Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/cpufreq/cppc_cpufreq.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* CPPC (Collaborative Processor Performance Control) driver for
4
* interfacing with the CPUfreq layer and governors. See
5
* cppc_acpi.c for CPPC specific methods.
6
*
7
* (C) Copyright 2014, 2015 Linaro Ltd.
8
* Author: Ashwin Chaugule <[email protected]>
9
*/
10
11
#define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13
#include <linux/arch_topology.h>
14
#include <linux/kernel.h>
15
#include <linux/module.h>
16
#include <linux/delay.h>
17
#include <linux/cpu.h>
18
#include <linux/cpufreq.h>
19
#include <linux/irq_work.h>
20
#include <linux/kthread.h>
21
#include <linux/time.h>
22
#include <linux/vmalloc.h>
23
#include <uapi/linux/sched/types.h>
24
25
#include <linux/unaligned.h>
26
27
#include <acpi/cppc_acpi.h>
28
29
static struct cpufreq_driver cppc_cpufreq_driver;
30
31
#ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
32
static enum {
33
FIE_UNSET = -1,
34
FIE_ENABLED,
35
FIE_DISABLED
36
} fie_disabled = FIE_UNSET;
37
38
module_param(fie_disabled, int, 0444);
39
MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
40
41
/* Frequency invariance support */
42
struct cppc_freq_invariance {
43
int cpu;
44
struct irq_work irq_work;
45
struct kthread_work work;
46
struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
47
struct cppc_cpudata *cpu_data;
48
};
49
50
static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
51
static struct kthread_worker *kworker_fie;
52
53
static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
54
struct cppc_perf_fb_ctrs *fb_ctrs_t0,
55
struct cppc_perf_fb_ctrs *fb_ctrs_t1);
56
57
/**
58
* cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
59
* @work: The work item.
60
*
61
* The CPPC driver register itself with the topology core to provide its own
62
* implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
63
* gets called by the scheduler on every tick.
64
*
65
* Note that the arch specific counters have higher priority than CPPC counters,
66
* if available, though the CPPC driver doesn't need to have any special
67
* handling for that.
68
*
69
* On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
70
* reach here from hard-irq context), which then schedules a normal work item
71
* and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
72
* based on the counter updates since the last tick.
73
*/
74
static void cppc_scale_freq_workfn(struct kthread_work *work)
75
{
76
struct cppc_freq_invariance *cppc_fi;
77
struct cppc_perf_fb_ctrs fb_ctrs = {0};
78
struct cppc_cpudata *cpu_data;
79
unsigned long local_freq_scale;
80
u64 perf;
81
82
cppc_fi = container_of(work, struct cppc_freq_invariance, work);
83
cpu_data = cppc_fi->cpu_data;
84
85
if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
86
pr_warn("%s: failed to read perf counters\n", __func__);
87
return;
88
}
89
90
perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs,
91
&fb_ctrs);
92
if (!perf)
93
return;
94
95
cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
96
97
perf <<= SCHED_CAPACITY_SHIFT;
98
local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
99
100
/* This can happen due to counter's overflow */
101
if (unlikely(local_freq_scale > 1024))
102
local_freq_scale = 1024;
103
104
per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
105
}
106
107
static void cppc_irq_work(struct irq_work *irq_work)
108
{
109
struct cppc_freq_invariance *cppc_fi;
110
111
cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
112
kthread_queue_work(kworker_fie, &cppc_fi->work);
113
}
114
115
static void cppc_scale_freq_tick(void)
116
{
117
struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
118
119
/*
120
* cppc_get_perf_ctrs() can potentially sleep, call that from the right
121
* context.
122
*/
123
irq_work_queue(&cppc_fi->irq_work);
124
}
125
126
static struct scale_freq_data cppc_sftd = {
127
.source = SCALE_FREQ_SOURCE_CPPC,
128
.set_freq_scale = cppc_scale_freq_tick,
129
};
130
131
static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
132
{
133
struct cppc_freq_invariance *cppc_fi;
134
int cpu, ret;
135
136
if (fie_disabled)
137
return;
138
139
for_each_cpu(cpu, policy->cpus) {
140
cppc_fi = &per_cpu(cppc_freq_inv, cpu);
141
cppc_fi->cpu = cpu;
142
cppc_fi->cpu_data = policy->driver_data;
143
kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
144
init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
145
146
ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
147
if (ret) {
148
pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
149
__func__, cpu, ret);
150
151
/*
152
* Don't abort if the CPU was offline while the driver
153
* was getting registered.
154
*/
155
if (cpu_online(cpu))
156
return;
157
}
158
}
159
160
/* Register for freq-invariance */
161
topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
162
}
163
164
/*
165
* We free all the resources on policy's removal and not on CPU removal as the
166
* irq-work are per-cpu and the hotplug core takes care of flushing the pending
167
* irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
168
* fires on another CPU after the concerned CPU is removed, it won't harm.
169
*
170
* We just need to make sure to remove them all on policy->exit().
171
*/
172
static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
173
{
174
struct cppc_freq_invariance *cppc_fi;
175
int cpu;
176
177
if (fie_disabled)
178
return;
179
180
/* policy->cpus will be empty here, use related_cpus instead */
181
topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
182
183
for_each_cpu(cpu, policy->related_cpus) {
184
cppc_fi = &per_cpu(cppc_freq_inv, cpu);
185
irq_work_sync(&cppc_fi->irq_work);
186
kthread_cancel_work_sync(&cppc_fi->work);
187
}
188
}
189
190
static void __init cppc_freq_invariance_init(void)
191
{
192
struct sched_attr attr = {
193
.size = sizeof(struct sched_attr),
194
.sched_policy = SCHED_DEADLINE,
195
.sched_nice = 0,
196
.sched_priority = 0,
197
/*
198
* Fake (unused) bandwidth; workaround to "fix"
199
* priority inheritance.
200
*/
201
.sched_runtime = NSEC_PER_MSEC,
202
.sched_deadline = 10 * NSEC_PER_MSEC,
203
.sched_period = 10 * NSEC_PER_MSEC,
204
};
205
int ret;
206
207
if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
208
fie_disabled = FIE_ENABLED;
209
if (cppc_perf_ctrs_in_pcc()) {
210
pr_info("FIE not enabled on systems with registers in PCC\n");
211
fie_disabled = FIE_DISABLED;
212
}
213
}
214
215
if (fie_disabled)
216
return;
217
218
kworker_fie = kthread_run_worker(0, "cppc_fie");
219
if (IS_ERR(kworker_fie)) {
220
pr_warn("%s: failed to create kworker_fie: %ld\n", __func__,
221
PTR_ERR(kworker_fie));
222
fie_disabled = FIE_DISABLED;
223
return;
224
}
225
226
ret = sched_setattr_nocheck(kworker_fie->task, &attr);
227
if (ret) {
228
pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
229
ret);
230
kthread_destroy_worker(kworker_fie);
231
fie_disabled = FIE_DISABLED;
232
}
233
}
234
235
static void cppc_freq_invariance_exit(void)
236
{
237
if (fie_disabled)
238
return;
239
240
kthread_destroy_worker(kworker_fie);
241
}
242
243
#else
244
static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
245
{
246
}
247
248
static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
249
{
250
}
251
252
static inline void cppc_freq_invariance_init(void)
253
{
254
}
255
256
static inline void cppc_freq_invariance_exit(void)
257
{
258
}
259
#endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
260
261
static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
262
unsigned int target_freq,
263
unsigned int relation)
264
{
265
struct cppc_cpudata *cpu_data = policy->driver_data;
266
unsigned int cpu = policy->cpu;
267
struct cpufreq_freqs freqs;
268
int ret = 0;
269
270
cpu_data->perf_ctrls.desired_perf =
271
cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
272
freqs.old = policy->cur;
273
freqs.new = target_freq;
274
275
cpufreq_freq_transition_begin(policy, &freqs);
276
ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
277
cpufreq_freq_transition_end(policy, &freqs, ret != 0);
278
279
if (ret)
280
pr_debug("Failed to set target on CPU:%d. ret:%d\n",
281
cpu, ret);
282
283
return ret;
284
}
285
286
static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
287
unsigned int target_freq)
288
{
289
struct cppc_cpudata *cpu_data = policy->driver_data;
290
unsigned int cpu = policy->cpu;
291
u32 desired_perf;
292
int ret;
293
294
desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
295
cpu_data->perf_ctrls.desired_perf = desired_perf;
296
ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
297
298
if (ret) {
299
pr_debug("Failed to set target on CPU:%d. ret:%d\n",
300
cpu, ret);
301
return 0;
302
}
303
304
return target_freq;
305
}
306
307
static int cppc_verify_policy(struct cpufreq_policy_data *policy)
308
{
309
cpufreq_verify_within_cpu_limits(policy);
310
return 0;
311
}
312
313
/*
314
* The PCC subspace describes the rate at which platform can accept commands
315
* on the shared PCC channel (including READs which do not count towards freq
316
* transition requests), so ideally we need to use the PCC values as a fallback
317
* if we don't have a platform specific transition_delay_us
318
*/
319
#ifdef CONFIG_ARM64
320
#include <asm/cputype.h>
321
322
static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
323
{
324
unsigned long implementor = read_cpuid_implementor();
325
unsigned long part_num = read_cpuid_part_number();
326
327
switch (implementor) {
328
case ARM_CPU_IMP_QCOM:
329
switch (part_num) {
330
case QCOM_CPU_PART_FALKOR_V1:
331
case QCOM_CPU_PART_FALKOR:
332
return 10000;
333
}
334
}
335
return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
336
}
337
#else
338
static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
339
{
340
return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
341
}
342
#endif
343
344
#if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
345
346
static DEFINE_PER_CPU(unsigned int, efficiency_class);
347
348
/* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
349
#define CPPC_EM_CAP_STEP (20)
350
/* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
351
#define CPPC_EM_COST_STEP (1)
352
/* Add a cost gap correspnding to the energy of 4 CPUs. */
353
#define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
354
/ CPPC_EM_CAP_STEP)
355
356
static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
357
{
358
struct cppc_perf_caps *perf_caps;
359
unsigned int min_cap, max_cap;
360
struct cppc_cpudata *cpu_data;
361
int cpu = policy->cpu;
362
363
cpu_data = policy->driver_data;
364
perf_caps = &cpu_data->perf_caps;
365
max_cap = arch_scale_cpu_capacity(cpu);
366
min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
367
perf_caps->highest_perf);
368
if ((min_cap == 0) || (max_cap < min_cap))
369
return 0;
370
return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
371
}
372
373
/*
374
* The cost is defined as:
375
* cost = power * max_frequency / frequency
376
*/
377
static inline unsigned long compute_cost(int cpu, int step)
378
{
379
return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
380
step * CPPC_EM_COST_STEP;
381
}
382
383
static int cppc_get_cpu_power(struct device *cpu_dev,
384
unsigned long *power, unsigned long *KHz)
385
{
386
unsigned long perf_step, perf_prev, perf, perf_check;
387
unsigned int min_step, max_step, step, step_check;
388
unsigned long prev_freq = *KHz;
389
unsigned int min_cap, max_cap;
390
struct cpufreq_policy *policy;
391
392
struct cppc_perf_caps *perf_caps;
393
struct cppc_cpudata *cpu_data;
394
395
policy = cpufreq_cpu_get_raw(cpu_dev->id);
396
if (!policy)
397
return -EINVAL;
398
399
cpu_data = policy->driver_data;
400
perf_caps = &cpu_data->perf_caps;
401
max_cap = arch_scale_cpu_capacity(cpu_dev->id);
402
min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
403
perf_caps->highest_perf);
404
perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
405
max_cap);
406
min_step = min_cap / CPPC_EM_CAP_STEP;
407
max_step = max_cap / CPPC_EM_CAP_STEP;
408
409
perf_prev = cppc_khz_to_perf(perf_caps, *KHz);
410
step = perf_prev / perf_step;
411
412
if (step > max_step)
413
return -EINVAL;
414
415
if (min_step == max_step) {
416
step = max_step;
417
perf = perf_caps->highest_perf;
418
} else if (step < min_step) {
419
step = min_step;
420
perf = perf_caps->lowest_perf;
421
} else {
422
step++;
423
if (step == max_step)
424
perf = perf_caps->highest_perf;
425
else
426
perf = step * perf_step;
427
}
428
429
*KHz = cppc_perf_to_khz(perf_caps, perf);
430
perf_check = cppc_khz_to_perf(perf_caps, *KHz);
431
step_check = perf_check / perf_step;
432
433
/*
434
* To avoid bad integer approximation, check that new frequency value
435
* increased and that the new frequency will be converted to the
436
* desired step value.
437
*/
438
while ((*KHz == prev_freq) || (step_check != step)) {
439
perf++;
440
*KHz = cppc_perf_to_khz(perf_caps, perf);
441
perf_check = cppc_khz_to_perf(perf_caps, *KHz);
442
step_check = perf_check / perf_step;
443
}
444
445
/*
446
* With an artificial EM, only the cost value is used. Still the power
447
* is populated such as 0 < power < EM_MAX_POWER. This allows to add
448
* more sense to the artificial performance states.
449
*/
450
*power = compute_cost(cpu_dev->id, step);
451
452
return 0;
453
}
454
455
static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
456
unsigned long *cost)
457
{
458
unsigned long perf_step, perf_prev;
459
struct cppc_perf_caps *perf_caps;
460
struct cpufreq_policy *policy;
461
struct cppc_cpudata *cpu_data;
462
unsigned int max_cap;
463
int step;
464
465
policy = cpufreq_cpu_get_raw(cpu_dev->id);
466
if (!policy)
467
return -EINVAL;
468
469
cpu_data = policy->driver_data;
470
perf_caps = &cpu_data->perf_caps;
471
max_cap = arch_scale_cpu_capacity(cpu_dev->id);
472
473
perf_prev = cppc_khz_to_perf(perf_caps, KHz);
474
perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
475
step = perf_prev / perf_step;
476
477
*cost = compute_cost(cpu_dev->id, step);
478
479
return 0;
480
}
481
482
static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
483
{
484
struct cppc_cpudata *cpu_data;
485
struct em_data_callback em_cb =
486
EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
487
488
cpu_data = policy->driver_data;
489
em_dev_register_perf_domain(get_cpu_device(policy->cpu),
490
get_perf_level_count(policy), &em_cb,
491
cpu_data->shared_cpu_map, 0);
492
}
493
494
static void populate_efficiency_class(void)
495
{
496
struct acpi_madt_generic_interrupt *gicc;
497
DECLARE_BITMAP(used_classes, 256) = {};
498
int class, cpu, index;
499
500
for_each_possible_cpu(cpu) {
501
gicc = acpi_cpu_get_madt_gicc(cpu);
502
class = gicc->efficiency_class;
503
bitmap_set(used_classes, class, 1);
504
}
505
506
if (bitmap_weight(used_classes, 256) <= 1) {
507
pr_debug("Efficiency classes are all equal (=%d). "
508
"No EM registered", class);
509
return;
510
}
511
512
/*
513
* Squeeze efficiency class values on [0:#efficiency_class-1].
514
* Values are per spec in [0:255].
515
*/
516
index = 0;
517
for_each_set_bit(class, used_classes, 256) {
518
for_each_possible_cpu(cpu) {
519
gicc = acpi_cpu_get_madt_gicc(cpu);
520
if (gicc->efficiency_class == class)
521
per_cpu(efficiency_class, cpu) = index;
522
}
523
index++;
524
}
525
cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
526
}
527
528
#else
529
static void populate_efficiency_class(void)
530
{
531
}
532
#endif
533
534
static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
535
{
536
struct cppc_cpudata *cpu_data;
537
int ret;
538
539
cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
540
if (!cpu_data)
541
goto out;
542
543
if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
544
goto free_cpu;
545
546
ret = acpi_get_psd_map(cpu, cpu_data);
547
if (ret) {
548
pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
549
goto free_mask;
550
}
551
552
ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
553
if (ret) {
554
pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
555
goto free_mask;
556
}
557
558
return cpu_data;
559
560
free_mask:
561
free_cpumask_var(cpu_data->shared_cpu_map);
562
free_cpu:
563
kfree(cpu_data);
564
out:
565
return NULL;
566
}
567
568
static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
569
{
570
struct cppc_cpudata *cpu_data = policy->driver_data;
571
572
free_cpumask_var(cpu_data->shared_cpu_map);
573
kfree(cpu_data);
574
policy->driver_data = NULL;
575
}
576
577
static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
578
{
579
unsigned int cpu = policy->cpu;
580
struct cppc_cpudata *cpu_data;
581
struct cppc_perf_caps *caps;
582
int ret;
583
584
cpu_data = cppc_cpufreq_get_cpu_data(cpu);
585
if (!cpu_data) {
586
pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
587
return -ENODEV;
588
}
589
caps = &cpu_data->perf_caps;
590
policy->driver_data = cpu_data;
591
592
/*
593
* Set min to lowest nonlinear perf to avoid any efficiency penalty (see
594
* Section 8.4.7.1.1.5 of ACPI 6.1 spec)
595
*/
596
policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf);
597
policy->max = cppc_perf_to_khz(caps, policy->boost_enabled ?
598
caps->highest_perf : caps->nominal_perf);
599
600
/*
601
* Set cpuinfo.min_freq to Lowest to make the full range of performance
602
* available if userspace wants to use any perf between lowest & lowest
603
* nonlinear perf
604
*/
605
policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf);
606
policy->cpuinfo.max_freq = policy->max;
607
608
policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
609
policy->shared_type = cpu_data->shared_type;
610
611
switch (policy->shared_type) {
612
case CPUFREQ_SHARED_TYPE_HW:
613
case CPUFREQ_SHARED_TYPE_NONE:
614
/* Nothing to be done - we'll have a policy for each CPU */
615
break;
616
case CPUFREQ_SHARED_TYPE_ANY:
617
/*
618
* All CPUs in the domain will share a policy and all cpufreq
619
* operations will use a single cppc_cpudata structure stored
620
* in policy->driver_data.
621
*/
622
cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
623
break;
624
default:
625
pr_debug("Unsupported CPU co-ord type: %d\n",
626
policy->shared_type);
627
ret = -EFAULT;
628
goto out;
629
}
630
631
policy->fast_switch_possible = cppc_allow_fast_switch();
632
policy->dvfs_possible_from_any_cpu = true;
633
634
/*
635
* If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
636
* is supported.
637
*/
638
if (caps->highest_perf > caps->nominal_perf)
639
policy->boost_supported = true;
640
641
/* Set policy->cur to max now. The governors will adjust later. */
642
policy->cur = cppc_perf_to_khz(caps, caps->highest_perf);
643
cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
644
645
ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
646
if (ret) {
647
pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
648
caps->highest_perf, cpu, ret);
649
goto out;
650
}
651
652
cppc_cpufreq_cpu_fie_init(policy);
653
return 0;
654
655
out:
656
cppc_cpufreq_put_cpu_data(policy);
657
return ret;
658
}
659
660
static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
661
{
662
struct cppc_cpudata *cpu_data = policy->driver_data;
663
struct cppc_perf_caps *caps = &cpu_data->perf_caps;
664
unsigned int cpu = policy->cpu;
665
int ret;
666
667
cppc_cpufreq_cpu_fie_exit(policy);
668
669
cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
670
671
ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
672
if (ret)
673
pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
674
caps->lowest_perf, cpu, ret);
675
676
cppc_cpufreq_put_cpu_data(policy);
677
}
678
679
static inline u64 get_delta(u64 t1, u64 t0)
680
{
681
if (t1 > t0 || t0 > ~(u32)0)
682
return t1 - t0;
683
684
return (u32)t1 - (u32)t0;
685
}
686
687
static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
688
struct cppc_perf_fb_ctrs *fb_ctrs_t0,
689
struct cppc_perf_fb_ctrs *fb_ctrs_t1)
690
{
691
u64 delta_reference, delta_delivered;
692
u64 reference_perf;
693
694
reference_perf = fb_ctrs_t0->reference_perf;
695
696
delta_reference = get_delta(fb_ctrs_t1->reference,
697
fb_ctrs_t0->reference);
698
delta_delivered = get_delta(fb_ctrs_t1->delivered,
699
fb_ctrs_t0->delivered);
700
701
/*
702
* Avoid divide-by zero and unchanged feedback counters.
703
* Leave it for callers to handle.
704
*/
705
if (!delta_reference || !delta_delivered)
706
return 0;
707
708
return (reference_perf * delta_delivered) / delta_reference;
709
}
710
711
static int cppc_get_perf_ctrs_sample(int cpu,
712
struct cppc_perf_fb_ctrs *fb_ctrs_t0,
713
struct cppc_perf_fb_ctrs *fb_ctrs_t1)
714
{
715
int ret;
716
717
ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0);
718
if (ret)
719
return ret;
720
721
udelay(2); /* 2usec delay between sampling */
722
723
return cppc_get_perf_ctrs(cpu, fb_ctrs_t1);
724
}
725
726
static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
727
{
728
struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
729
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
730
struct cppc_cpudata *cpu_data;
731
u64 delivered_perf;
732
int ret;
733
734
if (!policy)
735
return 0;
736
737
cpu_data = policy->driver_data;
738
739
cpufreq_cpu_put(policy);
740
741
ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1);
742
if (ret) {
743
if (ret == -EFAULT)
744
/* Any of the associated CPPC regs is 0. */
745
goto out_invalid_counters;
746
else
747
return 0;
748
}
749
750
delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0,
751
&fb_ctrs_t1);
752
if (!delivered_perf)
753
goto out_invalid_counters;
754
755
return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
756
757
out_invalid_counters:
758
/*
759
* Feedback counters could be unchanged or 0 when a cpu enters a
760
* low-power idle state, e.g. clock-gated or power-gated.
761
* Use desired perf for reflecting frequency. Get the latest register
762
* value first as some platforms may update the actual delivered perf
763
* there; if failed, resort to the cached desired perf.
764
*/
765
if (cppc_get_desired_perf(cpu, &delivered_perf))
766
delivered_perf = cpu_data->perf_ctrls.desired_perf;
767
768
return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
769
}
770
771
static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
772
{
773
struct cppc_cpudata *cpu_data = policy->driver_data;
774
struct cppc_perf_caps *caps = &cpu_data->perf_caps;
775
int ret;
776
777
if (state)
778
policy->max = cppc_perf_to_khz(caps, caps->highest_perf);
779
else
780
policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
781
policy->cpuinfo.max_freq = policy->max;
782
783
ret = freq_qos_update_request(policy->max_freq_req, policy->max);
784
if (ret < 0)
785
return ret;
786
787
return 0;
788
}
789
790
static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
791
{
792
struct cppc_cpudata *cpu_data = policy->driver_data;
793
794
return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
795
}
796
797
static ssize_t show_auto_select(struct cpufreq_policy *policy, char *buf)
798
{
799
bool val;
800
int ret;
801
802
ret = cppc_get_auto_sel(policy->cpu, &val);
803
804
/* show "<unsupported>" when this register is not supported by cpc */
805
if (ret == -EOPNOTSUPP)
806
return sysfs_emit(buf, "<unsupported>\n");
807
808
if (ret)
809
return ret;
810
811
return sysfs_emit(buf, "%d\n", val);
812
}
813
814
static ssize_t store_auto_select(struct cpufreq_policy *policy,
815
const char *buf, size_t count)
816
{
817
bool val;
818
int ret;
819
820
ret = kstrtobool(buf, &val);
821
if (ret)
822
return ret;
823
824
ret = cppc_set_auto_sel(policy->cpu, val);
825
if (ret)
826
return ret;
827
828
return count;
829
}
830
831
static ssize_t show_auto_act_window(struct cpufreq_policy *policy, char *buf)
832
{
833
u64 val;
834
int ret;
835
836
ret = cppc_get_auto_act_window(policy->cpu, &val);
837
838
/* show "<unsupported>" when this register is not supported by cpc */
839
if (ret == -EOPNOTSUPP)
840
return sysfs_emit(buf, "<unsupported>\n");
841
842
if (ret)
843
return ret;
844
845
return sysfs_emit(buf, "%llu\n", val);
846
}
847
848
static ssize_t store_auto_act_window(struct cpufreq_policy *policy,
849
const char *buf, size_t count)
850
{
851
u64 usec;
852
int ret;
853
854
ret = kstrtou64(buf, 0, &usec);
855
if (ret)
856
return ret;
857
858
ret = cppc_set_auto_act_window(policy->cpu, usec);
859
if (ret)
860
return ret;
861
862
return count;
863
}
864
865
static ssize_t show_energy_performance_preference_val(struct cpufreq_policy *policy, char *buf)
866
{
867
u64 val;
868
int ret;
869
870
ret = cppc_get_epp_perf(policy->cpu, &val);
871
872
/* show "<unsupported>" when this register is not supported by cpc */
873
if (ret == -EOPNOTSUPP)
874
return sysfs_emit(buf, "<unsupported>\n");
875
876
if (ret)
877
return ret;
878
879
return sysfs_emit(buf, "%llu\n", val);
880
}
881
882
static ssize_t store_energy_performance_preference_val(struct cpufreq_policy *policy,
883
const char *buf, size_t count)
884
{
885
u64 val;
886
int ret;
887
888
ret = kstrtou64(buf, 0, &val);
889
if (ret)
890
return ret;
891
892
ret = cppc_set_epp(policy->cpu, val);
893
if (ret)
894
return ret;
895
896
return count;
897
}
898
899
cpufreq_freq_attr_ro(freqdomain_cpus);
900
cpufreq_freq_attr_rw(auto_select);
901
cpufreq_freq_attr_rw(auto_act_window);
902
cpufreq_freq_attr_rw(energy_performance_preference_val);
903
904
static struct freq_attr *cppc_cpufreq_attr[] = {
905
&freqdomain_cpus,
906
&auto_select,
907
&auto_act_window,
908
&energy_performance_preference_val,
909
NULL,
910
};
911
912
static struct cpufreq_driver cppc_cpufreq_driver = {
913
.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
914
.verify = cppc_verify_policy,
915
.target = cppc_cpufreq_set_target,
916
.get = cppc_cpufreq_get_rate,
917
.fast_switch = cppc_cpufreq_fast_switch,
918
.init = cppc_cpufreq_cpu_init,
919
.exit = cppc_cpufreq_cpu_exit,
920
.set_boost = cppc_cpufreq_set_boost,
921
.attr = cppc_cpufreq_attr,
922
.name = "cppc_cpufreq",
923
};
924
925
static int __init cppc_cpufreq_init(void)
926
{
927
int ret;
928
929
if (!acpi_cpc_valid())
930
return -ENODEV;
931
932
cppc_freq_invariance_init();
933
populate_efficiency_class();
934
935
ret = cpufreq_register_driver(&cppc_cpufreq_driver);
936
if (ret)
937
cppc_freq_invariance_exit();
938
939
return ret;
940
}
941
942
static void __exit cppc_cpufreq_exit(void)
943
{
944
cpufreq_unregister_driver(&cppc_cpufreq_driver);
945
cppc_freq_invariance_exit();
946
}
947
948
module_exit(cppc_cpufreq_exit);
949
MODULE_AUTHOR("Ashwin Chaugule");
950
MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
951
MODULE_LICENSE("GPL");
952
953
late_initcall(cppc_cpufreq_init);
954
955
static const struct acpi_device_id cppc_acpi_ids[] __used = {
956
{ACPI_PROCESSOR_DEVICE_HID, },
957
{}
958
};
959
960
MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
961
962