Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/cpuidle/governors/menu.c
50514 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* menu.c - the menu idle governor
4
*
5
* Copyright (C) 2006-2007 Adam Belay <[email protected]>
6
* Copyright (C) 2009 Intel Corporation
7
* Author:
8
* Arjan van de Ven <[email protected]>
9
*/
10
11
#include <linux/kernel.h>
12
#include <linux/cpuidle.h>
13
#include <linux/time.h>
14
#include <linux/ktime.h>
15
#include <linux/hrtimer.h>
16
#include <linux/tick.h>
17
#include <linux/sched/stat.h>
18
#include <linux/math64.h>
19
20
#include "gov.h"
21
22
#define BUCKETS 6
23
#define INTERVAL_SHIFT 3
24
#define INTERVALS (1UL << INTERVAL_SHIFT)
25
#define RESOLUTION 1024
26
#define DECAY 8
27
#define MAX_INTERESTING (50000 * NSEC_PER_USEC)
28
29
/*
30
* Concepts and ideas behind the menu governor
31
*
32
* For the menu governor, there are 2 decision factors for picking a C
33
* state:
34
* 1) Energy break even point
35
* 2) Latency tolerance (from pmqos infrastructure)
36
* These two factors are treated independently.
37
*
38
* Energy break even point
39
* -----------------------
40
* C state entry and exit have an energy cost, and a certain amount of time in
41
* the C state is required to actually break even on this cost. CPUIDLE
42
* provides us this duration in the "target_residency" field. So all that we
43
* need is a good prediction of how long we'll be idle. Like the traditional
44
* menu governor, we take the actual known "next timer event" time.
45
*
46
* Since there are other source of wakeups (interrupts for example) than
47
* the next timer event, this estimation is rather optimistic. To get a
48
* more realistic estimate, a correction factor is applied to the estimate,
49
* that is based on historic behavior. For example, if in the past the actual
50
* duration always was 50% of the next timer tick, the correction factor will
51
* be 0.5.
52
*
53
* menu uses a running average for this correction factor, but it uses a set of
54
* factors, not just a single factor. This stems from the realization that the
55
* ratio is dependent on the order of magnitude of the expected duration; if we
56
* expect 500 milliseconds of idle time the likelihood of getting an interrupt
57
* very early is much higher than if we expect 50 micro seconds of idle time.
58
* For this reason, menu keeps an array of 6 independent factors, that gets
59
* indexed based on the magnitude of the expected duration.
60
*
61
* Repeatable-interval-detector
62
* ----------------------------
63
* There are some cases where "next timer" is a completely unusable predictor:
64
* Those cases where the interval is fixed, for example due to hardware
65
* interrupt mitigation, but also due to fixed transfer rate devices like mice.
66
* For this, we use a different predictor: We track the duration of the last 8
67
* intervals and use them to estimate the duration of the next one.
68
*/
69
70
struct menu_device {
71
int needs_update;
72
int tick_wakeup;
73
74
u64 next_timer_ns;
75
unsigned int bucket;
76
unsigned int correction_factor[BUCKETS];
77
unsigned int intervals[INTERVALS];
78
int interval_ptr;
79
};
80
81
static inline int which_bucket(u64 duration_ns)
82
{
83
int bucket = 0;
84
85
if (duration_ns < 10ULL * NSEC_PER_USEC)
86
return bucket;
87
if (duration_ns < 100ULL * NSEC_PER_USEC)
88
return bucket + 1;
89
if (duration_ns < 1000ULL * NSEC_PER_USEC)
90
return bucket + 2;
91
if (duration_ns < 10000ULL * NSEC_PER_USEC)
92
return bucket + 3;
93
if (duration_ns < 100000ULL * NSEC_PER_USEC)
94
return bucket + 4;
95
return bucket + 5;
96
}
97
98
static DEFINE_PER_CPU(struct menu_device, menu_devices);
99
100
static void menu_update_intervals(struct menu_device *data, unsigned int interval_us)
101
{
102
/* Update the repeating-pattern data. */
103
data->intervals[data->interval_ptr++] = interval_us;
104
if (data->interval_ptr >= INTERVALS)
105
data->interval_ptr = 0;
106
}
107
108
static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
109
110
/*
111
* Try detecting repeating patterns by keeping track of the last 8
112
* intervals, and checking if the standard deviation of that set
113
* of points is below a threshold. If it is... then use the
114
* average of these 8 points as the estimated value.
115
*/
116
static unsigned int get_typical_interval(struct menu_device *data)
117
{
118
s64 value, min_thresh = -1, max_thresh = UINT_MAX;
119
unsigned int max, min, divisor;
120
u64 avg, variance, avg_sq;
121
int i;
122
123
again:
124
/* Compute the average and variance of past intervals. */
125
max = 0;
126
min = UINT_MAX;
127
avg = 0;
128
variance = 0;
129
divisor = 0;
130
for (i = 0; i < INTERVALS; i++) {
131
value = data->intervals[i];
132
/*
133
* Discard the samples outside the interval between the min and
134
* max thresholds.
135
*/
136
if (value <= min_thresh || value >= max_thresh)
137
continue;
138
139
divisor++;
140
141
avg += value;
142
variance += value * value;
143
144
if (value > max)
145
max = value;
146
147
if (value < min)
148
min = value;
149
}
150
151
if (!max)
152
return UINT_MAX;
153
154
if (divisor == INTERVALS) {
155
avg >>= INTERVAL_SHIFT;
156
variance >>= INTERVAL_SHIFT;
157
} else {
158
do_div(avg, divisor);
159
do_div(variance, divisor);
160
}
161
162
avg_sq = avg * avg;
163
variance -= avg_sq;
164
165
/*
166
* The typical interval is obtained when standard deviation is
167
* small (stddev <= 20 us, variance <= 400 us^2) or standard
168
* deviation is small compared to the average interval (avg >
169
* 6*stddev, avg^2 > 36*variance). The average is smaller than
170
* UINT_MAX aka U32_MAX, so computing its square does not
171
* overflow a u64. We simply reject this candidate average if
172
* the standard deviation is greater than 715 s (which is
173
* rather unlikely).
174
*
175
* Use this result only if there is no timer to wake us up sooner.
176
*/
177
if (likely(variance <= U64_MAX/36)) {
178
if ((avg_sq > variance * 36 && divisor * 4 >= INTERVALS * 3) ||
179
variance <= 400)
180
return avg;
181
}
182
183
/*
184
* If there are outliers, discard them by setting thresholds to exclude
185
* data points at a large enough distance from the average, then
186
* calculate the average and standard deviation again. Once we get
187
* down to the last 3/4 of our samples, stop excluding samples.
188
*
189
* This can deal with workloads that have long pauses interspersed
190
* with sporadic activity with a bunch of short pauses.
191
*
192
* However, if the number of remaining samples is too small to exclude
193
* any more outliers, allow the deepest available idle state to be
194
* selected because there are systems where the time spent by CPUs in
195
* deep idle states is correlated to the maximum frequency the CPUs
196
* can get to. On those systems, shallow idle states should be avoided
197
* unless there is a clear indication that the given CPU is most likley
198
* going to be woken up shortly.
199
*/
200
if (divisor * 4 <= INTERVALS * 3)
201
return UINT_MAX;
202
203
/* Update the thresholds for the next round. */
204
if (avg - min > max - avg)
205
min_thresh = min;
206
else
207
max_thresh = max;
208
209
goto again;
210
}
211
212
/**
213
* menu_select - selects the next idle state to enter
214
* @drv: cpuidle driver containing state data
215
* @dev: the CPU
216
* @stop_tick: indication on whether or not to stop the tick
217
*/
218
static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
219
bool *stop_tick)
220
{
221
struct menu_device *data = this_cpu_ptr(&menu_devices);
222
s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
223
u64 predicted_ns;
224
ktime_t delta, delta_tick;
225
int i, idx;
226
227
if (data->needs_update) {
228
menu_update(drv, dev);
229
data->needs_update = 0;
230
} else if (!dev->last_residency_ns) {
231
/*
232
* This happens when the driver rejects the previously selected
233
* idle state and returns an error, so update the recent
234
* intervals table to prevent invalid information from being
235
* used going forward.
236
*/
237
menu_update_intervals(data, UINT_MAX);
238
}
239
240
/* Find the shortest expected idle interval. */
241
predicted_ns = get_typical_interval(data) * NSEC_PER_USEC;
242
if (predicted_ns > RESIDENCY_THRESHOLD_NS || tick_nohz_tick_stopped()) {
243
unsigned int timer_us;
244
245
/* Determine the time till the closest timer. */
246
delta = tick_nohz_get_sleep_length(&delta_tick);
247
if (unlikely(delta < 0)) {
248
delta = 0;
249
delta_tick = 0;
250
}
251
252
data->next_timer_ns = delta;
253
data->bucket = which_bucket(data->next_timer_ns);
254
255
/* Round up the result for half microseconds. */
256
timer_us = div_u64((RESOLUTION * DECAY * NSEC_PER_USEC) / 2 +
257
data->next_timer_ns *
258
data->correction_factor[data->bucket],
259
RESOLUTION * DECAY * NSEC_PER_USEC);
260
/* Use the lowest expected idle interval to pick the idle state. */
261
predicted_ns = min((u64)timer_us * NSEC_PER_USEC, predicted_ns);
262
/*
263
* If the tick is already stopped, the cost of possible short
264
* idle duration misprediction is much higher, because the CPU
265
* may be stuck in a shallow idle state for a long time as a
266
* result of it. In that case, say we might mispredict and use
267
* the known time till the closest timer event for the idle
268
* state selection.
269
*/
270
if (tick_nohz_tick_stopped() && predicted_ns < TICK_NSEC)
271
predicted_ns = data->next_timer_ns;
272
} else {
273
/*
274
* Because the next timer event is not going to be determined
275
* in this case, assume that without the tick the closest timer
276
* will be in distant future and that the closest tick will occur
277
* after 1/2 of the tick period.
278
*/
279
data->next_timer_ns = KTIME_MAX;
280
delta_tick = TICK_NSEC / 2;
281
data->bucket = BUCKETS - 1;
282
}
283
284
if (drv->state_count <= 1 || latency_req == 0 ||
285
((data->next_timer_ns < drv->states[1].target_residency_ns ||
286
latency_req < drv->states[1].exit_latency_ns) &&
287
!dev->states_usage[0].disable)) {
288
/*
289
* In this case state[0] will be used no matter what, so return
290
* it right away and keep the tick running if state[0] is a
291
* polling one.
292
*/
293
*stop_tick = !(drv->states[0].flags & CPUIDLE_FLAG_POLLING);
294
return 0;
295
}
296
297
/*
298
* Find the idle state with the lowest power while satisfying
299
* our constraints.
300
*/
301
idx = -1;
302
for (i = 0; i < drv->state_count; i++) {
303
struct cpuidle_state *s = &drv->states[i];
304
305
if (dev->states_usage[i].disable)
306
continue;
307
308
if (idx == -1)
309
idx = i; /* first enabled state */
310
311
if (s->exit_latency_ns > latency_req)
312
break;
313
314
if (s->target_residency_ns <= predicted_ns) {
315
idx = i;
316
continue;
317
}
318
319
/*
320
* Use a physical idle state instead of busy polling so long as
321
* its target residency is below the residency threshold, its
322
* exit latency is not greater than the predicted idle duration,
323
* and the next timer doesn't expire soon.
324
*/
325
if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
326
s->target_residency_ns < RESIDENCY_THRESHOLD_NS &&
327
s->target_residency_ns <= data->next_timer_ns &&
328
s->exit_latency_ns <= predicted_ns) {
329
predicted_ns = s->target_residency_ns;
330
idx = i;
331
break;
332
}
333
334
if (predicted_ns < TICK_NSEC)
335
break;
336
337
if (!tick_nohz_tick_stopped()) {
338
/*
339
* If the state selected so far is shallow, waking up
340
* early won't hurt, so retain the tick in that case and
341
* let the governor run again in the next iteration of
342
* the idle loop.
343
*/
344
predicted_ns = drv->states[idx].target_residency_ns;
345
break;
346
}
347
348
/*
349
* If the state selected so far is shallow and this state's
350
* target residency matches the time till the closest timer
351
* event, select this one to avoid getting stuck in the shallow
352
* one for too long.
353
*/
354
if (drv->states[idx].target_residency_ns < TICK_NSEC &&
355
s->target_residency_ns <= delta_tick)
356
idx = i;
357
358
return idx;
359
}
360
361
if (idx == -1)
362
idx = 0; /* No states enabled. Must use 0. */
363
364
/*
365
* Don't stop the tick if the selected state is a polling one or if the
366
* expected idle duration is shorter than the tick period length.
367
*/
368
if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
369
predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
370
*stop_tick = false;
371
372
if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick) {
373
/*
374
* The tick is not going to be stopped and the target
375
* residency of the state to be returned is not within
376
* the time until the next timer event including the
377
* tick, so try to correct that.
378
*/
379
for (i = idx - 1; i >= 0; i--) {
380
if (dev->states_usage[i].disable)
381
continue;
382
383
idx = i;
384
if (drv->states[i].target_residency_ns <= delta_tick)
385
break;
386
}
387
}
388
}
389
390
return idx;
391
}
392
393
/**
394
* menu_reflect - records that data structures need update
395
* @dev: the CPU
396
* @index: the index of actual entered state
397
*
398
* NOTE: it's important to be fast here because this operation will add to
399
* the overall exit latency.
400
*/
401
static void menu_reflect(struct cpuidle_device *dev, int index)
402
{
403
struct menu_device *data = this_cpu_ptr(&menu_devices);
404
405
dev->last_state_idx = index;
406
data->needs_update = 1;
407
data->tick_wakeup = tick_nohz_idle_got_tick();
408
}
409
410
/**
411
* menu_update - attempts to guess what happened after entry
412
* @drv: cpuidle driver containing state data
413
* @dev: the CPU
414
*/
415
static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
416
{
417
struct menu_device *data = this_cpu_ptr(&menu_devices);
418
int last_idx = dev->last_state_idx;
419
struct cpuidle_state *target = &drv->states[last_idx];
420
u64 measured_ns;
421
unsigned int new_factor;
422
423
/*
424
* Try to figure out how much time passed between entry to low
425
* power state and occurrence of the wakeup event.
426
*
427
* If the entered idle state didn't support residency measurements,
428
* we use them anyway if they are short, and if long,
429
* truncate to the whole expected time.
430
*
431
* Any measured amount of time will include the exit latency.
432
* Since we are interested in when the wakeup begun, not when it
433
* was completed, we must subtract the exit latency. However, if
434
* the measured amount of time is less than the exit latency,
435
* assume the state was never reached and the exit latency is 0.
436
*/
437
438
if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) {
439
/*
440
* The nohz code said that there wouldn't be any events within
441
* the tick boundary (if the tick was stopped), but the idle
442
* duration predictor had a differing opinion. Since the CPU
443
* was woken up by a tick (that wasn't stopped after all), the
444
* predictor was not quite right, so assume that the CPU could
445
* have been idle long (but not forever) to help the idle
446
* duration predictor do a better job next time.
447
*/
448
measured_ns = 9 * MAX_INTERESTING / 10;
449
} else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
450
dev->poll_time_limit) {
451
/*
452
* The CPU exited the "polling" state due to a time limit, so
453
* the idle duration prediction leading to the selection of that
454
* state was inaccurate. If a better prediction had been made,
455
* the CPU might have been woken up from idle by the next timer.
456
* Assume that to be the case.
457
*/
458
measured_ns = data->next_timer_ns;
459
} else {
460
/* measured value */
461
measured_ns = dev->last_residency_ns;
462
463
/* Deduct exit latency */
464
if (measured_ns > 2 * target->exit_latency_ns)
465
measured_ns -= target->exit_latency_ns;
466
else
467
measured_ns /= 2;
468
}
469
470
/* Make sure our coefficients do not exceed unity */
471
if (measured_ns > data->next_timer_ns)
472
measured_ns = data->next_timer_ns;
473
474
/* Update our correction ratio */
475
new_factor = data->correction_factor[data->bucket];
476
new_factor -= new_factor / DECAY;
477
478
if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING)
479
new_factor += div64_u64(RESOLUTION * measured_ns,
480
data->next_timer_ns);
481
else
482
/*
483
* we were idle so long that we count it as a perfect
484
* prediction
485
*/
486
new_factor += RESOLUTION;
487
488
/*
489
* We don't want 0 as factor; we always want at least
490
* a tiny bit of estimated time. Fortunately, due to rounding,
491
* new_factor will stay nonzero regardless of measured_us values
492
* and the compiler can eliminate this test as long as DECAY > 1.
493
*/
494
if (DECAY == 1 && unlikely(new_factor == 0))
495
new_factor = 1;
496
497
data->correction_factor[data->bucket] = new_factor;
498
499
menu_update_intervals(data, ktime_to_us(measured_ns));
500
}
501
502
/**
503
* menu_enable_device - scans a CPU's states and does setup
504
* @drv: cpuidle driver
505
* @dev: the CPU
506
*/
507
static int menu_enable_device(struct cpuidle_driver *drv,
508
struct cpuidle_device *dev)
509
{
510
struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
511
int i;
512
513
memset(data, 0, sizeof(struct menu_device));
514
515
/*
516
* if the correction factor is 0 (eg first time init or cpu hotplug
517
* etc), we actually want to start out with a unity factor.
518
*/
519
for(i = 0; i < BUCKETS; i++)
520
data->correction_factor[i] = RESOLUTION * DECAY;
521
522
return 0;
523
}
524
525
static struct cpuidle_governor menu_governor = {
526
.name = "menu",
527
.rating = 20,
528
.enable = menu_enable_device,
529
.select = menu_select,
530
.reflect = menu_reflect,
531
};
532
533
/**
534
* init_menu - initializes the governor
535
*/
536
static int __init init_menu(void)
537
{
538
return cpuidle_register_governor(&menu_governor);
539
}
540
541
postcore_initcall(init_menu);
542
543