Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/atmel-sha.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Cryptographic API.
4
*
5
* Support for ATMEL SHA1/SHA256 HW acceleration.
6
*
7
* Copyright (c) 2012 Eukréa Electromatique - ATMEL
8
* Author: Nicolas Royer <[email protected]>
9
*
10
* Some ideas are from omap-sham.c drivers.
11
*/
12
13
14
#include <linux/kernel.h>
15
#include <linux/module.h>
16
#include <linux/slab.h>
17
#include <linux/err.h>
18
#include <linux/clk.h>
19
#include <linux/io.h>
20
#include <linux/hw_random.h>
21
#include <linux/platform_device.h>
22
23
#include <linux/device.h>
24
#include <linux/dmaengine.h>
25
#include <linux/init.h>
26
#include <linux/errno.h>
27
#include <linux/interrupt.h>
28
#include <linux/irq.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/mod_devicetable.h>
32
#include <linux/delay.h>
33
#include <linux/crypto.h>
34
#include <crypto/scatterwalk.h>
35
#include <crypto/algapi.h>
36
#include <crypto/sha1.h>
37
#include <crypto/sha2.h>
38
#include <crypto/hash.h>
39
#include <crypto/internal/hash.h>
40
#include "atmel-sha-regs.h"
41
#include "atmel-authenc.h"
42
43
#define ATMEL_SHA_PRIORITY 300
44
45
/* SHA flags */
46
#define SHA_FLAGS_BUSY BIT(0)
47
#define SHA_FLAGS_FINAL BIT(1)
48
#define SHA_FLAGS_DMA_ACTIVE BIT(2)
49
#define SHA_FLAGS_OUTPUT_READY BIT(3)
50
#define SHA_FLAGS_INIT BIT(4)
51
#define SHA_FLAGS_CPU BIT(5)
52
#define SHA_FLAGS_DMA_READY BIT(6)
53
#define SHA_FLAGS_DUMP_REG BIT(7)
54
55
/* bits[11:8] are reserved. */
56
57
#define SHA_FLAGS_FINUP BIT(16)
58
#define SHA_FLAGS_SG BIT(17)
59
#define SHA_FLAGS_ERROR BIT(23)
60
#define SHA_FLAGS_PAD BIT(24)
61
#define SHA_FLAGS_RESTORE BIT(25)
62
#define SHA_FLAGS_IDATAR0 BIT(26)
63
#define SHA_FLAGS_WAIT_DATARDY BIT(27)
64
65
#define SHA_OP_INIT 0
66
#define SHA_OP_UPDATE 1
67
#define SHA_OP_FINAL 2
68
#define SHA_OP_DIGEST 3
69
70
#define SHA_BUFFER_LEN (PAGE_SIZE / 16)
71
72
#define ATMEL_SHA_DMA_THRESHOLD 56
73
74
struct atmel_sha_caps {
75
bool has_dma;
76
bool has_dualbuff;
77
bool has_sha224;
78
bool has_sha_384_512;
79
bool has_uihv;
80
bool has_hmac;
81
};
82
83
struct atmel_sha_dev;
84
85
/*
86
* .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
87
* tested by the ahash_prepare_alg() function.
88
*/
89
struct atmel_sha_reqctx {
90
struct atmel_sha_dev *dd;
91
unsigned long flags;
92
unsigned long op;
93
94
u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
95
u64 digcnt[2];
96
size_t bufcnt;
97
size_t buflen;
98
dma_addr_t dma_addr;
99
100
/* walk state */
101
struct scatterlist *sg;
102
unsigned int offset; /* offset in current sg */
103
unsigned int total; /* total request */
104
105
size_t block_size;
106
size_t hash_size;
107
108
u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
109
};
110
111
typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
112
113
struct atmel_sha_ctx {
114
struct atmel_sha_dev *dd;
115
atmel_sha_fn_t start;
116
117
unsigned long flags;
118
};
119
120
#define ATMEL_SHA_QUEUE_LENGTH 50
121
122
struct atmel_sha_dma {
123
struct dma_chan *chan;
124
struct dma_slave_config dma_conf;
125
struct scatterlist *sg;
126
int nents;
127
unsigned int last_sg_length;
128
};
129
130
struct atmel_sha_dev {
131
struct list_head list;
132
unsigned long phys_base;
133
struct device *dev;
134
struct clk *iclk;
135
int irq;
136
void __iomem *io_base;
137
138
spinlock_t lock;
139
struct tasklet_struct done_task;
140
struct tasklet_struct queue_task;
141
142
unsigned long flags;
143
struct crypto_queue queue;
144
struct ahash_request *req;
145
bool is_async;
146
bool force_complete;
147
atmel_sha_fn_t resume;
148
atmel_sha_fn_t cpu_transfer_complete;
149
150
struct atmel_sha_dma dma_lch_in;
151
152
struct atmel_sha_caps caps;
153
154
struct scatterlist tmp;
155
156
u32 hw_version;
157
};
158
159
struct atmel_sha_drv {
160
struct list_head dev_list;
161
spinlock_t lock;
162
};
163
164
static struct atmel_sha_drv atmel_sha = {
165
.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
166
.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
167
};
168
169
#ifdef VERBOSE_DEBUG
170
static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
171
{
172
switch (offset) {
173
case SHA_CR:
174
return "CR";
175
176
case SHA_MR:
177
return "MR";
178
179
case SHA_IER:
180
return "IER";
181
182
case SHA_IDR:
183
return "IDR";
184
185
case SHA_IMR:
186
return "IMR";
187
188
case SHA_ISR:
189
return "ISR";
190
191
case SHA_MSR:
192
return "MSR";
193
194
case SHA_BCR:
195
return "BCR";
196
197
case SHA_REG_DIN(0):
198
case SHA_REG_DIN(1):
199
case SHA_REG_DIN(2):
200
case SHA_REG_DIN(3):
201
case SHA_REG_DIN(4):
202
case SHA_REG_DIN(5):
203
case SHA_REG_DIN(6):
204
case SHA_REG_DIN(7):
205
case SHA_REG_DIN(8):
206
case SHA_REG_DIN(9):
207
case SHA_REG_DIN(10):
208
case SHA_REG_DIN(11):
209
case SHA_REG_DIN(12):
210
case SHA_REG_DIN(13):
211
case SHA_REG_DIN(14):
212
case SHA_REG_DIN(15):
213
snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
214
break;
215
216
case SHA_REG_DIGEST(0):
217
case SHA_REG_DIGEST(1):
218
case SHA_REG_DIGEST(2):
219
case SHA_REG_DIGEST(3):
220
case SHA_REG_DIGEST(4):
221
case SHA_REG_DIGEST(5):
222
case SHA_REG_DIGEST(6):
223
case SHA_REG_DIGEST(7):
224
case SHA_REG_DIGEST(8):
225
case SHA_REG_DIGEST(9):
226
case SHA_REG_DIGEST(10):
227
case SHA_REG_DIGEST(11):
228
case SHA_REG_DIGEST(12):
229
case SHA_REG_DIGEST(13):
230
case SHA_REG_DIGEST(14):
231
case SHA_REG_DIGEST(15):
232
if (wr)
233
snprintf(tmp, sz, "IDATAR[%u]",
234
16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
235
else
236
snprintf(tmp, sz, "ODATAR[%u]",
237
(offset - SHA_REG_DIGEST(0)) >> 2);
238
break;
239
240
case SHA_HW_VERSION:
241
return "HWVER";
242
243
default:
244
snprintf(tmp, sz, "0x%02x", offset);
245
break;
246
}
247
248
return tmp;
249
}
250
251
#endif /* VERBOSE_DEBUG */
252
253
static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
254
{
255
u32 value = readl_relaxed(dd->io_base + offset);
256
257
#ifdef VERBOSE_DEBUG
258
if (dd->flags & SHA_FLAGS_DUMP_REG) {
259
char tmp[16];
260
261
dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
262
atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
263
}
264
#endif /* VERBOSE_DEBUG */
265
266
return value;
267
}
268
269
static inline void atmel_sha_write(struct atmel_sha_dev *dd,
270
u32 offset, u32 value)
271
{
272
#ifdef VERBOSE_DEBUG
273
if (dd->flags & SHA_FLAGS_DUMP_REG) {
274
char tmp[16];
275
276
dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
277
atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
278
}
279
#endif /* VERBOSE_DEBUG */
280
281
writel_relaxed(value, dd->io_base + offset);
282
}
283
284
static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
285
{
286
struct ahash_request *req = dd->req;
287
288
dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
289
SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
290
SHA_FLAGS_DUMP_REG);
291
292
clk_disable(dd->iclk);
293
294
if ((dd->is_async || dd->force_complete) && req->base.complete)
295
ahash_request_complete(req, err);
296
297
/* handle new request */
298
tasklet_schedule(&dd->queue_task);
299
300
return err;
301
}
302
303
static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
304
{
305
size_t count;
306
307
while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
308
count = min(ctx->sg->length - ctx->offset, ctx->total);
309
count = min(count, ctx->buflen - ctx->bufcnt);
310
311
if (count <= 0) {
312
/*
313
* Check if count <= 0 because the buffer is full or
314
* because the sg length is 0. In the latest case,
315
* check if there is another sg in the list, a 0 length
316
* sg doesn't necessarily mean the end of the sg list.
317
*/
318
if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
319
ctx->sg = sg_next(ctx->sg);
320
continue;
321
} else {
322
break;
323
}
324
}
325
326
scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
327
ctx->offset, count, 0);
328
329
ctx->bufcnt += count;
330
ctx->offset += count;
331
ctx->total -= count;
332
333
if (ctx->offset == ctx->sg->length) {
334
ctx->sg = sg_next(ctx->sg);
335
if (ctx->sg)
336
ctx->offset = 0;
337
else
338
ctx->total = 0;
339
}
340
}
341
342
return 0;
343
}
344
345
/*
346
* The purpose of this padding is to ensure that the padded message is a
347
* multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
348
* The bit "1" is appended at the end of the message followed by
349
* "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
350
* 128 bits block (SHA384/SHA512) equals to the message length in bits
351
* is appended.
352
*
353
* For SHA1/SHA224/SHA256, padlen is calculated as followed:
354
* - if message length < 56 bytes then padlen = 56 - message length
355
* - else padlen = 64 + 56 - message length
356
*
357
* For SHA384/SHA512, padlen is calculated as followed:
358
* - if message length < 112 bytes then padlen = 112 - message length
359
* - else padlen = 128 + 112 - message length
360
*/
361
static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
362
{
363
unsigned int index, padlen;
364
__be64 bits[2];
365
u64 size[2];
366
367
size[0] = ctx->digcnt[0];
368
size[1] = ctx->digcnt[1];
369
370
size[0] += ctx->bufcnt;
371
if (size[0] < ctx->bufcnt)
372
size[1]++;
373
374
size[0] += length;
375
if (size[0] < length)
376
size[1]++;
377
378
bits[1] = cpu_to_be64(size[0] << 3);
379
bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
380
381
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
382
case SHA_FLAGS_SHA384:
383
case SHA_FLAGS_SHA512:
384
index = ctx->bufcnt & 0x7f;
385
padlen = (index < 112) ? (112 - index) : ((128+112) - index);
386
*(ctx->buffer + ctx->bufcnt) = 0x80;
387
memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
388
memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
389
ctx->bufcnt += padlen + 16;
390
ctx->flags |= SHA_FLAGS_PAD;
391
break;
392
393
default:
394
index = ctx->bufcnt & 0x3f;
395
padlen = (index < 56) ? (56 - index) : ((64+56) - index);
396
*(ctx->buffer + ctx->bufcnt) = 0x80;
397
memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
398
memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
399
ctx->bufcnt += padlen + 8;
400
ctx->flags |= SHA_FLAGS_PAD;
401
break;
402
}
403
}
404
405
static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
406
{
407
struct atmel_sha_dev *dd = NULL;
408
struct atmel_sha_dev *tmp;
409
410
spin_lock_bh(&atmel_sha.lock);
411
if (!tctx->dd) {
412
list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
413
dd = tmp;
414
break;
415
}
416
tctx->dd = dd;
417
} else {
418
dd = tctx->dd;
419
}
420
421
spin_unlock_bh(&atmel_sha.lock);
422
423
return dd;
424
}
425
426
static int atmel_sha_init(struct ahash_request *req)
427
{
428
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
429
struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
430
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
431
struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
432
433
ctx->dd = dd;
434
435
ctx->flags = 0;
436
437
dev_dbg(dd->dev, "init: digest size: %u\n",
438
crypto_ahash_digestsize(tfm));
439
440
switch (crypto_ahash_digestsize(tfm)) {
441
case SHA1_DIGEST_SIZE:
442
ctx->flags |= SHA_FLAGS_SHA1;
443
ctx->block_size = SHA1_BLOCK_SIZE;
444
break;
445
case SHA224_DIGEST_SIZE:
446
ctx->flags |= SHA_FLAGS_SHA224;
447
ctx->block_size = SHA224_BLOCK_SIZE;
448
break;
449
case SHA256_DIGEST_SIZE:
450
ctx->flags |= SHA_FLAGS_SHA256;
451
ctx->block_size = SHA256_BLOCK_SIZE;
452
break;
453
case SHA384_DIGEST_SIZE:
454
ctx->flags |= SHA_FLAGS_SHA384;
455
ctx->block_size = SHA384_BLOCK_SIZE;
456
break;
457
case SHA512_DIGEST_SIZE:
458
ctx->flags |= SHA_FLAGS_SHA512;
459
ctx->block_size = SHA512_BLOCK_SIZE;
460
break;
461
default:
462
return -EINVAL;
463
}
464
465
ctx->bufcnt = 0;
466
ctx->digcnt[0] = 0;
467
ctx->digcnt[1] = 0;
468
ctx->buflen = SHA_BUFFER_LEN;
469
470
return 0;
471
}
472
473
static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
474
{
475
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
476
u32 valmr = SHA_MR_MODE_AUTO;
477
unsigned int i, hashsize = 0;
478
479
if (likely(dma)) {
480
if (!dd->caps.has_dma)
481
atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
482
valmr = SHA_MR_MODE_PDC;
483
if (dd->caps.has_dualbuff)
484
valmr |= SHA_MR_DUALBUFF;
485
} else {
486
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
487
}
488
489
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
490
case SHA_FLAGS_SHA1:
491
valmr |= SHA_MR_ALGO_SHA1;
492
hashsize = SHA1_DIGEST_SIZE;
493
break;
494
495
case SHA_FLAGS_SHA224:
496
valmr |= SHA_MR_ALGO_SHA224;
497
hashsize = SHA256_DIGEST_SIZE;
498
break;
499
500
case SHA_FLAGS_SHA256:
501
valmr |= SHA_MR_ALGO_SHA256;
502
hashsize = SHA256_DIGEST_SIZE;
503
break;
504
505
case SHA_FLAGS_SHA384:
506
valmr |= SHA_MR_ALGO_SHA384;
507
hashsize = SHA512_DIGEST_SIZE;
508
break;
509
510
case SHA_FLAGS_SHA512:
511
valmr |= SHA_MR_ALGO_SHA512;
512
hashsize = SHA512_DIGEST_SIZE;
513
break;
514
515
default:
516
break;
517
}
518
519
/* Setting CR_FIRST only for the first iteration */
520
if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
521
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
522
} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
523
const u32 *hash = (const u32 *)ctx->digest;
524
525
/*
526
* Restore the hardware context: update the User Initialize
527
* Hash Value (UIHV) with the value saved when the latest
528
* 'update' operation completed on this very same crypto
529
* request.
530
*/
531
ctx->flags &= ~SHA_FLAGS_RESTORE;
532
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
533
for (i = 0; i < hashsize / sizeof(u32); ++i)
534
atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
535
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
536
valmr |= SHA_MR_UIHV;
537
}
538
/*
539
* WARNING: If the UIHV feature is not available, the hardware CANNOT
540
* process concurrent requests: the internal registers used to store
541
* the hash/digest are still set to the partial digest output values
542
* computed during the latest round.
543
*/
544
545
atmel_sha_write(dd, SHA_MR, valmr);
546
}
547
548
static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
549
atmel_sha_fn_t resume)
550
{
551
u32 isr = atmel_sha_read(dd, SHA_ISR);
552
553
if (unlikely(isr & SHA_INT_DATARDY))
554
return resume(dd);
555
556
dd->resume = resume;
557
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
558
return -EINPROGRESS;
559
}
560
561
static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
562
size_t length, int final)
563
{
564
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
565
int count, len32;
566
const u32 *buffer = (const u32 *)buf;
567
568
dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
569
ctx->digcnt[1], ctx->digcnt[0], length, final);
570
571
atmel_sha_write_ctrl(dd, 0);
572
573
/* should be non-zero before next lines to disable clocks later */
574
ctx->digcnt[0] += length;
575
if (ctx->digcnt[0] < length)
576
ctx->digcnt[1]++;
577
578
if (final)
579
dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
580
581
len32 = DIV_ROUND_UP(length, sizeof(u32));
582
583
dd->flags |= SHA_FLAGS_CPU;
584
585
for (count = 0; count < len32; count++)
586
atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
587
588
return -EINPROGRESS;
589
}
590
591
static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
592
size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
593
{
594
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
595
int len32;
596
597
dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
598
ctx->digcnt[1], ctx->digcnt[0], length1, final);
599
600
len32 = DIV_ROUND_UP(length1, sizeof(u32));
601
atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
602
atmel_sha_write(dd, SHA_TPR, dma_addr1);
603
atmel_sha_write(dd, SHA_TCR, len32);
604
605
len32 = DIV_ROUND_UP(length2, sizeof(u32));
606
atmel_sha_write(dd, SHA_TNPR, dma_addr2);
607
atmel_sha_write(dd, SHA_TNCR, len32);
608
609
atmel_sha_write_ctrl(dd, 1);
610
611
/* should be non-zero before next lines to disable clocks later */
612
ctx->digcnt[0] += length1;
613
if (ctx->digcnt[0] < length1)
614
ctx->digcnt[1]++;
615
616
if (final)
617
dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
618
619
dd->flags |= SHA_FLAGS_DMA_ACTIVE;
620
621
/* Start DMA transfer */
622
atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
623
624
return -EINPROGRESS;
625
}
626
627
static void atmel_sha_dma_callback(void *data)
628
{
629
struct atmel_sha_dev *dd = data;
630
631
dd->is_async = true;
632
633
/* dma_lch_in - completed - wait DATRDY */
634
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
635
}
636
637
static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
638
size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
639
{
640
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
641
struct dma_async_tx_descriptor *in_desc;
642
struct scatterlist sg[2];
643
644
dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
645
ctx->digcnt[1], ctx->digcnt[0], length1, final);
646
647
dd->dma_lch_in.dma_conf.src_maxburst = 16;
648
dd->dma_lch_in.dma_conf.dst_maxburst = 16;
649
650
dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
651
652
if (length2) {
653
sg_init_table(sg, 2);
654
sg_dma_address(&sg[0]) = dma_addr1;
655
sg_dma_len(&sg[0]) = length1;
656
sg_dma_address(&sg[1]) = dma_addr2;
657
sg_dma_len(&sg[1]) = length2;
658
in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
659
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
660
} else {
661
sg_init_table(sg, 1);
662
sg_dma_address(&sg[0]) = dma_addr1;
663
sg_dma_len(&sg[0]) = length1;
664
in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
665
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666
}
667
if (!in_desc)
668
return atmel_sha_complete(dd, -EINVAL);
669
670
in_desc->callback = atmel_sha_dma_callback;
671
in_desc->callback_param = dd;
672
673
atmel_sha_write_ctrl(dd, 1);
674
675
/* should be non-zero before next lines to disable clocks later */
676
ctx->digcnt[0] += length1;
677
if (ctx->digcnt[0] < length1)
678
ctx->digcnt[1]++;
679
680
if (final)
681
dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
682
683
dd->flags |= SHA_FLAGS_DMA_ACTIVE;
684
685
/* Start DMA transfer */
686
dmaengine_submit(in_desc);
687
dma_async_issue_pending(dd->dma_lch_in.chan);
688
689
return -EINPROGRESS;
690
}
691
692
static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
693
size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
694
{
695
if (dd->caps.has_dma)
696
return atmel_sha_xmit_dma(dd, dma_addr1, length1,
697
dma_addr2, length2, final);
698
else
699
return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
700
dma_addr2, length2, final);
701
}
702
703
static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
704
{
705
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
706
int bufcnt;
707
708
atmel_sha_append_sg(ctx);
709
atmel_sha_fill_padding(ctx, 0);
710
bufcnt = ctx->bufcnt;
711
ctx->bufcnt = 0;
712
713
return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
714
}
715
716
static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
717
struct atmel_sha_reqctx *ctx,
718
size_t length, int final)
719
{
720
ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
721
ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
722
if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
723
dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
724
ctx->block_size);
725
return atmel_sha_complete(dd, -EINVAL);
726
}
727
728
ctx->flags &= ~SHA_FLAGS_SG;
729
730
/* next call does not fail... so no unmap in the case of error */
731
return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
732
}
733
734
static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
735
{
736
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
737
unsigned int final;
738
size_t count;
739
740
atmel_sha_append_sg(ctx);
741
742
final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
743
744
dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
745
ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
746
747
if (final)
748
atmel_sha_fill_padding(ctx, 0);
749
750
if (final || (ctx->bufcnt == ctx->buflen)) {
751
count = ctx->bufcnt;
752
ctx->bufcnt = 0;
753
return atmel_sha_xmit_dma_map(dd, ctx, count, final);
754
}
755
756
return 0;
757
}
758
759
static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
760
{
761
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
762
unsigned int length, final, tail;
763
struct scatterlist *sg;
764
unsigned int count;
765
766
if (!ctx->total)
767
return 0;
768
769
if (ctx->bufcnt || ctx->offset)
770
return atmel_sha_update_dma_slow(dd);
771
772
dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
773
ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
774
775
sg = ctx->sg;
776
777
if (!IS_ALIGNED(sg->offset, sizeof(u32)))
778
return atmel_sha_update_dma_slow(dd);
779
780
if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
781
/* size is not ctx->block_size aligned */
782
return atmel_sha_update_dma_slow(dd);
783
784
length = min(ctx->total, sg->length);
785
786
if (sg_is_last(sg)) {
787
if (!(ctx->flags & SHA_FLAGS_FINUP)) {
788
/* not last sg must be ctx->block_size aligned */
789
tail = length & (ctx->block_size - 1);
790
length -= tail;
791
}
792
}
793
794
ctx->total -= length;
795
ctx->offset = length; /* offset where to start slow */
796
797
final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
798
799
/* Add padding */
800
if (final) {
801
tail = length & (ctx->block_size - 1);
802
length -= tail;
803
ctx->total += tail;
804
ctx->offset = length; /* offset where to start slow */
805
806
sg = ctx->sg;
807
atmel_sha_append_sg(ctx);
808
809
atmel_sha_fill_padding(ctx, length);
810
811
ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
812
ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
813
if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
814
dev_err(dd->dev, "dma %zu bytes error\n",
815
ctx->buflen + ctx->block_size);
816
return atmel_sha_complete(dd, -EINVAL);
817
}
818
819
if (length == 0) {
820
ctx->flags &= ~SHA_FLAGS_SG;
821
count = ctx->bufcnt;
822
ctx->bufcnt = 0;
823
return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
824
0, final);
825
} else {
826
ctx->sg = sg;
827
if (!dma_map_sg(dd->dev, ctx->sg, 1,
828
DMA_TO_DEVICE)) {
829
dev_err(dd->dev, "dma_map_sg error\n");
830
return atmel_sha_complete(dd, -EINVAL);
831
}
832
833
ctx->flags |= SHA_FLAGS_SG;
834
835
count = ctx->bufcnt;
836
ctx->bufcnt = 0;
837
return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
838
length, ctx->dma_addr, count, final);
839
}
840
}
841
842
if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
843
dev_err(dd->dev, "dma_map_sg error\n");
844
return atmel_sha_complete(dd, -EINVAL);
845
}
846
847
ctx->flags |= SHA_FLAGS_SG;
848
849
/* next call does not fail... so no unmap in the case of error */
850
return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
851
0, final);
852
}
853
854
static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
855
{
856
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
857
858
if (ctx->flags & SHA_FLAGS_SG) {
859
dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
860
if (ctx->sg->length == ctx->offset) {
861
ctx->sg = sg_next(ctx->sg);
862
if (ctx->sg)
863
ctx->offset = 0;
864
}
865
if (ctx->flags & SHA_FLAGS_PAD) {
866
dma_unmap_single(dd->dev, ctx->dma_addr,
867
ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
868
}
869
} else {
870
dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
871
ctx->block_size, DMA_TO_DEVICE);
872
}
873
}
874
875
static int atmel_sha_update_req(struct atmel_sha_dev *dd)
876
{
877
struct ahash_request *req = dd->req;
878
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
879
int err;
880
881
dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
882
ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
883
884
if (ctx->flags & SHA_FLAGS_CPU)
885
err = atmel_sha_update_cpu(dd);
886
else
887
err = atmel_sha_update_dma_start(dd);
888
889
/* wait for dma completion before can take more data */
890
dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
891
err, ctx->digcnt[1], ctx->digcnt[0]);
892
893
return err;
894
}
895
896
static int atmel_sha_final_req(struct atmel_sha_dev *dd)
897
{
898
struct ahash_request *req = dd->req;
899
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
900
int err = 0;
901
int count;
902
903
if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
904
atmel_sha_fill_padding(ctx, 0);
905
count = ctx->bufcnt;
906
ctx->bufcnt = 0;
907
err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
908
}
909
/* faster to handle last block with cpu */
910
else {
911
atmel_sha_fill_padding(ctx, 0);
912
count = ctx->bufcnt;
913
ctx->bufcnt = 0;
914
err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
915
}
916
917
dev_dbg(dd->dev, "final_req: err: %d\n", err);
918
919
return err;
920
}
921
922
static void atmel_sha_copy_hash(struct ahash_request *req)
923
{
924
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
925
u32 *hash = (u32 *)ctx->digest;
926
unsigned int i, hashsize;
927
928
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
929
case SHA_FLAGS_SHA1:
930
hashsize = SHA1_DIGEST_SIZE;
931
break;
932
933
case SHA_FLAGS_SHA224:
934
case SHA_FLAGS_SHA256:
935
hashsize = SHA256_DIGEST_SIZE;
936
break;
937
938
case SHA_FLAGS_SHA384:
939
case SHA_FLAGS_SHA512:
940
hashsize = SHA512_DIGEST_SIZE;
941
break;
942
943
default:
944
/* Should not happen... */
945
return;
946
}
947
948
for (i = 0; i < hashsize / sizeof(u32); ++i)
949
hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
950
ctx->flags |= SHA_FLAGS_RESTORE;
951
}
952
953
static void atmel_sha_copy_ready_hash(struct ahash_request *req)
954
{
955
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
956
957
if (!req->result)
958
return;
959
960
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
961
default:
962
case SHA_FLAGS_SHA1:
963
memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
964
break;
965
966
case SHA_FLAGS_SHA224:
967
memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
968
break;
969
970
case SHA_FLAGS_SHA256:
971
memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
972
break;
973
974
case SHA_FLAGS_SHA384:
975
memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
976
break;
977
978
case SHA_FLAGS_SHA512:
979
memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
980
break;
981
}
982
}
983
984
static int atmel_sha_finish(struct ahash_request *req)
985
{
986
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
987
struct atmel_sha_dev *dd = ctx->dd;
988
989
if (ctx->digcnt[0] || ctx->digcnt[1])
990
atmel_sha_copy_ready_hash(req);
991
992
dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
993
ctx->digcnt[0], ctx->bufcnt);
994
995
return 0;
996
}
997
998
static void atmel_sha_finish_req(struct ahash_request *req, int err)
999
{
1000
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1001
struct atmel_sha_dev *dd = ctx->dd;
1002
1003
if (!err) {
1004
atmel_sha_copy_hash(req);
1005
if (SHA_FLAGS_FINAL & dd->flags)
1006
err = atmel_sha_finish(req);
1007
} else {
1008
ctx->flags |= SHA_FLAGS_ERROR;
1009
}
1010
1011
/* atomic operation is not needed here */
1012
(void)atmel_sha_complete(dd, err);
1013
}
1014
1015
static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1016
{
1017
int err;
1018
1019
err = clk_enable(dd->iclk);
1020
if (err)
1021
return err;
1022
1023
if (!(SHA_FLAGS_INIT & dd->flags)) {
1024
atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1025
dd->flags |= SHA_FLAGS_INIT;
1026
}
1027
1028
return 0;
1029
}
1030
1031
static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1032
{
1033
return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1034
}
1035
1036
static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1037
{
1038
int err;
1039
1040
err = atmel_sha_hw_init(dd);
1041
if (err)
1042
return err;
1043
1044
dd->hw_version = atmel_sha_get_version(dd);
1045
1046
dev_info(dd->dev,
1047
"version: 0x%x\n", dd->hw_version);
1048
1049
clk_disable(dd->iclk);
1050
1051
return 0;
1052
}
1053
1054
static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055
struct ahash_request *req)
1056
{
1057
struct crypto_async_request *async_req, *backlog;
1058
struct atmel_sha_ctx *ctx;
1059
unsigned long flags;
1060
bool start_async;
1061
int err = 0, ret = 0;
1062
1063
spin_lock_irqsave(&dd->lock, flags);
1064
if (req)
1065
ret = ahash_enqueue_request(&dd->queue, req);
1066
1067
if (SHA_FLAGS_BUSY & dd->flags) {
1068
spin_unlock_irqrestore(&dd->lock, flags);
1069
return ret;
1070
}
1071
1072
backlog = crypto_get_backlog(&dd->queue);
1073
async_req = crypto_dequeue_request(&dd->queue);
1074
if (async_req)
1075
dd->flags |= SHA_FLAGS_BUSY;
1076
1077
spin_unlock_irqrestore(&dd->lock, flags);
1078
1079
if (!async_req)
1080
return ret;
1081
1082
if (backlog)
1083
crypto_request_complete(backlog, -EINPROGRESS);
1084
1085
ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087
dd->req = ahash_request_cast(async_req);
1088
start_async = (dd->req != req);
1089
dd->is_async = start_async;
1090
dd->force_complete = false;
1091
1092
/* WARNING: ctx->start() MAY change dd->is_async. */
1093
err = ctx->start(dd);
1094
return (start_async) ? ret : err;
1095
}
1096
1097
static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099
static int atmel_sha_start(struct atmel_sha_dev *dd)
1100
{
1101
struct ahash_request *req = dd->req;
1102
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103
int err;
1104
1105
dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %u\n",
1106
ctx->op, req->nbytes);
1107
1108
err = atmel_sha_hw_init(dd);
1109
if (err)
1110
return atmel_sha_complete(dd, err);
1111
1112
/*
1113
* atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114
* -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115
* its job later in the done_task.
1116
* This is the main path.
1117
*
1118
* 0: the SHA driver can continue its job then release the hardware
1119
* later, if needed, with atmel_sha_finish_req().
1120
* This is the alternate path.
1121
*
1122
* < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123
* been called, hence the hardware has been released.
1124
* The SHA driver must stop its job without calling
1125
* atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126
* called a second time.
1127
*
1128
* Please note that currently, atmel_sha_final_req() never returns 0.
1129
*/
1130
1131
dd->resume = atmel_sha_done;
1132
if (ctx->op == SHA_OP_UPDATE) {
1133
err = atmel_sha_update_req(dd);
1134
if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135
/* no final() after finup() */
1136
err = atmel_sha_final_req(dd);
1137
} else if (ctx->op == SHA_OP_FINAL) {
1138
err = atmel_sha_final_req(dd);
1139
}
1140
1141
if (!err)
1142
/* done_task will not finish it, so do it here */
1143
atmel_sha_finish_req(req, err);
1144
1145
dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147
return err;
1148
}
1149
1150
static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151
{
1152
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153
struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154
struct atmel_sha_dev *dd = tctx->dd;
1155
1156
ctx->op = op;
1157
1158
return atmel_sha_handle_queue(dd, req);
1159
}
1160
1161
static int atmel_sha_update(struct ahash_request *req)
1162
{
1163
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165
if (!req->nbytes)
1166
return 0;
1167
1168
ctx->total = req->nbytes;
1169
ctx->sg = req->src;
1170
ctx->offset = 0;
1171
1172
if (ctx->flags & SHA_FLAGS_FINUP) {
1173
if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174
/* faster to use CPU for short transfers */
1175
ctx->flags |= SHA_FLAGS_CPU;
1176
} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177
atmel_sha_append_sg(ctx);
1178
return 0;
1179
}
1180
return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181
}
1182
1183
static int atmel_sha_final(struct ahash_request *req)
1184
{
1185
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187
ctx->flags |= SHA_FLAGS_FINUP;
1188
1189
if (ctx->flags & SHA_FLAGS_ERROR)
1190
return 0; /* uncompleted hash is not needed */
1191
1192
if (ctx->flags & SHA_FLAGS_PAD)
1193
/* copy ready hash (+ finalize hmac) */
1194
return atmel_sha_finish(req);
1195
1196
return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197
}
1198
1199
static int atmel_sha_finup(struct ahash_request *req)
1200
{
1201
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202
int err1, err2;
1203
1204
ctx->flags |= SHA_FLAGS_FINUP;
1205
1206
err1 = atmel_sha_update(req);
1207
if (err1 == -EINPROGRESS ||
1208
(err1 == -EBUSY && (ahash_request_flags(req) &
1209
CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210
return err1;
1211
1212
/*
1213
* final() has to be always called to cleanup resources
1214
* even if udpate() failed, except EINPROGRESS
1215
*/
1216
err2 = atmel_sha_final(req);
1217
1218
return err1 ?: err2;
1219
}
1220
1221
static int atmel_sha_digest(struct ahash_request *req)
1222
{
1223
return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224
}
1225
1226
1227
static int atmel_sha_export(struct ahash_request *req, void *out)
1228
{
1229
const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231
memcpy(out, ctx, sizeof(*ctx));
1232
return 0;
1233
}
1234
1235
static int atmel_sha_import(struct ahash_request *req, const void *in)
1236
{
1237
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239
memcpy(ctx, in, sizeof(*ctx));
1240
return 0;
1241
}
1242
1243
static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244
{
1245
struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248
sizeof(struct atmel_sha_reqctx));
1249
ctx->start = atmel_sha_start;
1250
1251
return 0;
1252
}
1253
1254
static void atmel_sha_alg_init(struct ahash_alg *alg)
1255
{
1256
alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1257
alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC |
1258
CRYPTO_ALG_KERN_DRIVER_ONLY;
1259
alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1260
alg->halg.base.cra_module = THIS_MODULE;
1261
alg->halg.base.cra_init = atmel_sha_cra_init;
1262
1263
alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1264
1265
alg->init = atmel_sha_init;
1266
alg->update = atmel_sha_update;
1267
alg->final = atmel_sha_final;
1268
alg->finup = atmel_sha_finup;
1269
alg->digest = atmel_sha_digest;
1270
alg->export = atmel_sha_export;
1271
alg->import = atmel_sha_import;
1272
}
1273
1274
static struct ahash_alg sha_1_256_algs[] = {
1275
{
1276
.halg.base.cra_name = "sha1",
1277
.halg.base.cra_driver_name = "atmel-sha1",
1278
.halg.base.cra_blocksize = SHA1_BLOCK_SIZE,
1279
1280
.halg.digestsize = SHA1_DIGEST_SIZE,
1281
},
1282
{
1283
.halg.base.cra_name = "sha256",
1284
.halg.base.cra_driver_name = "atmel-sha256",
1285
.halg.base.cra_blocksize = SHA256_BLOCK_SIZE,
1286
1287
.halg.digestsize = SHA256_DIGEST_SIZE,
1288
},
1289
};
1290
1291
static struct ahash_alg sha_224_alg = {
1292
.halg.base.cra_name = "sha224",
1293
.halg.base.cra_driver_name = "atmel-sha224",
1294
.halg.base.cra_blocksize = SHA224_BLOCK_SIZE,
1295
1296
.halg.digestsize = SHA224_DIGEST_SIZE,
1297
};
1298
1299
static struct ahash_alg sha_384_512_algs[] = {
1300
{
1301
.halg.base.cra_name = "sha384",
1302
.halg.base.cra_driver_name = "atmel-sha384",
1303
.halg.base.cra_blocksize = SHA384_BLOCK_SIZE,
1304
1305
.halg.digestsize = SHA384_DIGEST_SIZE,
1306
},
1307
{
1308
.halg.base.cra_name = "sha512",
1309
.halg.base.cra_driver_name = "atmel-sha512",
1310
.halg.base.cra_blocksize = SHA512_BLOCK_SIZE,
1311
1312
.halg.digestsize = SHA512_DIGEST_SIZE,
1313
},
1314
};
1315
1316
static void atmel_sha_queue_task(unsigned long data)
1317
{
1318
struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1319
1320
atmel_sha_handle_queue(dd, NULL);
1321
}
1322
1323
static int atmel_sha_done(struct atmel_sha_dev *dd)
1324
{
1325
int err = 0;
1326
1327
if (SHA_FLAGS_CPU & dd->flags) {
1328
if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1329
dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1330
goto finish;
1331
}
1332
} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1333
if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1334
dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1335
atmel_sha_update_dma_stop(dd);
1336
}
1337
if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1338
/* hash or semi-hash ready */
1339
dd->flags &= ~(SHA_FLAGS_DMA_READY |
1340
SHA_FLAGS_OUTPUT_READY);
1341
err = atmel_sha_update_dma_start(dd);
1342
if (err != -EINPROGRESS)
1343
goto finish;
1344
}
1345
}
1346
return err;
1347
1348
finish:
1349
/* finish curent request */
1350
atmel_sha_finish_req(dd->req, err);
1351
1352
return err;
1353
}
1354
1355
static void atmel_sha_done_task(unsigned long data)
1356
{
1357
struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1358
1359
dd->is_async = true;
1360
(void)dd->resume(dd);
1361
}
1362
1363
static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1364
{
1365
struct atmel_sha_dev *sha_dd = dev_id;
1366
u32 reg;
1367
1368
reg = atmel_sha_read(sha_dd, SHA_ISR);
1369
if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1370
atmel_sha_write(sha_dd, SHA_IDR, reg);
1371
if (SHA_FLAGS_BUSY & sha_dd->flags) {
1372
sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1373
if (!(SHA_FLAGS_CPU & sha_dd->flags))
1374
sha_dd->flags |= SHA_FLAGS_DMA_READY;
1375
tasklet_schedule(&sha_dd->done_task);
1376
} else {
1377
dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1378
}
1379
return IRQ_HANDLED;
1380
}
1381
1382
return IRQ_NONE;
1383
}
1384
1385
1386
/* DMA transfer functions */
1387
1388
static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1389
struct scatterlist *sg,
1390
size_t len)
1391
{
1392
struct atmel_sha_dma *dma = &dd->dma_lch_in;
1393
struct ahash_request *req = dd->req;
1394
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1395
size_t bs = ctx->block_size;
1396
int nents;
1397
1398
for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1399
if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1400
return false;
1401
1402
/*
1403
* This is the last sg, the only one that is allowed to
1404
* have an unaligned length.
1405
*/
1406
if (len <= sg->length) {
1407
dma->nents = nents + 1;
1408
dma->last_sg_length = sg->length;
1409
sg->length = ALIGN(len, sizeof(u32));
1410
return true;
1411
}
1412
1413
/* All other sg lengths MUST be aligned to the block size. */
1414
if (!IS_ALIGNED(sg->length, bs))
1415
return false;
1416
1417
len -= sg->length;
1418
}
1419
1420
return false;
1421
}
1422
1423
static void atmel_sha_dma_callback2(void *data)
1424
{
1425
struct atmel_sha_dev *dd = data;
1426
struct atmel_sha_dma *dma = &dd->dma_lch_in;
1427
struct scatterlist *sg;
1428
int nents;
1429
1430
dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1431
1432
sg = dma->sg;
1433
for (nents = 0; nents < dma->nents - 1; ++nents)
1434
sg = sg_next(sg);
1435
sg->length = dma->last_sg_length;
1436
1437
dd->is_async = true;
1438
(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1439
}
1440
1441
static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1442
struct scatterlist *src,
1443
size_t len,
1444
atmel_sha_fn_t resume)
1445
{
1446
struct atmel_sha_dma *dma = &dd->dma_lch_in;
1447
struct dma_slave_config *config = &dma->dma_conf;
1448
struct dma_chan *chan = dma->chan;
1449
struct dma_async_tx_descriptor *desc;
1450
dma_cookie_t cookie;
1451
unsigned int sg_len;
1452
int err;
1453
1454
dd->resume = resume;
1455
1456
/*
1457
* dma->nents has already been initialized by
1458
* atmel_sha_dma_check_aligned().
1459
*/
1460
dma->sg = src;
1461
sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1462
if (!sg_len) {
1463
err = -ENOMEM;
1464
goto exit;
1465
}
1466
1467
config->src_maxburst = 16;
1468
config->dst_maxburst = 16;
1469
err = dmaengine_slave_config(chan, config);
1470
if (err)
1471
goto unmap_sg;
1472
1473
desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1474
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1475
if (!desc) {
1476
err = -ENOMEM;
1477
goto unmap_sg;
1478
}
1479
1480
desc->callback = atmel_sha_dma_callback2;
1481
desc->callback_param = dd;
1482
cookie = dmaengine_submit(desc);
1483
err = dma_submit_error(cookie);
1484
if (err)
1485
goto unmap_sg;
1486
1487
dma_async_issue_pending(chan);
1488
1489
return -EINPROGRESS;
1490
1491
unmap_sg:
1492
dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1493
exit:
1494
return atmel_sha_complete(dd, err);
1495
}
1496
1497
1498
/* CPU transfer functions */
1499
1500
static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1501
{
1502
struct ahash_request *req = dd->req;
1503
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1504
const u32 *words = (const u32 *)ctx->buffer;
1505
size_t i, num_words;
1506
u32 isr, din, din_inc;
1507
1508
din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1509
for (;;) {
1510
/* Write data into the Input Data Registers. */
1511
num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1512
for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1513
atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1514
1515
ctx->offset += ctx->bufcnt;
1516
ctx->total -= ctx->bufcnt;
1517
1518
if (!ctx->total)
1519
break;
1520
1521
/*
1522
* Prepare next block:
1523
* Fill ctx->buffer now with the next data to be written into
1524
* IDATARx: it gives time for the SHA hardware to process
1525
* the current data so the SHA_INT_DATARDY flag might be set
1526
* in SHA_ISR when polling this register at the beginning of
1527
* the next loop.
1528
*/
1529
ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1530
scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1531
ctx->offset, ctx->bufcnt, 0);
1532
1533
/* Wait for hardware to be ready again. */
1534
isr = atmel_sha_read(dd, SHA_ISR);
1535
if (!(isr & SHA_INT_DATARDY)) {
1536
/* Not ready yet. */
1537
dd->resume = atmel_sha_cpu_transfer;
1538
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1539
return -EINPROGRESS;
1540
}
1541
}
1542
1543
if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1544
return dd->cpu_transfer_complete(dd);
1545
1546
return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1547
}
1548
1549
static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1550
struct scatterlist *sg,
1551
unsigned int len,
1552
bool idatar0_only,
1553
bool wait_data_ready,
1554
atmel_sha_fn_t resume)
1555
{
1556
struct ahash_request *req = dd->req;
1557
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1558
1559
if (!len)
1560
return resume(dd);
1561
1562
ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1563
1564
if (idatar0_only)
1565
ctx->flags |= SHA_FLAGS_IDATAR0;
1566
1567
if (wait_data_ready)
1568
ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1569
1570
ctx->sg = sg;
1571
ctx->total = len;
1572
ctx->offset = 0;
1573
1574
/* Prepare the first block to be written. */
1575
ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1576
scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1577
ctx->offset, ctx->bufcnt, 0);
1578
1579
dd->cpu_transfer_complete = resume;
1580
return atmel_sha_cpu_transfer(dd);
1581
}
1582
1583
static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1584
const void *data, unsigned int datalen,
1585
bool auto_padding,
1586
atmel_sha_fn_t resume)
1587
{
1588
struct ahash_request *req = dd->req;
1589
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1590
u32 msglen = (auto_padding) ? datalen : 0;
1591
u32 mr = SHA_MR_MODE_AUTO;
1592
1593
if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1594
return atmel_sha_complete(dd, -EINVAL);
1595
1596
mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1597
atmel_sha_write(dd, SHA_MR, mr);
1598
atmel_sha_write(dd, SHA_MSR, msglen);
1599
atmel_sha_write(dd, SHA_BCR, msglen);
1600
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1601
1602
sg_init_one(&dd->tmp, data, datalen);
1603
return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1604
}
1605
1606
1607
/* hmac functions */
1608
1609
struct atmel_sha_hmac_key {
1610
bool valid;
1611
unsigned int keylen;
1612
u8 buffer[SHA512_BLOCK_SIZE];
1613
u8 *keydup;
1614
};
1615
1616
static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1617
{
1618
memset(hkey, 0, sizeof(*hkey));
1619
}
1620
1621
static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1622
{
1623
kfree(hkey->keydup);
1624
memset(hkey, 0, sizeof(*hkey));
1625
}
1626
1627
static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1628
const u8 *key,
1629
unsigned int keylen)
1630
{
1631
atmel_sha_hmac_key_release(hkey);
1632
1633
if (keylen > sizeof(hkey->buffer)) {
1634
hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1635
if (!hkey->keydup)
1636
return -ENOMEM;
1637
1638
} else {
1639
memcpy(hkey->buffer, key, keylen);
1640
}
1641
1642
hkey->valid = true;
1643
hkey->keylen = keylen;
1644
return 0;
1645
}
1646
1647
static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1648
const u8 **key,
1649
unsigned int *keylen)
1650
{
1651
if (!hkey->valid)
1652
return false;
1653
1654
*keylen = hkey->keylen;
1655
*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1656
return true;
1657
}
1658
1659
1660
struct atmel_sha_hmac_ctx {
1661
struct atmel_sha_ctx base;
1662
1663
struct atmel_sha_hmac_key hkey;
1664
u32 ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1665
u32 opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1666
atmel_sha_fn_t resume;
1667
};
1668
1669
static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1670
atmel_sha_fn_t resume);
1671
static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1672
const u8 *key, unsigned int keylen);
1673
static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1674
static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1675
static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1676
static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1677
1678
static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1679
static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1680
static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1681
static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1682
1683
static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1684
atmel_sha_fn_t resume)
1685
{
1686
struct ahash_request *req = dd->req;
1687
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1688
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1689
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1690
unsigned int keylen;
1691
const u8 *key;
1692
size_t bs;
1693
1694
hmac->resume = resume;
1695
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1696
case SHA_FLAGS_SHA1:
1697
ctx->block_size = SHA1_BLOCK_SIZE;
1698
ctx->hash_size = SHA1_DIGEST_SIZE;
1699
break;
1700
1701
case SHA_FLAGS_SHA224:
1702
ctx->block_size = SHA224_BLOCK_SIZE;
1703
ctx->hash_size = SHA256_DIGEST_SIZE;
1704
break;
1705
1706
case SHA_FLAGS_SHA256:
1707
ctx->block_size = SHA256_BLOCK_SIZE;
1708
ctx->hash_size = SHA256_DIGEST_SIZE;
1709
break;
1710
1711
case SHA_FLAGS_SHA384:
1712
ctx->block_size = SHA384_BLOCK_SIZE;
1713
ctx->hash_size = SHA512_DIGEST_SIZE;
1714
break;
1715
1716
case SHA_FLAGS_SHA512:
1717
ctx->block_size = SHA512_BLOCK_SIZE;
1718
ctx->hash_size = SHA512_DIGEST_SIZE;
1719
break;
1720
1721
default:
1722
return atmel_sha_complete(dd, -EINVAL);
1723
}
1724
bs = ctx->block_size;
1725
1726
if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1727
return resume(dd);
1728
1729
/* Compute K' from K. */
1730
if (unlikely(keylen > bs))
1731
return atmel_sha_hmac_prehash_key(dd, key, keylen);
1732
1733
/* Prepare ipad. */
1734
memcpy((u8 *)hmac->ipad, key, keylen);
1735
memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1736
return atmel_sha_hmac_compute_ipad_hash(dd);
1737
}
1738
1739
static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1740
const u8 *key, unsigned int keylen)
1741
{
1742
return atmel_sha_cpu_hash(dd, key, keylen, true,
1743
atmel_sha_hmac_prehash_key_done);
1744
}
1745
1746
static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1747
{
1748
struct ahash_request *req = dd->req;
1749
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1750
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1751
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1752
size_t ds = crypto_ahash_digestsize(tfm);
1753
size_t bs = ctx->block_size;
1754
size_t i, num_words = ds / sizeof(u32);
1755
1756
/* Prepare ipad. */
1757
for (i = 0; i < num_words; ++i)
1758
hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1759
memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1760
return atmel_sha_hmac_compute_ipad_hash(dd);
1761
}
1762
1763
static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1764
{
1765
struct ahash_request *req = dd->req;
1766
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1767
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1768
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1769
size_t bs = ctx->block_size;
1770
size_t i, num_words = bs / sizeof(u32);
1771
1772
unsafe_memcpy(hmac->opad, hmac->ipad, bs,
1773
"fortified memcpy causes -Wrestrict warning");
1774
for (i = 0; i < num_words; ++i) {
1775
hmac->ipad[i] ^= 0x36363636;
1776
hmac->opad[i] ^= 0x5c5c5c5c;
1777
}
1778
1779
return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1780
atmel_sha_hmac_compute_opad_hash);
1781
}
1782
1783
static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1784
{
1785
struct ahash_request *req = dd->req;
1786
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1787
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1788
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1789
size_t bs = ctx->block_size;
1790
size_t hs = ctx->hash_size;
1791
size_t i, num_words = hs / sizeof(u32);
1792
1793
for (i = 0; i < num_words; ++i)
1794
hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1795
return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1796
atmel_sha_hmac_setup_done);
1797
}
1798
1799
static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1800
{
1801
struct ahash_request *req = dd->req;
1802
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1803
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1804
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1805
size_t hs = ctx->hash_size;
1806
size_t i, num_words = hs / sizeof(u32);
1807
1808
for (i = 0; i < num_words; ++i)
1809
hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1810
atmel_sha_hmac_key_release(&hmac->hkey);
1811
return hmac->resume(dd);
1812
}
1813
1814
static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1815
{
1816
struct ahash_request *req = dd->req;
1817
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1818
int err;
1819
1820
err = atmel_sha_hw_init(dd);
1821
if (err)
1822
return atmel_sha_complete(dd, err);
1823
1824
switch (ctx->op) {
1825
case SHA_OP_INIT:
1826
err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1827
break;
1828
1829
case SHA_OP_UPDATE:
1830
dd->resume = atmel_sha_done;
1831
err = atmel_sha_update_req(dd);
1832
break;
1833
1834
case SHA_OP_FINAL:
1835
dd->resume = atmel_sha_hmac_final;
1836
err = atmel_sha_final_req(dd);
1837
break;
1838
1839
case SHA_OP_DIGEST:
1840
err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1841
break;
1842
1843
default:
1844
return atmel_sha_complete(dd, -EINVAL);
1845
}
1846
1847
return err;
1848
}
1849
1850
static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1851
unsigned int keylen)
1852
{
1853
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1854
1855
return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1856
}
1857
1858
static int atmel_sha_hmac_init(struct ahash_request *req)
1859
{
1860
int err;
1861
1862
err = atmel_sha_init(req);
1863
if (err)
1864
return err;
1865
1866
return atmel_sha_enqueue(req, SHA_OP_INIT);
1867
}
1868
1869
static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1870
{
1871
struct ahash_request *req = dd->req;
1872
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1873
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1874
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1875
size_t bs = ctx->block_size;
1876
size_t hs = ctx->hash_size;
1877
1878
ctx->bufcnt = 0;
1879
ctx->digcnt[0] = bs;
1880
ctx->digcnt[1] = 0;
1881
ctx->flags |= SHA_FLAGS_RESTORE;
1882
memcpy(ctx->digest, hmac->ipad, hs);
1883
return atmel_sha_complete(dd, 0);
1884
}
1885
1886
static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1887
{
1888
struct ahash_request *req = dd->req;
1889
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1890
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1891
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1892
u32 *digest = (u32 *)ctx->digest;
1893
size_t ds = crypto_ahash_digestsize(tfm);
1894
size_t bs = ctx->block_size;
1895
size_t hs = ctx->hash_size;
1896
size_t i, num_words;
1897
u32 mr;
1898
1899
/* Save d = SHA((K' + ipad) | msg). */
1900
num_words = ds / sizeof(u32);
1901
for (i = 0; i < num_words; ++i)
1902
digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1903
1904
/* Restore context to finish computing SHA((K' + opad) | d). */
1905
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1906
num_words = hs / sizeof(u32);
1907
for (i = 0; i < num_words; ++i)
1908
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1909
1910
mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1911
mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1912
atmel_sha_write(dd, SHA_MR, mr);
1913
atmel_sha_write(dd, SHA_MSR, bs + ds);
1914
atmel_sha_write(dd, SHA_BCR, ds);
1915
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1916
1917
sg_init_one(&dd->tmp, digest, ds);
1918
return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1919
atmel_sha_hmac_final_done);
1920
}
1921
1922
static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1923
{
1924
/*
1925
* req->result might not be sizeof(u32) aligned, so copy the
1926
* digest into ctx->digest[] before memcpy() the data into
1927
* req->result.
1928
*/
1929
atmel_sha_copy_hash(dd->req);
1930
atmel_sha_copy_ready_hash(dd->req);
1931
return atmel_sha_complete(dd, 0);
1932
}
1933
1934
static int atmel_sha_hmac_digest(struct ahash_request *req)
1935
{
1936
int err;
1937
1938
err = atmel_sha_init(req);
1939
if (err)
1940
return err;
1941
1942
return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1943
}
1944
1945
static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1946
{
1947
struct ahash_request *req = dd->req;
1948
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1949
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1950
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1951
struct scatterlist *sgbuf;
1952
size_t hs = ctx->hash_size;
1953
size_t i, num_words = hs / sizeof(u32);
1954
bool use_dma = false;
1955
u32 mr;
1956
1957
/* Special case for empty message. */
1958
if (!req->nbytes) {
1959
req->nbytes = 0;
1960
ctx->bufcnt = 0;
1961
ctx->digcnt[0] = 0;
1962
ctx->digcnt[1] = 0;
1963
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1964
case SHA_FLAGS_SHA1:
1965
case SHA_FLAGS_SHA224:
1966
case SHA_FLAGS_SHA256:
1967
atmel_sha_fill_padding(ctx, 64);
1968
break;
1969
1970
case SHA_FLAGS_SHA384:
1971
case SHA_FLAGS_SHA512:
1972
atmel_sha_fill_padding(ctx, 128);
1973
break;
1974
}
1975
sg_init_one(&dd->tmp, ctx->buffer, ctx->bufcnt);
1976
}
1977
1978
/* Check DMA threshold and alignment. */
1979
if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1980
atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1981
use_dma = true;
1982
1983
/* Write both initial hash values to compute a HMAC. */
1984
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1985
for (i = 0; i < num_words; ++i)
1986
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1987
1988
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1989
for (i = 0; i < num_words; ++i)
1990
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1991
1992
/* Write the Mode, Message Size, Bytes Count then Control Registers. */
1993
mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1994
mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1995
if (use_dma)
1996
mr |= SHA_MR_MODE_IDATAR0;
1997
else
1998
mr |= SHA_MR_MODE_AUTO;
1999
atmel_sha_write(dd, SHA_MR, mr);
2000
2001
atmel_sha_write(dd, SHA_MSR, req->nbytes);
2002
atmel_sha_write(dd, SHA_BCR, req->nbytes);
2003
2004
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2005
2006
/* Special case for empty message. */
2007
if (!req->nbytes) {
2008
sgbuf = &dd->tmp;
2009
req->nbytes = ctx->bufcnt;
2010
} else {
2011
sgbuf = req->src;
2012
}
2013
2014
/* Process data. */
2015
if (use_dma)
2016
return atmel_sha_dma_start(dd, sgbuf, req->nbytes,
2017
atmel_sha_hmac_final_done);
2018
2019
return atmel_sha_cpu_start(dd, sgbuf, req->nbytes, false, true,
2020
atmel_sha_hmac_final_done);
2021
}
2022
2023
static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2024
{
2025
struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2026
2027
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2028
sizeof(struct atmel_sha_reqctx));
2029
hmac->base.start = atmel_sha_hmac_start;
2030
atmel_sha_hmac_key_init(&hmac->hkey);
2031
2032
return 0;
2033
}
2034
2035
static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2036
{
2037
struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2038
2039
atmel_sha_hmac_key_release(&hmac->hkey);
2040
}
2041
2042
static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2043
{
2044
alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2045
alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC |
2046
CRYPTO_ALG_KERN_DRIVER_ONLY;
2047
alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2048
alg->halg.base.cra_module = THIS_MODULE;
2049
alg->halg.base.cra_init = atmel_sha_hmac_cra_init;
2050
alg->halg.base.cra_exit = atmel_sha_hmac_cra_exit;
2051
2052
alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2053
2054
alg->init = atmel_sha_hmac_init;
2055
alg->update = atmel_sha_update;
2056
alg->final = atmel_sha_final;
2057
alg->digest = atmel_sha_hmac_digest;
2058
alg->setkey = atmel_sha_hmac_setkey;
2059
alg->export = atmel_sha_export;
2060
alg->import = atmel_sha_import;
2061
}
2062
2063
static struct ahash_alg sha_hmac_algs[] = {
2064
{
2065
.halg.base.cra_name = "hmac(sha1)",
2066
.halg.base.cra_driver_name = "atmel-hmac-sha1",
2067
.halg.base.cra_blocksize = SHA1_BLOCK_SIZE,
2068
2069
.halg.digestsize = SHA1_DIGEST_SIZE,
2070
},
2071
{
2072
.halg.base.cra_name = "hmac(sha224)",
2073
.halg.base.cra_driver_name = "atmel-hmac-sha224",
2074
.halg.base.cra_blocksize = SHA224_BLOCK_SIZE,
2075
2076
.halg.digestsize = SHA224_DIGEST_SIZE,
2077
},
2078
{
2079
.halg.base.cra_name = "hmac(sha256)",
2080
.halg.base.cra_driver_name = "atmel-hmac-sha256",
2081
.halg.base.cra_blocksize = SHA256_BLOCK_SIZE,
2082
2083
.halg.digestsize = SHA256_DIGEST_SIZE,
2084
},
2085
{
2086
.halg.base.cra_name = "hmac(sha384)",
2087
.halg.base.cra_driver_name = "atmel-hmac-sha384",
2088
.halg.base.cra_blocksize = SHA384_BLOCK_SIZE,
2089
2090
.halg.digestsize = SHA384_DIGEST_SIZE,
2091
},
2092
{
2093
.halg.base.cra_name = "hmac(sha512)",
2094
.halg.base.cra_driver_name = "atmel-hmac-sha512",
2095
.halg.base.cra_blocksize = SHA512_BLOCK_SIZE,
2096
2097
.halg.digestsize = SHA512_DIGEST_SIZE,
2098
},
2099
};
2100
2101
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2102
/* authenc functions */
2103
2104
static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2105
static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2106
static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2107
2108
2109
struct atmel_sha_authenc_ctx {
2110
struct crypto_ahash *tfm;
2111
};
2112
2113
struct atmel_sha_authenc_reqctx {
2114
struct atmel_sha_reqctx base;
2115
2116
atmel_aes_authenc_fn_t cb;
2117
struct atmel_aes_dev *aes_dev;
2118
2119
/* _init() parameters. */
2120
struct scatterlist *assoc;
2121
u32 assoclen;
2122
u32 textlen;
2123
2124
/* _final() parameters. */
2125
u32 *digest;
2126
unsigned int digestlen;
2127
};
2128
2129
static void atmel_sha_authenc_complete(void *data, int err)
2130
{
2131
struct ahash_request *req = data;
2132
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2133
2134
authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2135
}
2136
2137
static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2138
{
2139
struct ahash_request *req = dd->req;
2140
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2141
int err;
2142
2143
/*
2144
* Force atmel_sha_complete() to call req->base.complete(), ie
2145
* atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2146
*/
2147
dd->force_complete = true;
2148
2149
err = atmel_sha_hw_init(dd);
2150
return authctx->cb(authctx->aes_dev, err, dd->is_async);
2151
}
2152
2153
bool atmel_sha_authenc_is_ready(void)
2154
{
2155
struct atmel_sha_ctx dummy;
2156
2157
dummy.dd = NULL;
2158
return (atmel_sha_find_dev(&dummy) != NULL);
2159
}
2160
EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2161
2162
unsigned int atmel_sha_authenc_get_reqsize(void)
2163
{
2164
return sizeof(struct atmel_sha_authenc_reqctx);
2165
}
2166
EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2167
2168
struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2169
{
2170
struct atmel_sha_authenc_ctx *auth;
2171
struct crypto_ahash *tfm;
2172
struct atmel_sha_ctx *tctx;
2173
const char *name;
2174
int err = -EINVAL;
2175
2176
switch (mode & SHA_FLAGS_MODE_MASK) {
2177
case SHA_FLAGS_HMAC_SHA1:
2178
name = "atmel-hmac-sha1";
2179
break;
2180
2181
case SHA_FLAGS_HMAC_SHA224:
2182
name = "atmel-hmac-sha224";
2183
break;
2184
2185
case SHA_FLAGS_HMAC_SHA256:
2186
name = "atmel-hmac-sha256";
2187
break;
2188
2189
case SHA_FLAGS_HMAC_SHA384:
2190
name = "atmel-hmac-sha384";
2191
break;
2192
2193
case SHA_FLAGS_HMAC_SHA512:
2194
name = "atmel-hmac-sha512";
2195
break;
2196
2197
default:
2198
goto error;
2199
}
2200
2201
tfm = crypto_alloc_ahash(name, 0, 0);
2202
if (IS_ERR(tfm)) {
2203
err = PTR_ERR(tfm);
2204
goto error;
2205
}
2206
tctx = crypto_ahash_ctx(tfm);
2207
tctx->start = atmel_sha_authenc_start;
2208
tctx->flags = mode;
2209
2210
auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2211
if (!auth) {
2212
err = -ENOMEM;
2213
goto err_free_ahash;
2214
}
2215
auth->tfm = tfm;
2216
2217
return auth;
2218
2219
err_free_ahash:
2220
crypto_free_ahash(tfm);
2221
error:
2222
return ERR_PTR(err);
2223
}
2224
EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2225
2226
void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2227
{
2228
if (auth)
2229
crypto_free_ahash(auth->tfm);
2230
kfree(auth);
2231
}
2232
EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2233
2234
int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2235
const u8 *key, unsigned int keylen, u32 flags)
2236
{
2237
struct crypto_ahash *tfm = auth->tfm;
2238
2239
crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2240
crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2241
return crypto_ahash_setkey(tfm, key, keylen);
2242
}
2243
EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2244
2245
int atmel_sha_authenc_schedule(struct ahash_request *req,
2246
struct atmel_sha_authenc_ctx *auth,
2247
atmel_aes_authenc_fn_t cb,
2248
struct atmel_aes_dev *aes_dev)
2249
{
2250
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2251
struct atmel_sha_reqctx *ctx = &authctx->base;
2252
struct crypto_ahash *tfm = auth->tfm;
2253
struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2254
struct atmel_sha_dev *dd;
2255
2256
/* Reset request context (MUST be done first). */
2257
memset(authctx, 0, sizeof(*authctx));
2258
2259
/* Get SHA device. */
2260
dd = atmel_sha_find_dev(tctx);
2261
if (!dd)
2262
return cb(aes_dev, -ENODEV, false);
2263
2264
/* Init request context. */
2265
ctx->dd = dd;
2266
ctx->buflen = SHA_BUFFER_LEN;
2267
authctx->cb = cb;
2268
authctx->aes_dev = aes_dev;
2269
ahash_request_set_tfm(req, tfm);
2270
ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2271
2272
return atmel_sha_handle_queue(dd, req);
2273
}
2274
EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2275
2276
int atmel_sha_authenc_init(struct ahash_request *req,
2277
struct scatterlist *assoc, unsigned int assoclen,
2278
unsigned int textlen,
2279
atmel_aes_authenc_fn_t cb,
2280
struct atmel_aes_dev *aes_dev)
2281
{
2282
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2283
struct atmel_sha_reqctx *ctx = &authctx->base;
2284
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2285
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2286
struct atmel_sha_dev *dd = ctx->dd;
2287
2288
if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2289
return atmel_sha_complete(dd, -EINVAL);
2290
2291
authctx->cb = cb;
2292
authctx->aes_dev = aes_dev;
2293
authctx->assoc = assoc;
2294
authctx->assoclen = assoclen;
2295
authctx->textlen = textlen;
2296
2297
ctx->flags = hmac->base.flags;
2298
return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2299
}
2300
EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2301
2302
static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2303
{
2304
struct ahash_request *req = dd->req;
2305
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2306
struct atmel_sha_reqctx *ctx = &authctx->base;
2307
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2308
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2309
size_t hs = ctx->hash_size;
2310
size_t i, num_words = hs / sizeof(u32);
2311
u32 mr, msg_size;
2312
2313
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2314
for (i = 0; i < num_words; ++i)
2315
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2316
2317
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2318
for (i = 0; i < num_words; ++i)
2319
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2320
2321
mr = (SHA_MR_MODE_IDATAR0 |
2322
SHA_MR_HMAC |
2323
SHA_MR_DUALBUFF);
2324
mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2325
atmel_sha_write(dd, SHA_MR, mr);
2326
2327
msg_size = authctx->assoclen + authctx->textlen;
2328
atmel_sha_write(dd, SHA_MSR, msg_size);
2329
atmel_sha_write(dd, SHA_BCR, msg_size);
2330
2331
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2332
2333
/* Process assoc data. */
2334
return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2335
true, false,
2336
atmel_sha_authenc_init_done);
2337
}
2338
2339
static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2340
{
2341
struct ahash_request *req = dd->req;
2342
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2343
2344
return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2345
}
2346
2347
int atmel_sha_authenc_final(struct ahash_request *req,
2348
u32 *digest, unsigned int digestlen,
2349
atmel_aes_authenc_fn_t cb,
2350
struct atmel_aes_dev *aes_dev)
2351
{
2352
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2353
struct atmel_sha_reqctx *ctx = &authctx->base;
2354
struct atmel_sha_dev *dd = ctx->dd;
2355
2356
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2357
case SHA_FLAGS_SHA1:
2358
authctx->digestlen = SHA1_DIGEST_SIZE;
2359
break;
2360
2361
case SHA_FLAGS_SHA224:
2362
authctx->digestlen = SHA224_DIGEST_SIZE;
2363
break;
2364
2365
case SHA_FLAGS_SHA256:
2366
authctx->digestlen = SHA256_DIGEST_SIZE;
2367
break;
2368
2369
case SHA_FLAGS_SHA384:
2370
authctx->digestlen = SHA384_DIGEST_SIZE;
2371
break;
2372
2373
case SHA_FLAGS_SHA512:
2374
authctx->digestlen = SHA512_DIGEST_SIZE;
2375
break;
2376
2377
default:
2378
return atmel_sha_complete(dd, -EINVAL);
2379
}
2380
if (authctx->digestlen > digestlen)
2381
authctx->digestlen = digestlen;
2382
2383
authctx->cb = cb;
2384
authctx->aes_dev = aes_dev;
2385
authctx->digest = digest;
2386
return atmel_sha_wait_for_data_ready(dd,
2387
atmel_sha_authenc_final_done);
2388
}
2389
EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2390
2391
static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2392
{
2393
struct ahash_request *req = dd->req;
2394
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2395
size_t i, num_words = authctx->digestlen / sizeof(u32);
2396
2397
for (i = 0; i < num_words; ++i)
2398
authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2399
2400
return atmel_sha_complete(dd, 0);
2401
}
2402
2403
void atmel_sha_authenc_abort(struct ahash_request *req)
2404
{
2405
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2406
struct atmel_sha_reqctx *ctx = &authctx->base;
2407
struct atmel_sha_dev *dd = ctx->dd;
2408
2409
/* Prevent atmel_sha_complete() from calling req->base.complete(). */
2410
dd->is_async = false;
2411
dd->force_complete = false;
2412
(void)atmel_sha_complete(dd, 0);
2413
}
2414
EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2415
2416
#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2417
2418
2419
static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2420
{
2421
int i;
2422
2423
if (dd->caps.has_hmac)
2424
for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2425
crypto_unregister_ahash(&sha_hmac_algs[i]);
2426
2427
for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2428
crypto_unregister_ahash(&sha_1_256_algs[i]);
2429
2430
if (dd->caps.has_sha224)
2431
crypto_unregister_ahash(&sha_224_alg);
2432
2433
if (dd->caps.has_sha_384_512) {
2434
for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2435
crypto_unregister_ahash(&sha_384_512_algs[i]);
2436
}
2437
}
2438
2439
static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2440
{
2441
int err, i, j;
2442
2443
for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2444
atmel_sha_alg_init(&sha_1_256_algs[i]);
2445
2446
err = crypto_register_ahash(&sha_1_256_algs[i]);
2447
if (err)
2448
goto err_sha_1_256_algs;
2449
}
2450
2451
if (dd->caps.has_sha224) {
2452
atmel_sha_alg_init(&sha_224_alg);
2453
2454
err = crypto_register_ahash(&sha_224_alg);
2455
if (err)
2456
goto err_sha_224_algs;
2457
}
2458
2459
if (dd->caps.has_sha_384_512) {
2460
for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2461
atmel_sha_alg_init(&sha_384_512_algs[i]);
2462
2463
err = crypto_register_ahash(&sha_384_512_algs[i]);
2464
if (err)
2465
goto err_sha_384_512_algs;
2466
}
2467
}
2468
2469
if (dd->caps.has_hmac) {
2470
for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2471
atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2472
2473
err = crypto_register_ahash(&sha_hmac_algs[i]);
2474
if (err)
2475
goto err_sha_hmac_algs;
2476
}
2477
}
2478
2479
return 0;
2480
2481
/*i = ARRAY_SIZE(sha_hmac_algs);*/
2482
err_sha_hmac_algs:
2483
for (j = 0; j < i; j++)
2484
crypto_unregister_ahash(&sha_hmac_algs[j]);
2485
i = ARRAY_SIZE(sha_384_512_algs);
2486
err_sha_384_512_algs:
2487
for (j = 0; j < i; j++)
2488
crypto_unregister_ahash(&sha_384_512_algs[j]);
2489
crypto_unregister_ahash(&sha_224_alg);
2490
err_sha_224_algs:
2491
i = ARRAY_SIZE(sha_1_256_algs);
2492
err_sha_1_256_algs:
2493
for (j = 0; j < i; j++)
2494
crypto_unregister_ahash(&sha_1_256_algs[j]);
2495
2496
return err;
2497
}
2498
2499
static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2500
{
2501
dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2502
if (IS_ERR(dd->dma_lch_in.chan)) {
2503
return dev_err_probe(dd->dev, PTR_ERR(dd->dma_lch_in.chan),
2504
"DMA channel is not available\n");
2505
}
2506
2507
dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2508
SHA_REG_DIN(0);
2509
dd->dma_lch_in.dma_conf.src_maxburst = 1;
2510
dd->dma_lch_in.dma_conf.src_addr_width =
2511
DMA_SLAVE_BUSWIDTH_4_BYTES;
2512
dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2513
dd->dma_lch_in.dma_conf.dst_addr_width =
2514
DMA_SLAVE_BUSWIDTH_4_BYTES;
2515
dd->dma_lch_in.dma_conf.device_fc = false;
2516
2517
return 0;
2518
}
2519
2520
static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2521
{
2522
dma_release_channel(dd->dma_lch_in.chan);
2523
}
2524
2525
static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2526
{
2527
2528
dd->caps.has_dma = 0;
2529
dd->caps.has_dualbuff = 0;
2530
dd->caps.has_sha224 = 0;
2531
dd->caps.has_sha_384_512 = 0;
2532
dd->caps.has_uihv = 0;
2533
dd->caps.has_hmac = 0;
2534
2535
/* keep only major version number */
2536
switch (dd->hw_version & 0xff0) {
2537
case 0x800:
2538
case 0x700:
2539
case 0x600:
2540
case 0x510:
2541
dd->caps.has_dma = 1;
2542
dd->caps.has_dualbuff = 1;
2543
dd->caps.has_sha224 = 1;
2544
dd->caps.has_sha_384_512 = 1;
2545
dd->caps.has_uihv = 1;
2546
dd->caps.has_hmac = 1;
2547
break;
2548
case 0x420:
2549
dd->caps.has_dma = 1;
2550
dd->caps.has_dualbuff = 1;
2551
dd->caps.has_sha224 = 1;
2552
dd->caps.has_sha_384_512 = 1;
2553
dd->caps.has_uihv = 1;
2554
break;
2555
case 0x410:
2556
dd->caps.has_dma = 1;
2557
dd->caps.has_dualbuff = 1;
2558
dd->caps.has_sha224 = 1;
2559
dd->caps.has_sha_384_512 = 1;
2560
break;
2561
case 0x400:
2562
dd->caps.has_dma = 1;
2563
dd->caps.has_dualbuff = 1;
2564
dd->caps.has_sha224 = 1;
2565
break;
2566
case 0x320:
2567
break;
2568
default:
2569
dev_warn(dd->dev,
2570
"Unmanaged sha version, set minimum capabilities\n");
2571
break;
2572
}
2573
}
2574
2575
static const struct of_device_id atmel_sha_dt_ids[] = {
2576
{ .compatible = "atmel,at91sam9g46-sha" },
2577
{ /* sentinel */ }
2578
};
2579
2580
MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2581
2582
static int atmel_sha_probe(struct platform_device *pdev)
2583
{
2584
struct atmel_sha_dev *sha_dd;
2585
struct device *dev = &pdev->dev;
2586
struct resource *sha_res;
2587
int err;
2588
2589
sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2590
if (!sha_dd)
2591
return -ENOMEM;
2592
2593
sha_dd->dev = dev;
2594
2595
platform_set_drvdata(pdev, sha_dd);
2596
2597
INIT_LIST_HEAD(&sha_dd->list);
2598
spin_lock_init(&sha_dd->lock);
2599
2600
tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2601
(unsigned long)sha_dd);
2602
tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2603
(unsigned long)sha_dd);
2604
2605
crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2606
2607
sha_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &sha_res);
2608
if (IS_ERR(sha_dd->io_base)) {
2609
err = PTR_ERR(sha_dd->io_base);
2610
goto err_tasklet_kill;
2611
}
2612
sha_dd->phys_base = sha_res->start;
2613
2614
/* Get the IRQ */
2615
sha_dd->irq = platform_get_irq(pdev, 0);
2616
if (sha_dd->irq < 0) {
2617
err = sha_dd->irq;
2618
goto err_tasklet_kill;
2619
}
2620
2621
err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2622
IRQF_SHARED, "atmel-sha", sha_dd);
2623
if (err) {
2624
dev_err(dev, "unable to request sha irq.\n");
2625
goto err_tasklet_kill;
2626
}
2627
2628
/* Initializing the clock */
2629
sha_dd->iclk = devm_clk_get_prepared(&pdev->dev, "sha_clk");
2630
if (IS_ERR(sha_dd->iclk)) {
2631
dev_err(dev, "clock initialization failed.\n");
2632
err = PTR_ERR(sha_dd->iclk);
2633
goto err_tasklet_kill;
2634
}
2635
2636
err = atmel_sha_hw_version_init(sha_dd);
2637
if (err)
2638
goto err_tasklet_kill;
2639
2640
atmel_sha_get_cap(sha_dd);
2641
2642
if (sha_dd->caps.has_dma) {
2643
err = atmel_sha_dma_init(sha_dd);
2644
if (err)
2645
goto err_tasklet_kill;
2646
2647
dev_info(dev, "using %s for DMA transfers\n",
2648
dma_chan_name(sha_dd->dma_lch_in.chan));
2649
}
2650
2651
spin_lock(&atmel_sha.lock);
2652
list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2653
spin_unlock(&atmel_sha.lock);
2654
2655
err = atmel_sha_register_algs(sha_dd);
2656
if (err)
2657
goto err_algs;
2658
2659
dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2660
sha_dd->caps.has_sha224 ? "/SHA224" : "",
2661
sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2662
2663
return 0;
2664
2665
err_algs:
2666
spin_lock(&atmel_sha.lock);
2667
list_del(&sha_dd->list);
2668
spin_unlock(&atmel_sha.lock);
2669
if (sha_dd->caps.has_dma)
2670
atmel_sha_dma_cleanup(sha_dd);
2671
err_tasklet_kill:
2672
tasklet_kill(&sha_dd->queue_task);
2673
tasklet_kill(&sha_dd->done_task);
2674
2675
return err;
2676
}
2677
2678
static void atmel_sha_remove(struct platform_device *pdev)
2679
{
2680
struct atmel_sha_dev *sha_dd = platform_get_drvdata(pdev);
2681
2682
spin_lock(&atmel_sha.lock);
2683
list_del(&sha_dd->list);
2684
spin_unlock(&atmel_sha.lock);
2685
2686
atmel_sha_unregister_algs(sha_dd);
2687
2688
tasklet_kill(&sha_dd->queue_task);
2689
tasklet_kill(&sha_dd->done_task);
2690
2691
if (sha_dd->caps.has_dma)
2692
atmel_sha_dma_cleanup(sha_dd);
2693
}
2694
2695
static struct platform_driver atmel_sha_driver = {
2696
.probe = atmel_sha_probe,
2697
.remove = atmel_sha_remove,
2698
.driver = {
2699
.name = "atmel_sha",
2700
.of_match_table = atmel_sha_dt_ids,
2701
},
2702
};
2703
2704
module_platform_driver(atmel_sha_driver);
2705
2706
MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2707
MODULE_LICENSE("GPL v2");
2708
MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2709
2710