Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/cpufreq/cpufreq_governor.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* drivers/cpufreq/cpufreq_governor.c
4
*
5
* CPUFREQ governors common code
6
*
7
* Copyright (C) 2001 Russell King
8
* (C) 2003 Venkatesh Pallipadi <[email protected]>.
9
* (C) 2003 Jun Nakajima <[email protected]>
10
* (C) 2009 Alexander Clouter <[email protected]>
11
* (c) 2012 Viresh Kumar <[email protected]>
12
*/
13
14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16
#include <linux/export.h>
17
#include <linux/kernel_stat.h>
18
#include <linux/slab.h>
19
20
#include "cpufreq_governor.h"
21
22
#define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL (2 * TICK_NSEC / NSEC_PER_USEC)
23
24
static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
25
26
static DEFINE_MUTEX(gov_dbs_data_mutex);
27
28
/* Common sysfs tunables */
29
/*
30
* sampling_rate_store - update sampling rate effective immediately if needed.
31
*
32
* If new rate is smaller than the old, simply updating
33
* dbs.sampling_rate might not be appropriate. For example, if the
34
* original sampling_rate was 1 second and the requested new sampling rate is 10
35
* ms because the user needs immediate reaction from ondemand governor, but not
36
* sure if higher frequency will be required or not, then, the governor may
37
* change the sampling rate too late; up to 1 second later. Thus, if we are
38
* reducing the sampling rate, we need to make the new value effective
39
* immediately.
40
*
41
* This must be called with dbs_data->mutex held, otherwise traversing
42
* policy_dbs_list isn't safe.
43
*/
44
ssize_t sampling_rate_store(struct gov_attr_set *attr_set, const char *buf,
45
size_t count)
46
{
47
struct dbs_data *dbs_data = to_dbs_data(attr_set);
48
struct policy_dbs_info *policy_dbs;
49
unsigned int sampling_interval;
50
int ret;
51
52
ret = sscanf(buf, "%u", &sampling_interval);
53
if (ret != 1 || sampling_interval < CPUFREQ_DBS_MIN_SAMPLING_INTERVAL)
54
return -EINVAL;
55
56
dbs_data->sampling_rate = sampling_interval;
57
58
/*
59
* We are operating under dbs_data->mutex and so the list and its
60
* entries can't be freed concurrently.
61
*/
62
list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
63
mutex_lock(&policy_dbs->update_mutex);
64
/*
65
* On 32-bit architectures this may race with the
66
* sample_delay_ns read in dbs_update_util_handler(), but that
67
* really doesn't matter. If the read returns a value that's
68
* too big, the sample will be skipped, but the next invocation
69
* of dbs_update_util_handler() (when the update has been
70
* completed) will take a sample.
71
*
72
* If this runs in parallel with dbs_work_handler(), we may end
73
* up overwriting the sample_delay_ns value that it has just
74
* written, but it will be corrected next time a sample is
75
* taken, so it shouldn't be significant.
76
*/
77
gov_update_sample_delay(policy_dbs, 0);
78
mutex_unlock(&policy_dbs->update_mutex);
79
}
80
81
return count;
82
}
83
EXPORT_SYMBOL_GPL(sampling_rate_store);
84
85
/**
86
* gov_update_cpu_data - Update CPU load data.
87
* @dbs_data: Top-level governor data pointer.
88
*
89
* Update CPU load data for all CPUs in the domain governed by @dbs_data
90
* (that may be a single policy or a bunch of them if governor tunables are
91
* system-wide).
92
*
93
* Call under the @dbs_data mutex.
94
*/
95
void gov_update_cpu_data(struct dbs_data *dbs_data)
96
{
97
struct policy_dbs_info *policy_dbs;
98
99
list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
100
unsigned int j;
101
102
for_each_cpu(j, policy_dbs->policy->cpus) {
103
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
104
105
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
106
dbs_data->io_is_busy);
107
if (dbs_data->ignore_nice_load)
108
j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
109
}
110
}
111
}
112
EXPORT_SYMBOL_GPL(gov_update_cpu_data);
113
114
unsigned int dbs_update(struct cpufreq_policy *policy)
115
{
116
struct policy_dbs_info *policy_dbs = policy->governor_data;
117
struct dbs_data *dbs_data = policy_dbs->dbs_data;
118
unsigned int ignore_nice = dbs_data->ignore_nice_load;
119
unsigned int max_load = 0, idle_periods = UINT_MAX;
120
unsigned int sampling_rate, io_busy, j;
121
122
/*
123
* Sometimes governors may use an additional multiplier to increase
124
* sample delays temporarily. Apply that multiplier to sampling_rate
125
* so as to keep the wake-up-from-idle detection logic a bit
126
* conservative.
127
*/
128
sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
129
/*
130
* For the purpose of ondemand, waiting for disk IO is an indication
131
* that you're performance critical, and not that the system is actually
132
* idle, so do not add the iowait time to the CPU idle time then.
133
*/
134
io_busy = dbs_data->io_is_busy;
135
136
/* Get Absolute Load */
137
for_each_cpu(j, policy->cpus) {
138
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
139
u64 update_time, cur_idle_time;
140
unsigned int idle_time, time_elapsed;
141
unsigned int load;
142
143
cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
144
145
time_elapsed = update_time - j_cdbs->prev_update_time;
146
j_cdbs->prev_update_time = update_time;
147
148
/*
149
* cur_idle_time could be smaller than j_cdbs->prev_cpu_idle if
150
* it's obtained from get_cpu_idle_time_jiffy() when NOHZ is
151
* off, where idle_time is calculated by the difference between
152
* time elapsed in jiffies and "busy time" obtained from CPU
153
* statistics. If a CPU is 100% busy, the time elapsed and busy
154
* time should grow with the same amount in two consecutive
155
* samples, but in practice there could be a tiny difference,
156
* making the accumulated idle time decrease sometimes. Hence,
157
* in this case, idle_time should be regarded as 0 in order to
158
* make the further process correct.
159
*/
160
if (cur_idle_time > j_cdbs->prev_cpu_idle)
161
idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
162
else
163
idle_time = 0;
164
165
j_cdbs->prev_cpu_idle = cur_idle_time;
166
167
if (ignore_nice) {
168
u64 cur_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
169
170
idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
171
j_cdbs->prev_cpu_nice = cur_nice;
172
}
173
174
if (unlikely(!time_elapsed)) {
175
/*
176
* That can only happen when this function is called
177
* twice in a row with a very short interval between the
178
* calls, so the previous load value can be used then.
179
*/
180
load = j_cdbs->prev_load;
181
} else if (unlikely(idle_time > 2 * sampling_rate &&
182
j_cdbs->prev_load)) {
183
/*
184
* If the CPU had gone completely idle and a task has
185
* just woken up on this CPU now, it would be unfair to
186
* calculate 'load' the usual way for this elapsed
187
* time-window, because it would show near-zero load,
188
* irrespective of how CPU intensive that task actually
189
* was. This is undesirable for latency-sensitive bursty
190
* workloads.
191
*
192
* To avoid this, reuse the 'load' from the previous
193
* time-window and give this task a chance to start with
194
* a reasonably high CPU frequency. However, that
195
* shouldn't be over-done, lest we get stuck at a high
196
* load (high frequency) for too long, even when the
197
* current system load has actually dropped down, so
198
* clear prev_load to guarantee that the load will be
199
* computed again next time.
200
*
201
* Detecting this situation is easy: an unusually large
202
* 'idle_time' (as compared to the sampling rate)
203
* indicates this scenario.
204
*/
205
load = j_cdbs->prev_load;
206
j_cdbs->prev_load = 0;
207
} else {
208
if (time_elapsed > idle_time)
209
load = 100 * (time_elapsed - idle_time) / time_elapsed;
210
else
211
load = 0;
212
213
j_cdbs->prev_load = load;
214
}
215
216
if (unlikely(idle_time > 2 * sampling_rate)) {
217
unsigned int periods = idle_time / sampling_rate;
218
219
if (periods < idle_periods)
220
idle_periods = periods;
221
}
222
223
if (load > max_load)
224
max_load = load;
225
}
226
227
policy_dbs->idle_periods = idle_periods;
228
229
return max_load;
230
}
231
EXPORT_SYMBOL_GPL(dbs_update);
232
233
static void dbs_work_handler(struct work_struct *work)
234
{
235
struct policy_dbs_info *policy_dbs;
236
struct cpufreq_policy *policy;
237
struct dbs_governor *gov;
238
239
policy_dbs = container_of(work, struct policy_dbs_info, work);
240
policy = policy_dbs->policy;
241
gov = dbs_governor_of(policy);
242
243
/*
244
* Make sure cpufreq_governor_limits() isn't evaluating load or the
245
* ondemand governor isn't updating the sampling rate in parallel.
246
*/
247
mutex_lock(&policy_dbs->update_mutex);
248
gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
249
mutex_unlock(&policy_dbs->update_mutex);
250
251
/* Allow the utilization update handler to queue up more work. */
252
atomic_set(&policy_dbs->work_count, 0);
253
/*
254
* If the update below is reordered with respect to the sample delay
255
* modification, the utilization update handler may end up using a stale
256
* sample delay value.
257
*/
258
smp_wmb();
259
policy_dbs->work_in_progress = false;
260
}
261
262
static void dbs_irq_work(struct irq_work *irq_work)
263
{
264
struct policy_dbs_info *policy_dbs;
265
266
policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
267
schedule_work_on(smp_processor_id(), &policy_dbs->work);
268
}
269
270
static void dbs_update_util_handler(struct update_util_data *data, u64 time,
271
unsigned int flags)
272
{
273
struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
274
struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
275
u64 delta_ns, lst;
276
277
if (!cpufreq_this_cpu_can_update(policy_dbs->policy))
278
return;
279
280
/*
281
* The work may not be allowed to be queued up right now.
282
* Possible reasons:
283
* - Work has already been queued up or is in progress.
284
* - It is too early (too little time from the previous sample).
285
*/
286
if (policy_dbs->work_in_progress)
287
return;
288
289
/*
290
* If the reads below are reordered before the check above, the value
291
* of sample_delay_ns used in the computation may be stale.
292
*/
293
smp_rmb();
294
lst = READ_ONCE(policy_dbs->last_sample_time);
295
delta_ns = time - lst;
296
if ((s64)delta_ns < policy_dbs->sample_delay_ns)
297
return;
298
299
/*
300
* If the policy is not shared, the irq_work may be queued up right away
301
* at this point. Otherwise, we need to ensure that only one of the
302
* CPUs sharing the policy will do that.
303
*/
304
if (policy_dbs->is_shared) {
305
if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
306
return;
307
308
/*
309
* If another CPU updated last_sample_time in the meantime, we
310
* shouldn't be here, so clear the work counter and bail out.
311
*/
312
if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
313
atomic_set(&policy_dbs->work_count, 0);
314
return;
315
}
316
}
317
318
policy_dbs->last_sample_time = time;
319
policy_dbs->work_in_progress = true;
320
irq_work_queue(&policy_dbs->irq_work);
321
}
322
323
static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
324
unsigned int delay_us)
325
{
326
struct cpufreq_policy *policy = policy_dbs->policy;
327
int cpu;
328
329
gov_update_sample_delay(policy_dbs, delay_us);
330
policy_dbs->last_sample_time = 0;
331
332
for_each_cpu(cpu, policy->cpus) {
333
struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
334
335
cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
336
dbs_update_util_handler);
337
}
338
}
339
340
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
341
{
342
int i;
343
344
for_each_cpu(i, policy->cpus)
345
cpufreq_remove_update_util_hook(i);
346
347
synchronize_rcu();
348
}
349
350
static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
351
struct dbs_governor *gov)
352
{
353
struct policy_dbs_info *policy_dbs;
354
int j;
355
356
/* Allocate memory for per-policy governor data. */
357
policy_dbs = gov->alloc();
358
if (!policy_dbs)
359
return NULL;
360
361
policy_dbs->policy = policy;
362
mutex_init(&policy_dbs->update_mutex);
363
atomic_set(&policy_dbs->work_count, 0);
364
init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
365
INIT_WORK(&policy_dbs->work, dbs_work_handler);
366
367
/* Set policy_dbs for all CPUs, online+offline */
368
for_each_cpu(j, policy->related_cpus) {
369
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
370
371
j_cdbs->policy_dbs = policy_dbs;
372
}
373
return policy_dbs;
374
}
375
376
static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
377
struct dbs_governor *gov)
378
{
379
int j;
380
381
mutex_destroy(&policy_dbs->update_mutex);
382
383
for_each_cpu(j, policy_dbs->policy->related_cpus) {
384
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
385
386
j_cdbs->policy_dbs = NULL;
387
j_cdbs->update_util.func = NULL;
388
}
389
gov->free(policy_dbs);
390
}
391
392
static void cpufreq_dbs_data_release(struct kobject *kobj)
393
{
394
struct dbs_data *dbs_data = to_dbs_data(to_gov_attr_set(kobj));
395
struct dbs_governor *gov = dbs_data->gov;
396
397
gov->exit(dbs_data);
398
kfree(dbs_data);
399
}
400
401
int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
402
{
403
struct dbs_governor *gov = dbs_governor_of(policy);
404
struct dbs_data *dbs_data;
405
struct policy_dbs_info *policy_dbs;
406
int ret = 0;
407
408
/* State should be equivalent to EXIT */
409
if (policy->governor_data)
410
return -EBUSY;
411
412
policy_dbs = alloc_policy_dbs_info(policy, gov);
413
if (!policy_dbs)
414
return -ENOMEM;
415
416
/* Protect gov->gdbs_data against concurrent updates. */
417
mutex_lock(&gov_dbs_data_mutex);
418
419
dbs_data = gov->gdbs_data;
420
if (dbs_data) {
421
if (WARN_ON(have_governor_per_policy())) {
422
ret = -EINVAL;
423
goto free_policy_dbs_info;
424
}
425
policy_dbs->dbs_data = dbs_data;
426
policy->governor_data = policy_dbs;
427
428
gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
429
goto out;
430
}
431
432
dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
433
if (!dbs_data) {
434
ret = -ENOMEM;
435
goto free_policy_dbs_info;
436
}
437
438
dbs_data->gov = gov;
439
gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
440
441
ret = gov->init(dbs_data);
442
if (ret)
443
goto free_dbs_data;
444
445
/*
446
* The sampling interval should not be less than the transition latency
447
* of the CPU and it also cannot be too small for dbs_update() to work
448
* correctly.
449
*/
450
dbs_data->sampling_rate = max_t(unsigned int,
451
CPUFREQ_DBS_MIN_SAMPLING_INTERVAL,
452
cpufreq_policy_transition_delay_us(policy));
453
454
if (!have_governor_per_policy())
455
gov->gdbs_data = dbs_data;
456
457
policy_dbs->dbs_data = dbs_data;
458
policy->governor_data = policy_dbs;
459
460
gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
461
gov->kobj_type.release = cpufreq_dbs_data_release;
462
ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
463
get_governor_parent_kobj(policy),
464
"%s", gov->gov.name);
465
if (!ret)
466
goto out;
467
468
/* Failure, so roll back. */
469
pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
470
471
kobject_put(&dbs_data->attr_set.kobj);
472
473
policy->governor_data = NULL;
474
475
if (!have_governor_per_policy())
476
gov->gdbs_data = NULL;
477
gov->exit(dbs_data);
478
479
free_dbs_data:
480
kfree(dbs_data);
481
482
free_policy_dbs_info:
483
free_policy_dbs_info(policy_dbs, gov);
484
485
out:
486
mutex_unlock(&gov_dbs_data_mutex);
487
return ret;
488
}
489
EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
490
491
void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
492
{
493
struct dbs_governor *gov = dbs_governor_of(policy);
494
struct policy_dbs_info *policy_dbs = policy->governor_data;
495
struct dbs_data *dbs_data = policy_dbs->dbs_data;
496
unsigned int count;
497
498
/* Protect gov->gdbs_data against concurrent updates. */
499
mutex_lock(&gov_dbs_data_mutex);
500
501
count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
502
503
policy->governor_data = NULL;
504
505
if (!count && !have_governor_per_policy())
506
gov->gdbs_data = NULL;
507
508
free_policy_dbs_info(policy_dbs, gov);
509
510
mutex_unlock(&gov_dbs_data_mutex);
511
}
512
EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
513
514
int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
515
{
516
struct dbs_governor *gov = dbs_governor_of(policy);
517
struct policy_dbs_info *policy_dbs = policy->governor_data;
518
struct dbs_data *dbs_data = policy_dbs->dbs_data;
519
unsigned int sampling_rate, ignore_nice, j;
520
unsigned int io_busy;
521
522
if (!policy->cur)
523
return -EINVAL;
524
525
policy_dbs->is_shared = policy_is_shared(policy);
526
policy_dbs->rate_mult = 1;
527
528
sampling_rate = dbs_data->sampling_rate;
529
ignore_nice = dbs_data->ignore_nice_load;
530
io_busy = dbs_data->io_is_busy;
531
532
for_each_cpu(j, policy->cpus) {
533
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
534
535
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
536
/*
537
* Make the first invocation of dbs_update() compute the load.
538
*/
539
j_cdbs->prev_load = 0;
540
541
if (ignore_nice)
542
j_cdbs->prev_cpu_nice = kcpustat_field(&kcpustat_cpu(j), CPUTIME_NICE, j);
543
}
544
545
gov->start(policy);
546
547
gov_set_update_util(policy_dbs, sampling_rate);
548
return 0;
549
}
550
EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
551
552
void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
553
{
554
struct policy_dbs_info *policy_dbs = policy->governor_data;
555
556
gov_clear_update_util(policy_dbs->policy);
557
irq_work_sync(&policy_dbs->irq_work);
558
cancel_work_sync(&policy_dbs->work);
559
atomic_set(&policy_dbs->work_count, 0);
560
policy_dbs->work_in_progress = false;
561
}
562
EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
563
564
void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
565
{
566
struct policy_dbs_info *policy_dbs;
567
568
/* Protect gov->gdbs_data against cpufreq_dbs_governor_exit() */
569
mutex_lock(&gov_dbs_data_mutex);
570
policy_dbs = policy->governor_data;
571
if (!policy_dbs)
572
goto out;
573
574
mutex_lock(&policy_dbs->update_mutex);
575
cpufreq_policy_apply_limits(policy);
576
gov_update_sample_delay(policy_dbs, 0);
577
mutex_unlock(&policy_dbs->update_mutex);
578
579
out:
580
mutex_unlock(&gov_dbs_data_mutex);
581
}
582
EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);
583
584