Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/cpuidle/cpuidle-big_little.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (c) 2013 ARM/Linaro
4
*
5
* Authors: Daniel Lezcano <[email protected]>
6
* Lorenzo Pieralisi <[email protected]>
7
* Nicolas Pitre <[email protected]>
8
*
9
* Maintainer: Lorenzo Pieralisi <[email protected]>
10
* Maintainer: Daniel Lezcano <[email protected]>
11
*/
12
#include <linux/cpuidle.h>
13
#include <linux/cpu_pm.h>
14
#include <linux/slab.h>
15
#include <linux/of.h>
16
17
#include <asm/cpu.h>
18
#include <asm/cputype.h>
19
#include <asm/cpuidle.h>
20
#include <asm/mcpm.h>
21
#include <asm/smp_plat.h>
22
#include <asm/suspend.h>
23
24
#include "dt_idle_states.h"
25
26
static int bl_enter_powerdown(struct cpuidle_device *dev,
27
struct cpuidle_driver *drv, int idx);
28
29
/*
30
* NB: Owing to current menu governor behaviour big and LITTLE
31
* index 1 states have to define exit_latency and target_residency for
32
* cluster state since, when all CPUs in a cluster hit it, the cluster
33
* can be shutdown. This means that when a single CPU enters this state
34
* the exit_latency and target_residency values are somewhat overkill.
35
* There is no notion of cluster states in the menu governor, so CPUs
36
* have to define CPU states where possibly the cluster will be shutdown
37
* depending on the state of other CPUs. idle states entry and exit happen
38
* at random times; however the cluster state provides target_residency
39
* values as if all CPUs in a cluster enter the state at once; this is
40
* somewhat optimistic and behaviour should be fixed either in the governor
41
* or in the MCPM back-ends.
42
* To make this driver 100% generic the number of states and the exit_latency
43
* target_residency values must be obtained from device tree bindings.
44
*
45
* exit_latency: refers to the TC2 vexpress test chip and depends on the
46
* current cluster operating point. It is the time it takes to get the CPU
47
* up and running when the CPU is powered up on cluster wake-up from shutdown.
48
* Current values for big and LITTLE clusters are provided for clusters
49
* running at default operating points.
50
*
51
* target_residency: it is the minimum amount of time the cluster has
52
* to be down to break even in terms of power consumption. cluster
53
* shutdown has inherent dynamic power costs (L2 writebacks to DRAM
54
* being the main factor) that depend on the current operating points.
55
* The current values for both clusters are provided for a CPU whose half
56
* of L2 lines are dirty and require cleaning to DRAM, and takes into
57
* account leakage static power values related to the vexpress TC2 testchip.
58
*/
59
static struct cpuidle_driver bl_idle_little_driver = {
60
.name = "little_idle",
61
.owner = THIS_MODULE,
62
.states[0] = ARM_CPUIDLE_WFI_STATE,
63
.states[1] = {
64
.enter = bl_enter_powerdown,
65
.exit_latency = 700,
66
.target_residency = 2500,
67
.flags = CPUIDLE_FLAG_TIMER_STOP |
68
CPUIDLE_FLAG_RCU_IDLE,
69
.name = "C1",
70
.desc = "ARM little-cluster power down",
71
},
72
.state_count = 2,
73
};
74
75
static const struct of_device_id bl_idle_state_match[] __initconst = {
76
{ .compatible = "arm,idle-state",
77
.data = bl_enter_powerdown },
78
{ },
79
};
80
81
static struct cpuidle_driver bl_idle_big_driver = {
82
.name = "big_idle",
83
.owner = THIS_MODULE,
84
.states[0] = ARM_CPUIDLE_WFI_STATE,
85
.states[1] = {
86
.enter = bl_enter_powerdown,
87
.exit_latency = 500,
88
.target_residency = 2000,
89
.flags = CPUIDLE_FLAG_TIMER_STOP |
90
CPUIDLE_FLAG_RCU_IDLE,
91
.name = "C1",
92
.desc = "ARM big-cluster power down",
93
},
94
.state_count = 2,
95
};
96
97
/*
98
* notrace prevents trace shims from getting inserted where they
99
* should not. Global jumps and ldrex/strex must not be inserted
100
* in power down sequences where caches and MMU may be turned off.
101
*/
102
static int notrace bl_powerdown_finisher(unsigned long arg)
103
{
104
/* MCPM works with HW CPU identifiers */
105
unsigned int mpidr = read_cpuid_mpidr();
106
unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
107
unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
108
109
mcpm_set_entry_vector(cpu, cluster, cpu_resume);
110
mcpm_cpu_suspend();
111
112
/* return value != 0 means failure */
113
return 1;
114
}
115
116
/**
117
* bl_enter_powerdown - Programs CPU to enter the specified state
118
* @dev: cpuidle device
119
* @drv: The target state to be programmed
120
* @idx: state index
121
*
122
* Called from the CPUidle framework to program the device to the
123
* specified target state selected by the governor.
124
*/
125
static __cpuidle int bl_enter_powerdown(struct cpuidle_device *dev,
126
struct cpuidle_driver *drv, int idx)
127
{
128
cpu_pm_enter();
129
ct_cpuidle_enter();
130
131
cpu_suspend(0, bl_powerdown_finisher);
132
133
/* signals the MCPM core that CPU is out of low power state */
134
mcpm_cpu_powered_up();
135
ct_cpuidle_exit();
136
137
cpu_pm_exit();
138
139
return idx;
140
}
141
142
static int __init bl_idle_driver_init(struct cpuidle_driver *drv, int part_id)
143
{
144
struct cpumask *cpumask;
145
int cpu;
146
147
cpumask = kzalloc(cpumask_size(), GFP_KERNEL);
148
if (!cpumask)
149
return -ENOMEM;
150
151
for_each_present_cpu(cpu)
152
if (smp_cpuid_part(cpu) == part_id)
153
cpumask_set_cpu(cpu, cpumask);
154
155
drv->cpumask = cpumask;
156
157
return 0;
158
}
159
160
static const struct of_device_id compatible_machine_match[] = {
161
{ .compatible = "arm,vexpress,v2p-ca15_a7" },
162
{ .compatible = "google,peach" },
163
{},
164
};
165
166
static int __init bl_idle_init(void)
167
{
168
int ret;
169
struct device_node *root = of_find_node_by_path("/");
170
const struct of_device_id *match_id;
171
172
if (!root)
173
return -ENODEV;
174
175
/*
176
* Initialize the driver just for a compliant set of machines
177
*/
178
match_id = of_match_node(compatible_machine_match, root);
179
180
of_node_put(root);
181
182
if (!match_id)
183
return -ENODEV;
184
185
if (!mcpm_is_available())
186
return -EUNATCH;
187
188
/*
189
* For now the differentiation between little and big cores
190
* is based on the part number. A7 cores are considered little
191
* cores, A15 are considered big cores. This distinction may
192
* evolve in the future with a more generic matching approach.
193
*/
194
ret = bl_idle_driver_init(&bl_idle_little_driver,
195
ARM_CPU_PART_CORTEX_A7);
196
if (ret)
197
return ret;
198
199
ret = bl_idle_driver_init(&bl_idle_big_driver, ARM_CPU_PART_CORTEX_A15);
200
if (ret)
201
goto out_uninit_little;
202
203
/* Start at index 1, index 0 standard WFI */
204
ret = dt_init_idle_driver(&bl_idle_big_driver, bl_idle_state_match, 1);
205
if (ret < 0)
206
goto out_uninit_big;
207
208
/* Start at index 1, index 0 standard WFI */
209
ret = dt_init_idle_driver(&bl_idle_little_driver,
210
bl_idle_state_match, 1);
211
if (ret < 0)
212
goto out_uninit_big;
213
214
ret = cpuidle_register(&bl_idle_little_driver, NULL);
215
if (ret)
216
goto out_uninit_big;
217
218
ret = cpuidle_register(&bl_idle_big_driver, NULL);
219
if (ret)
220
goto out_unregister_little;
221
222
return 0;
223
224
out_unregister_little:
225
cpuidle_unregister(&bl_idle_little_driver);
226
out_uninit_big:
227
kfree(bl_idle_big_driver.cpumask);
228
out_uninit_little:
229
kfree(bl_idle_little_driver.cpumask);
230
231
return ret;
232
}
233
device_initcall(bl_idle_init);
234
235