -ENOMEM;
563
564
priv->dev = dev;
565
sema_init(&priv->sem, 1);
566
init_completion(&priv->done);
567
platform_set_drvdata(pdev, priv);
568
569
priv->base = __map_region(BRCM_AVS_CPU_DATA);
570
if (!priv->base) {
571
dev_err(dev, "Couldn't find property %s in device tree.\n",
572
BRCM_AVS_CPU_DATA);
573
return -ENOENT;
574
}
575
576
priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
577
if (!priv->avs_intr_base) {
578
dev_err(dev, "Couldn't find property %s in device tree.\n",
579
BRCM_AVS_CPU_INTR);
580
ret = -ENOENT;
581
goto unmap_base;
582
}
583
584
priv->host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);
585
586
ret = devm_request_irq(dev, priv->host_irq, irq_handler,
587
IRQF_TRIGGER_RISING,
588
BRCM_AVS_HOST_INTR, priv);
589
if (ret && priv->host_irq >= 0) {
590
dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
591
BRCM_AVS_HOST_INTR, priv->host_irq, ret);
592
goto unmap_intr_base;
593
}
594
595
if (brcm_avs_is_firmware_loaded(priv))
596
return 0;
597
598
dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
599
ret = -ENODEV;
600
601
unmap_intr_base:
602
iounmap(priv->avs_intr_base);
603
unmap_base:
604
iounmap(priv->base);
605
606
return ret;
607
}
608
609
static void brcm_avs_prepare_uninit(struct platform_device *pdev)
610
{
611
struct private_data *priv;
612
613
priv = platform_get_drvdata(pdev);
614
615
iounmap(priv->avs_intr_base);
616
iounmap(priv->base);
617
}
618
619
static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
620
{
621
struct cpufreq_frequency_table *freq_table;
622
struct platform_device *pdev;
623
struct private_data *priv;
624
struct device *dev;
625
int ret;
626
627
pdev = cpufreq_get_driver_data();
628
priv = platform_get_drvdata(pdev);
629
policy->driver_data = priv;
630
dev = &pdev->dev;
631
632
freq_table = brcm_avs_get_freq_table(dev, priv);
633
if (IS_ERR(freq_table)) {
634
ret = PTR_ERR(freq_table);
635
dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
636
return ret;
637
}
638
639
policy->freq_table = freq_table;
640
641
/* All cores share the same clock and thus the same policy. */
642
cpumask_setall(policy->cpus);
643
644
ret = __issue_avs_command(priv, AVS_CMD_ENABLE, 0, 0, NULL);
645
if (!ret) {
646
unsigned int pstate;
647
648
ret = brcm_avs_get_pstate(priv, &pstate);
649
if (!ret) {
650
policy->cur = freq_table[pstate].frequency;
651
dev_info(dev, "registered\n");
652
return 0;
653
}
654
}
655
656
dev_err(dev, "couldn't initialize driver (%d)\n", ret);
657
658
return ret;
659
}
660
661
static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
662
{
663
struct private_data *priv = policy->driver_data;
664
unsigned int pstate;
665
666
if (brcm_avs_get_pstate(priv, &pstate))
667
return sprintf(buf, "<unknown>\n");
668
669
return sprintf(buf, "%u\n", pstate);
670
}
671
672
static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
673
{
674
struct private_data *priv = policy->driver_data;
675
struct pmap pmap;
676
677
if (brcm_avs_get_pmap(priv, &pmap))
678
return sprintf(buf, "<unknown>\n");
679
680
return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
681
pmap.mode);
682
}
683
684
static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
685
{
686
unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
687
struct private_data *priv = policy->driver_data;
688
unsigned int ndiv, pdiv;
689
struct pmap pmap;
690
691
if (brcm_avs_get_pmap(priv, &pmap))
692
return sprintf(buf, "<unknown>\n");
693
694
brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
695
brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);
696
697
return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
698
pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
699
mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
700
}
701
702
static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
703
{
704
struct private_data *priv = policy->driver_data;
705
706
return sprintf(buf, "0x%08x\n", brcm_avs_get_voltage(priv->base));
707
}
708
709
static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
710
{
711
struct private_data *priv = policy->driver_data;
712
713
return sprintf(buf, "0x%08x\n", brcm_avs_get_frequency(priv->base));
714
}
715
716
cpufreq_freq_attr_ro(brcm_avs_pstate);
717
cpufreq_freq_attr_ro(brcm_avs_mode);
718
cpufreq_freq_attr_ro(brcm_avs_pmap);
719
cpufreq_freq_attr_ro(brcm_avs_voltage);
720
cpufreq_freq_attr_ro(brcm_avs_frequency);
721
722
static struct freq_attr *brcm_avs_cpufreq_attr[] = {
723
&brcm_avs_pstate,
724
&brcm_avs_mode,
725
&brcm_avs_pmap,
726
&brcm_avs_voltage,
727
&brcm_avs_frequency,
728
NULL
729
};
730
731
static struct cpufreq_driver brcm_avs_driver = {
732
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
733
.verify = cpufreq_generic_frequency_table_verify,
734
.target_index = brcm_avs_target_index,
735
.get = brcm_avs_cpufreq_get,
736
.suspend = brcm_avs_suspend,
737
.resume = brcm_avs_resume,
738
.init = brcm_avs_cpufreq_init,
739
.attr = brcm_avs_cpufreq_attr,
740
.name = BRCM_AVS_CPUFREQ_PREFIX,
741
};
742
743
static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
744
{
745
int ret;
746
747
ret = brcm_avs_prepare_init(pdev);
748
if (ret)
749
return ret;
750
751
brcm_avs_driver.driver_data = pdev;
752
753
ret = cpufreq_register_driver(&brcm_avs_driver);
754
if (ret)
755
brcm_avs_prepare_uninit(pdev);
756
757
return ret;
758
}
759
760
static void brcm_avs_cpufreq_remove(struct platform_device *pdev)
761
{
762
cpufreq_unregister_driver(&brcm_avs_driver);
763
764
brcm_avs_prepare_uninit(pdev);
765
}
766
767
static const struct of_device_id brcm_avs_cpufreq_match[] = {
768
{ .compatible = "brcm,avs-cpu-data-mem" },
769
{ }
770
};
771
MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);
772
773
static struct platform_driver brcm_avs_cpufreq_platdrv = {
774
.driver = {
775
.name = BRCM_AVS_CPUFREQ_NAME,
776
.of_match_table = brcm_avs_cpufreq_match,
777
},
778
.probe = brcm_avs_cpufreq_probe,
779
.remove = brcm_avs_cpufreq_remove,
780
};
781
module_platform_driver(brcm_avs_cpufreq_platdrv);
782
783
MODULE_AUTHOR("Markus Mayer <[email protected]>");
784
MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
785
MODULE_LICENSE("GPL");
786
787