Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/cpuidle/governors/menu.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* menu.c - the menu idle governor
4
*
5
* Copyright (C) 2006-2007 Adam Belay <[email protected]>
6
* Copyright (C) 2009 Intel Corporation
7
* Author:
8
* Arjan van de Ven <[email protected]>
9
*/
10
11
#include <linux/kernel.h>
12
#include <linux/cpuidle.h>
13
#include <linux/time.h>
14
#include <linux/ktime.h>
15
#include <linux/hrtimer.h>
16
#include <linux/tick.h>
17
#include <linux/sched/stat.h>
18
#include <linux/math64.h>
19
20
#include "gov.h"
21
22
#define BUCKETS 6
23
#define INTERVAL_SHIFT 3
24
#define INTERVALS (1UL << INTERVAL_SHIFT)
25
#define RESOLUTION 1024
26
#define DECAY 8
27
#define MAX_INTERESTING (50000 * NSEC_PER_USEC)
28
29
/*
30
* Concepts and ideas behind the menu governor
31
*
32
* For the menu governor, there are 2 decision factors for picking a C
33
* state:
34
* 1) Energy break even point
35
* 2) Latency tolerance (from pmqos infrastructure)
36
* These two factors are treated independently.
37
*
38
* Energy break even point
39
* -----------------------
40
* C state entry and exit have an energy cost, and a certain amount of time in
41
* the C state is required to actually break even on this cost. CPUIDLE
42
* provides us this duration in the "target_residency" field. So all that we
43
* need is a good prediction of how long we'll be idle. Like the traditional
44
* menu governor, we take the actual known "next timer event" time.
45
*
46
* Since there are other source of wakeups (interrupts for example) than
47
* the next timer event, this estimation is rather optimistic. To get a
48
* more realistic estimate, a correction factor is applied to the estimate,
49
* that is based on historic behavior. For example, if in the past the actual
50
* duration always was 50% of the next timer tick, the correction factor will
51
* be 0.5.
52
*
53
* menu uses a running average for this correction factor, but it uses a set of
54
* factors, not just a single factor. This stems from the realization that the
55
* ratio is dependent on the order of magnitude of the expected duration; if we
56
* expect 500 milliseconds of idle time the likelihood of getting an interrupt
57
* very early is much higher than if we expect 50 micro seconds of idle time.
58
* For this reason, menu keeps an array of 6 independent factors, that gets
59
* indexed based on the magnitude of the expected duration.
60
*
61
* Repeatable-interval-detector
62
* ----------------------------
63
* There are some cases where "next timer" is a completely unusable predictor:
64
* Those cases where the interval is fixed, for example due to hardware
65
* interrupt mitigation, but also due to fixed transfer rate devices like mice.
66
* For this, we use a different predictor: We track the duration of the last 8
67
* intervals and use them to estimate the duration of the next one.
68
*/
69
70
struct menu_device {
71
int needs_update;
72
int tick_wakeup;
73
74
u64 next_timer_ns;
75
unsigned int bucket;
76
unsigned int correction_factor[BUCKETS];
77
unsigned int intervals[INTERVALS];
78
int interval_ptr;
79
};
80
81
static inline int which_bucket(u64 duration_ns)
82
{
83
int bucket = 0;
84
85
if (duration_ns < 10ULL * NSEC_PER_USEC)
86
return bucket;
87
if (duration_ns < 100ULL * NSEC_PER_USEC)
88
return bucket + 1;
89
if (duration_ns < 1000ULL * NSEC_PER_USEC)
90
return bucket + 2;
91
if (duration_ns < 10000ULL * NSEC_PER_USEC)
92
return bucket + 3;
93
if (duration_ns < 100000ULL * NSEC_PER_USEC)
94
return bucket + 4;
95
return bucket + 5;
96
}
97
98
static DEFINE_PER_CPU(struct menu_device, menu_devices);
99
100
static void menu_update_intervals(struct menu_device *data, unsigned int interval_us)
101
{
102
/* Update the repeating-pattern data. */
103
data->intervals[data->interval_ptr++] = interval_us;
104
if (data->interval_ptr >= INTERVALS)
105
data->interval_ptr = 0;
106
}
107
108
static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
109
110
/*
111
* Try detecting repeating patterns by keeping track of the last 8
112
* intervals, and checking if the standard deviation of that set
113
* of points is below a threshold. If it is... then use the
114
* average of these 8 points as the estimated value.
115
*/
116
static unsigned int get_typical_interval(struct menu_device *data)
117
{
118
s64 value, min_thresh = -1, max_thresh = UINT_MAX;
119
unsigned int max, min, divisor;
120
u64 avg, variance, avg_sq;
121
int i;
122
123
again:
124
/* Compute the average and variance of past intervals. */
125
max = 0;
126
min = UINT_MAX;
127
avg = 0;
128
variance = 0;
129
divisor = 0;
130
for (i = 0; i < INTERVALS; i++) {
131
value = data->intervals[i];
132
/*
133
* Discard the samples outside the interval between the min and
134
* max thresholds.
135
*/
136
if (value <= min_thresh || value >= max_thresh)
137
continue;
138
139
divisor++;
140
141
avg += value;
142
variance += value * value;
143
144
if (value > max)
145
max = value;
146
147
if (value < min)
148
min = value;
149
}
150
151
if (!max)
152
return UINT_MAX;
153
154
if (divisor == INTERVALS) {
155
avg >>= INTERVAL_SHIFT;
156
variance >>= INTERVAL_SHIFT;
157
} else {
158
do_div(avg, divisor);
159
do_div(variance, divisor);
160
}
161
162
avg_sq = avg * avg;
163
variance -= avg_sq;
164
165
/*
166
* The typical interval is obtained when standard deviation is
167
* small (stddev <= 20 us, variance <= 400 us^2) or standard
168
* deviation is small compared to the average interval (avg >
169
* 6*stddev, avg^2 > 36*variance). The average is smaller than
170
* UINT_MAX aka U32_MAX, so computing its square does not
171
* overflow a u64. We simply reject this candidate average if
172
* the standard deviation is greater than 715 s (which is
173
* rather unlikely).
174
*
175
* Use this result only if there is no timer to wake us up sooner.
176
*/
177
if (likely(variance <= U64_MAX/36)) {
178
if ((avg_sq > variance * 36 && divisor * 4 >= INTERVALS * 3) ||
179
variance <= 400)
180
return avg;
181
}
182
183
/*
184
* If there are outliers, discard them by setting thresholds to exclude
185
* data points at a large enough distance from the average, then
186
* calculate the average and standard deviation again. Once we get
187
* down to the last 3/4 of our samples, stop excluding samples.
188
*
189
* This can deal with workloads that have long pauses interspersed
190
* with sporadic activity with a bunch of short pauses.
191
*/
192
if (divisor * 4 <= INTERVALS * 3) {
193
/*
194
* If there are sufficiently many data points still under
195
* consideration after the outliers have been eliminated,
196
* returning without a prediction would be a mistake because it
197
* is likely that the next interval will not exceed the current
198
* maximum, so return the latter in that case.
199
*/
200
if (divisor >= INTERVALS / 2)
201
return max;
202
203
return UINT_MAX;
204
}
205
206
/* Update the thresholds for the next round. */
207
if (avg - min > max - avg)
208
min_thresh = min;
209
else
210
max_thresh = max;
211
212
goto again;
213
}
214
215
/**
216
* menu_select - selects the next idle state to enter
217
* @drv: cpuidle driver containing state data
218
* @dev: the CPU
219
* @stop_tick: indication on whether or not to stop the tick
220
*/
221
static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
222
bool *stop_tick)
223
{
224
struct menu_device *data = this_cpu_ptr(&menu_devices);
225
s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
226
u64 predicted_ns;
227
ktime_t delta, delta_tick;
228
int i, idx;
229
230
if (data->needs_update) {
231
menu_update(drv, dev);
232
data->needs_update = 0;
233
} else if (!dev->last_residency_ns) {
234
/*
235
* This happens when the driver rejects the previously selected
236
* idle state and returns an error, so update the recent
237
* intervals table to prevent invalid information from being
238
* used going forward.
239
*/
240
menu_update_intervals(data, UINT_MAX);
241
}
242
243
/* Find the shortest expected idle interval. */
244
predicted_ns = get_typical_interval(data) * NSEC_PER_USEC;
245
if (predicted_ns > RESIDENCY_THRESHOLD_NS) {
246
unsigned int timer_us;
247
248
/* Determine the time till the closest timer. */
249
delta = tick_nohz_get_sleep_length(&delta_tick);
250
if (unlikely(delta < 0)) {
251
delta = 0;
252
delta_tick = 0;
253
}
254
255
data->next_timer_ns = delta;
256
data->bucket = which_bucket(data->next_timer_ns);
257
258
/* Round up the result for half microseconds. */
259
timer_us = div_u64((RESOLUTION * DECAY * NSEC_PER_USEC) / 2 +
260
data->next_timer_ns *
261
data->correction_factor[data->bucket],
262
RESOLUTION * DECAY * NSEC_PER_USEC);
263
/* Use the lowest expected idle interval to pick the idle state. */
264
predicted_ns = min((u64)timer_us * NSEC_PER_USEC, predicted_ns);
265
} else {
266
/*
267
* Because the next timer event is not going to be determined
268
* in this case, assume that without the tick the closest timer
269
* will be in distant future and that the closest tick will occur
270
* after 1/2 of the tick period.
271
*/
272
data->next_timer_ns = KTIME_MAX;
273
delta_tick = TICK_NSEC / 2;
274
data->bucket = BUCKETS - 1;
275
}
276
277
if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
278
((data->next_timer_ns < drv->states[1].target_residency_ns ||
279
latency_req < drv->states[1].exit_latency_ns) &&
280
!dev->states_usage[0].disable)) {
281
/*
282
* In this case state[0] will be used no matter what, so return
283
* it right away and keep the tick running if state[0] is a
284
* polling one.
285
*/
286
*stop_tick = !(drv->states[0].flags & CPUIDLE_FLAG_POLLING);
287
return 0;
288
}
289
290
/*
291
* If the tick is already stopped, the cost of possible short idle
292
* duration misprediction is much higher, because the CPU may be stuck
293
* in a shallow idle state for a long time as a result of it. In that
294
* case, say we might mispredict and use the known time till the closest
295
* timer event for the idle state selection.
296
*/
297
if (tick_nohz_tick_stopped() && predicted_ns < TICK_NSEC)
298
predicted_ns = data->next_timer_ns;
299
300
/*
301
* Find the idle state with the lowest power while satisfying
302
* our constraints.
303
*/
304
idx = -1;
305
for (i = 0; i < drv->state_count; i++) {
306
struct cpuidle_state *s = &drv->states[i];
307
308
if (dev->states_usage[i].disable)
309
continue;
310
311
if (idx == -1)
312
idx = i; /* first enabled state */
313
314
if (s->exit_latency_ns > latency_req)
315
break;
316
317
if (s->target_residency_ns > predicted_ns) {
318
/*
319
* Use a physical idle state, not busy polling, unless
320
* a timer is going to trigger soon enough.
321
*/
322
if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
323
s->target_residency_ns <= data->next_timer_ns) {
324
predicted_ns = s->target_residency_ns;
325
idx = i;
326
break;
327
}
328
if (predicted_ns < TICK_NSEC)
329
break;
330
331
if (!tick_nohz_tick_stopped()) {
332
/*
333
* If the state selected so far is shallow,
334
* waking up early won't hurt, so retain the
335
* tick in that case and let the governor run
336
* again in the next iteration of the loop.
337
*/
338
predicted_ns = drv->states[idx].target_residency_ns;
339
break;
340
}
341
342
/*
343
* If the state selected so far is shallow and this
344
* state's target residency matches the time till the
345
* closest timer event, select this one to avoid getting
346
* stuck in the shallow one for too long.
347
*/
348
if (drv->states[idx].target_residency_ns < TICK_NSEC &&
349
s->target_residency_ns <= delta_tick)
350
idx = i;
351
352
return idx;
353
}
354
355
idx = i;
356
}
357
358
if (idx == -1)
359
idx = 0; /* No states enabled. Must use 0. */
360
361
/*
362
* Don't stop the tick if the selected state is a polling one or if the
363
* expected idle duration is shorter than the tick period length.
364
*/
365
if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
366
predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
367
*stop_tick = false;
368
369
if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick) {
370
/*
371
* The tick is not going to be stopped and the target
372
* residency of the state to be returned is not within
373
* the time until the next timer event including the
374
* tick, so try to correct that.
375
*/
376
for (i = idx - 1; i >= 0; i--) {
377
if (dev->states_usage[i].disable)
378
continue;
379
380
idx = i;
381
if (drv->states[i].target_residency_ns <= delta_tick)
382
break;
383
}
384
}
385
}
386
387
return idx;
388
}
389
390
/**
391
* menu_reflect - records that data structures need update
392
* @dev: the CPU
393
* @index: the index of actual entered state
394
*
395
* NOTE: it's important to be fast here because this operation will add to
396
* the overall exit latency.
397
*/
398
static void menu_reflect(struct cpuidle_device *dev, int index)
399
{
400
struct menu_device *data = this_cpu_ptr(&menu_devices);
401
402
dev->last_state_idx = index;
403
data->needs_update = 1;
404
data->tick_wakeup = tick_nohz_idle_got_tick();
405
}
406
407
/**
408
* menu_update - attempts to guess what happened after entry
409
* @drv: cpuidle driver containing state data
410
* @dev: the CPU
411
*/
412
static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
413
{
414
struct menu_device *data = this_cpu_ptr(&menu_devices);
415
int last_idx = dev->last_state_idx;
416
struct cpuidle_state *target = &drv->states[last_idx];
417
u64 measured_ns;
418
unsigned int new_factor;
419
420
/*
421
* Try to figure out how much time passed between entry to low
422
* power state and occurrence of the wakeup event.
423
*
424
* If the entered idle state didn't support residency measurements,
425
* we use them anyway if they are short, and if long,
426
* truncate to the whole expected time.
427
*
428
* Any measured amount of time will include the exit latency.
429
* Since we are interested in when the wakeup begun, not when it
430
* was completed, we must subtract the exit latency. However, if
431
* the measured amount of time is less than the exit latency,
432
* assume the state was never reached and the exit latency is 0.
433
*/
434
435
if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) {
436
/*
437
* The nohz code said that there wouldn't be any events within
438
* the tick boundary (if the tick was stopped), but the idle
439
* duration predictor had a differing opinion. Since the CPU
440
* was woken up by a tick (that wasn't stopped after all), the
441
* predictor was not quite right, so assume that the CPU could
442
* have been idle long (but not forever) to help the idle
443
* duration predictor do a better job next time.
444
*/
445
measured_ns = 9 * MAX_INTERESTING / 10;
446
} else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
447
dev->poll_time_limit) {
448
/*
449
* The CPU exited the "polling" state due to a time limit, so
450
* the idle duration prediction leading to the selection of that
451
* state was inaccurate. If a better prediction had been made,
452
* the CPU might have been woken up from idle by the next timer.
453
* Assume that to be the case.
454
*/
455
measured_ns = data->next_timer_ns;
456
} else {
457
/* measured value */
458
measured_ns = dev->last_residency_ns;
459
460
/* Deduct exit latency */
461
if (measured_ns > 2 * target->exit_latency_ns)
462
measured_ns -= target->exit_latency_ns;
463
else
464
measured_ns /= 2;
465
}
466
467
/* Make sure our coefficients do not exceed unity */
468
if (measured_ns > data->next_timer_ns)
469
measured_ns = data->next_timer_ns;
470
471
/* Update our correction ratio */
472
new_factor = data->correction_factor[data->bucket];
473
new_factor -= new_factor / DECAY;
474
475
if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING)
476
new_factor += div64_u64(RESOLUTION * measured_ns,
477
data->next_timer_ns);
478
else
479
/*
480
* we were idle so long that we count it as a perfect
481
* prediction
482
*/
483
new_factor += RESOLUTION;
484
485
/*
486
* We don't want 0 as factor; we always want at least
487
* a tiny bit of estimated time. Fortunately, due to rounding,
488
* new_factor will stay nonzero regardless of measured_us values
489
* and the compiler can eliminate this test as long as DECAY > 1.
490
*/
491
if (DECAY == 1 && unlikely(new_factor == 0))
492
new_factor = 1;
493
494
data->correction_factor[data->bucket] = new_factor;
495
496
menu_update_intervals(data, ktime_to_us(measured_ns));
497
}
498
499
/**
500
* menu_enable_device - scans a CPU's states and does setup
501
* @drv: cpuidle driver
502
* @dev: the CPU
503
*/
504
static int menu_enable_device(struct cpuidle_driver *drv,
505
struct cpuidle_device *dev)
506
{
507
struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
508
int i;
509
510
memset(data, 0, sizeof(struct menu_device));
511
512
/*
513
* if the correction factor is 0 (eg first time init or cpu hotplug
514
* etc), we actually want to start out with a unity factor.
515
*/
516
for(i = 0; i < BUCKETS; i++)
517
data->correction_factor[i] = RESOLUTION * DECAY;
518
519
return 0;
520
}
521
522
static struct cpuidle_governor menu_governor = {
523
.name = "menu",
524
.rating = 20,
525
.enable = menu_enable_device,
526
.select = menu_select,
527
.reflect = menu_reflect,
528
};
529
530
/**
531
* init_menu - initializes the governor
532
*/
533
static int __init init_menu(void)
534
{
535
return cpuidle_register_governor(&menu_governor);
536
}
537
538
postcore_initcall(init_menu);
539
540