Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c
26292 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
4
*
5
* Copyright (C) 2013-2015 Corentin LABBE <[email protected]>
6
*
7
* This file add support for MD5 and SHA1.
8
*
9
* You could find the datasheet in Documentation/arch/arm/sunxi.rst
10
*/
11
#include "sun4i-ss.h"
12
#include <linux/unaligned.h>
13
#include <linux/scatterlist.h>
14
15
/* This is a totally arbitrary value */
16
#define SS_TIMEOUT 100
17
18
int sun4i_hash_crainit(struct crypto_tfm *tfm)
19
{
20
struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
21
struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
22
struct sun4i_ss_alg_template *algt;
23
int err;
24
25
memset(op, 0, sizeof(struct sun4i_tfm_ctx));
26
27
algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
28
op->ss = algt->ss;
29
30
err = pm_runtime_resume_and_get(op->ss->dev);
31
if (err < 0)
32
return err;
33
34
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
35
sizeof(struct sun4i_req_ctx));
36
return 0;
37
}
38
39
void sun4i_hash_craexit(struct crypto_tfm *tfm)
40
{
41
struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
42
43
pm_runtime_put(op->ss->dev);
44
}
45
46
/* sun4i_hash_init: initialize request context */
47
int sun4i_hash_init(struct ahash_request *areq)
48
{
49
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
50
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
51
struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
52
struct sun4i_ss_alg_template *algt;
53
54
memset(op, 0, sizeof(struct sun4i_req_ctx));
55
56
algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
57
op->mode = algt->mode;
58
59
return 0;
60
}
61
62
int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
63
{
64
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
65
struct md5_state *octx = out;
66
int i;
67
68
octx->byte_count = op->byte_count + op->len;
69
70
memcpy(octx->block, op->buf, op->len);
71
72
if (op->byte_count) {
73
for (i = 0; i < 4; i++)
74
octx->hash[i] = op->hash[i];
75
} else {
76
octx->hash[0] = SHA1_H0;
77
octx->hash[1] = SHA1_H1;
78
octx->hash[2] = SHA1_H2;
79
octx->hash[3] = SHA1_H3;
80
}
81
82
return 0;
83
}
84
85
int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
86
{
87
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
88
const struct md5_state *ictx = in;
89
int i;
90
91
sun4i_hash_init(areq);
92
93
op->byte_count = ictx->byte_count & ~0x3F;
94
op->len = ictx->byte_count & 0x3F;
95
96
memcpy(op->buf, ictx->block, op->len);
97
98
for (i = 0; i < 4; i++)
99
op->hash[i] = ictx->hash[i];
100
101
return 0;
102
}
103
104
int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
105
{
106
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
107
struct sha1_state *octx = out;
108
int i;
109
110
octx->count = op->byte_count + op->len;
111
112
memcpy(octx->buffer, op->buf, op->len);
113
114
if (op->byte_count) {
115
for (i = 0; i < 5; i++)
116
octx->state[i] = op->hash[i];
117
} else {
118
octx->state[0] = SHA1_H0;
119
octx->state[1] = SHA1_H1;
120
octx->state[2] = SHA1_H2;
121
octx->state[3] = SHA1_H3;
122
octx->state[4] = SHA1_H4;
123
}
124
125
return 0;
126
}
127
128
int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
129
{
130
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
131
const struct sha1_state *ictx = in;
132
int i;
133
134
sun4i_hash_init(areq);
135
136
op->byte_count = ictx->count & ~0x3F;
137
op->len = ictx->count & 0x3F;
138
139
memcpy(op->buf, ictx->buffer, op->len);
140
141
for (i = 0; i < 5; i++)
142
op->hash[i] = ictx->state[i];
143
144
return 0;
145
}
146
147
#define SS_HASH_UPDATE 1
148
#define SS_HASH_FINAL 2
149
150
/*
151
* sun4i_hash_update: update hash engine
152
*
153
* Could be used for both SHA1 and MD5
154
* Write data by step of 32bits and put then in the SS.
155
*
156
* Since we cannot leave partial data and hash state in the engine,
157
* we need to get the hash state at the end of this function.
158
* We can get the hash state every 64 bytes
159
*
160
* So the first work is to get the number of bytes to write to SS modulo 64
161
* The extra bytes will go to a temporary buffer op->buf storing op->len bytes
162
*
163
* So at the begin of update()
164
* if op->len + areq->nbytes < 64
165
* => all data will be written to wait buffer (op->buf) and end=0
166
* if not, write all data from op->buf to the device and position end to
167
* complete to 64bytes
168
*
169
* example 1:
170
* update1 60o => op->len=60
171
* update2 60o => need one more word to have 64 bytes
172
* end=4
173
* so write all data from op->buf and one word of SGs
174
* write remaining data in op->buf
175
* final state op->len=56
176
*/
177
static int sun4i_hash(struct ahash_request *areq)
178
{
179
/*
180
* i is the total bytes read from SGs, to be compared to areq->nbytes
181
* i is important because we cannot rely on SG length since the sum of
182
* SG->length could be greater than areq->nbytes
183
*
184
* end is the position when we need to stop writing to the device,
185
* to be compared to i
186
*
187
* in_i: advancement in the current SG
188
*/
189
unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
190
unsigned int in_i = 0;
191
u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
192
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
193
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
194
struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
195
struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
196
struct sun4i_ss_ctx *ss = tfmctx->ss;
197
struct sun4i_ss_alg_template *algt;
198
struct scatterlist *in_sg = areq->src;
199
struct sg_mapping_iter mi;
200
int in_r, err = 0;
201
size_t copied = 0;
202
u32 wb = 0;
203
204
dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
205
__func__, crypto_tfm_alg_name(areq->base.tfm),
206
op->byte_count, areq->nbytes, op->mode,
207
op->len, op->hash[0]);
208
209
if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
210
return 0;
211
212
/* protect against overflow */
213
if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
214
dev_err(ss->dev, "Cannot process too large request\n");
215
return -EINVAL;
216
}
217
218
if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
219
/* linearize data to op->buf */
220
copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
221
op->buf + op->len, areq->nbytes, 0);
222
op->len += copied;
223
return 0;
224
}
225
226
spin_lock_bh(&ss->slock);
227
228
/*
229
* if some data have been processed before,
230
* we need to restore the partial hash state
231
*/
232
if (op->byte_count) {
233
ivmode = SS_IV_ARBITRARY;
234
for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
235
writel(op->hash[i], ss->base + SS_IV0 + i * 4);
236
}
237
/* Enable the device */
238
writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
239
240
if (!(op->flags & SS_HASH_UPDATE))
241
goto hash_final;
242
243
/* start of handling data */
244
if (!(op->flags & SS_HASH_FINAL)) {
245
end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
246
247
if (end > areq->nbytes || areq->nbytes - end > 63) {
248
dev_err(ss->dev, "ERROR: Bound error %u %u\n",
249
end, areq->nbytes);
250
err = -EINVAL;
251
goto release_ss;
252
}
253
} else {
254
/* Since we have the flag final, we can go up to modulo 4 */
255
if (areq->nbytes < 4)
256
end = 0;
257
else
258
end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
259
}
260
261
/* TODO if SGlen % 4 and !op->len then DMA */
262
i = 1;
263
while (in_sg && i == 1) {
264
if (in_sg->length % 4)
265
i = 0;
266
in_sg = sg_next(in_sg);
267
}
268
if (i == 1 && !op->len && areq->nbytes)
269
dev_dbg(ss->dev, "We can DMA\n");
270
271
i = 0;
272
sg_miter_start(&mi, areq->src, sg_nents(areq->src),
273
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
274
sg_miter_next(&mi);
275
in_i = 0;
276
277
do {
278
/*
279
* we need to linearize in two case:
280
* - the buffer is already used
281
* - the SG does not have enough byte remaining ( < 4)
282
*/
283
if (op->len || (mi.length - in_i) < 4) {
284
/*
285
* if we have entered here we have two reason to stop
286
* - the buffer is full
287
* - reach the end
288
*/
289
while (op->len < 64 && i < end) {
290
/* how many bytes we can read from current SG */
291
in_r = min(end - i, 64 - op->len);
292
in_r = min_t(size_t, mi.length - in_i, in_r);
293
memcpy(op->buf + op->len, mi.addr + in_i, in_r);
294
op->len += in_r;
295
i += in_r;
296
in_i += in_r;
297
if (in_i == mi.length) {
298
sg_miter_next(&mi);
299
in_i = 0;
300
}
301
}
302
if (op->len > 3 && !(op->len % 4)) {
303
/* write buf to the device */
304
writesl(ss->base + SS_RXFIFO, op->buf,
305
op->len / 4);
306
op->byte_count += op->len;
307
op->len = 0;
308
}
309
}
310
if (mi.length - in_i > 3 && i < end) {
311
/* how many bytes we can read from current SG */
312
in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
313
in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
314
/* how many bytes we can write in the device*/
315
todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
316
writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
317
op->byte_count += todo * 4;
318
i += todo * 4;
319
in_i += todo * 4;
320
rx_cnt -= todo;
321
if (!rx_cnt) {
322
spaces = readl(ss->base + SS_FCSR);
323
rx_cnt = SS_RXFIFO_SPACES(spaces);
324
}
325
if (in_i == mi.length) {
326
sg_miter_next(&mi);
327
in_i = 0;
328
}
329
}
330
} while (i < end);
331
332
/*
333
* Now we have written to the device all that we can,
334
* store the remaining bytes in op->buf
335
*/
336
if ((areq->nbytes - i) < 64) {
337
while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
338
/* how many bytes we can read from current SG */
339
in_r = min(areq->nbytes - i, 64 - op->len);
340
in_r = min_t(size_t, mi.length - in_i, in_r);
341
memcpy(op->buf + op->len, mi.addr + in_i, in_r);
342
op->len += in_r;
343
i += in_r;
344
in_i += in_r;
345
if (in_i == mi.length) {
346
sg_miter_next(&mi);
347
in_i = 0;
348
}
349
}
350
}
351
352
sg_miter_stop(&mi);
353
354
/*
355
* End of data process
356
* Now if we have the flag final go to finalize part
357
* If not, store the partial hash
358
*/
359
if (op->flags & SS_HASH_FINAL)
360
goto hash_final;
361
362
writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
363
i = 0;
364
do {
365
v = readl(ss->base + SS_CTL);
366
i++;
367
} while (i < SS_TIMEOUT && (v & SS_DATA_END));
368
if (unlikely(i >= SS_TIMEOUT)) {
369
dev_err_ratelimited(ss->dev,
370
"ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
371
i, SS_TIMEOUT, v, areq->nbytes);
372
err = -EIO;
373
goto release_ss;
374
}
375
376
/*
377
* The datasheet isn't very clear about when to retrieve the digest. The
378
* bit SS_DATA_END is cleared when the engine has processed the data and
379
* when the digest is computed *but* it doesn't mean the digest is
380
* available in the digest registers. Hence the delay to be sure we can
381
* read it.
382
*/
383
ndelay(1);
384
385
for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
386
op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
387
388
goto release_ss;
389
390
/*
391
* hash_final: finalize hashing operation
392
*
393
* If we have some remaining bytes, we write them.
394
* Then ask the SS for finalizing the hashing operation
395
*
396
* I do not check RX FIFO size in this function since the size is 32
397
* after each enabling and this function neither write more than 32 words.
398
* If we come from the update part, we cannot have more than
399
* 3 remaining bytes to write and SS is fast enough to not care about it.
400
*/
401
402
hash_final:
403
if (IS_ENABLED(CONFIG_CRYPTO_DEV_SUN4I_SS_DEBUG)) {
404
algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
405
algt->stat_req++;
406
}
407
408
/* write the remaining words of the wait buffer */
409
if (op->len) {
410
nwait = op->len / 4;
411
if (nwait) {
412
writesl(ss->base + SS_RXFIFO, op->buf, nwait);
413
op->byte_count += 4 * nwait;
414
}
415
416
nbw = op->len - 4 * nwait;
417
if (nbw) {
418
wb = le32_to_cpup((__le32 *)(op->buf + nwait * 4));
419
wb &= GENMASK((nbw * 8) - 1, 0);
420
421
op->byte_count += nbw;
422
}
423
}
424
425
/* write the remaining bytes of the nbw buffer */
426
wb |= ((1 << 7) << (nbw * 8));
427
((__le32 *)bf)[j++] = cpu_to_le32(wb);
428
429
/*
430
* number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
431
* I take the operations from other MD5/SHA1 implementations
432
*/
433
434
/* last block size */
435
fill = 64 - (op->byte_count % 64);
436
min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
437
438
/* if we can't fill all data, jump to the next 64 block */
439
if (fill < min_fill)
440
fill += 64;
441
442
j += (fill - min_fill) / sizeof(u32);
443
444
/* write the length of data */
445
if (op->mode == SS_OP_SHA1) {
446
__be64 *bits = (__be64 *)&bf[j];
447
*bits = cpu_to_be64(op->byte_count << 3);
448
j += 2;
449
} else {
450
__le64 *bits = (__le64 *)&bf[j];
451
*bits = cpu_to_le64(op->byte_count << 3);
452
j += 2;
453
}
454
writesl(ss->base + SS_RXFIFO, bf, j);
455
456
/* Tell the SS to stop the hashing */
457
writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
458
459
/*
460
* Wait for SS to finish the hash.
461
* The timeout could happen only in case of bad overclocking
462
* or driver bug.
463
*/
464
i = 0;
465
do {
466
v = readl(ss->base + SS_CTL);
467
i++;
468
} while (i < SS_TIMEOUT && (v & SS_DATA_END));
469
if (unlikely(i >= SS_TIMEOUT)) {
470
dev_err_ratelimited(ss->dev,
471
"ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
472
i, SS_TIMEOUT, v, areq->nbytes);
473
err = -EIO;
474
goto release_ss;
475
}
476
477
/*
478
* The datasheet isn't very clear about when to retrieve the digest. The
479
* bit SS_DATA_END is cleared when the engine has processed the data and
480
* when the digest is computed *but* it doesn't mean the digest is
481
* available in the digest registers. Hence the delay to be sure we can
482
* read it.
483
*/
484
ndelay(1);
485
486
/* Get the hash from the device */
487
if (op->mode == SS_OP_SHA1) {
488
for (i = 0; i < 5; i++) {
489
v = readl(ss->base + SS_MD0 + i * 4);
490
if (ss->variant->sha1_in_be)
491
put_unaligned_le32(v, areq->result + i * 4);
492
else
493
put_unaligned_be32(v, areq->result + i * 4);
494
}
495
} else {
496
for (i = 0; i < 4; i++) {
497
v = readl(ss->base + SS_MD0 + i * 4);
498
put_unaligned_le32(v, areq->result + i * 4);
499
}
500
}
501
502
release_ss:
503
writel(0, ss->base + SS_CTL);
504
spin_unlock_bh(&ss->slock);
505
return err;
506
}
507
508
int sun4i_hash_final(struct ahash_request *areq)
509
{
510
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
511
512
op->flags = SS_HASH_FINAL;
513
return sun4i_hash(areq);
514
}
515
516
int sun4i_hash_update(struct ahash_request *areq)
517
{
518
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
519
520
op->flags = SS_HASH_UPDATE;
521
return sun4i_hash(areq);
522
}
523
524
/* sun4i_hash_finup: finalize hashing operation after an update */
525
int sun4i_hash_finup(struct ahash_request *areq)
526
{
527
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
528
529
op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
530
return sun4i_hash(areq);
531
}
532
533
/* combo of init/update/final functions */
534
int sun4i_hash_digest(struct ahash_request *areq)
535
{
536
int err;
537
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
538
539
err = sun4i_hash_init(areq);
540
if (err)
541
return err;
542
543
op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
544
return sun4i_hash(areq);
545
}
546
547