Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/bcm/util.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright 2016 Broadcom
4
*/
5
6
#include <linux/debugfs.h>
7
8
#include "cipher.h"
9
#include "util.h"
10
11
/* offset of SPU_OFIFO_CTRL register */
12
#define SPU_OFIFO_CTRL 0x40
13
#define SPU_FIFO_WATERMARK 0x1FF
14
15
/**
16
* spu_sg_at_offset() - Find the scatterlist entry at a given distance from the
17
* start of a scatterlist.
18
* @sg: [in] Start of a scatterlist
19
* @skip: [in] Distance from the start of the scatterlist, in bytes
20
* @sge: [out] Scatterlist entry at skip bytes from start
21
* @sge_offset: [out] Number of bytes from start of sge buffer to get to
22
* requested distance.
23
*
24
* Return: 0 if entry found at requested distance
25
* < 0 otherwise
26
*/
27
int spu_sg_at_offset(struct scatterlist *sg, unsigned int skip,
28
struct scatterlist **sge, unsigned int *sge_offset)
29
{
30
/* byte index from start of sg to the end of the previous entry */
31
unsigned int index = 0;
32
/* byte index from start of sg to the end of the current entry */
33
unsigned int next_index;
34
35
next_index = sg->length;
36
while (next_index <= skip) {
37
sg = sg_next(sg);
38
index = next_index;
39
if (!sg)
40
return -EINVAL;
41
next_index += sg->length;
42
}
43
44
*sge_offset = skip - index;
45
*sge = sg;
46
return 0;
47
}
48
49
/* Copy len bytes of sg data, starting at offset skip, to a dest buffer */
50
void sg_copy_part_to_buf(struct scatterlist *src, u8 *dest,
51
unsigned int len, unsigned int skip)
52
{
53
size_t copied;
54
unsigned int nents = sg_nents(src);
55
56
copied = sg_pcopy_to_buffer(src, nents, dest, len, skip);
57
if (copied != len) {
58
flow_log("%s copied %u bytes of %u requested. ",
59
__func__, (u32)copied, len);
60
flow_log("sg with %u entries and skip %u\n", nents, skip);
61
}
62
}
63
64
/*
65
* Copy data into a scatterlist starting at a specified offset in the
66
* scatterlist. Specifically, copy len bytes of data in the buffer src
67
* into the scatterlist dest, starting skip bytes into the scatterlist.
68
*/
69
void sg_copy_part_from_buf(struct scatterlist *dest, u8 *src,
70
unsigned int len, unsigned int skip)
71
{
72
size_t copied;
73
unsigned int nents = sg_nents(dest);
74
75
copied = sg_pcopy_from_buffer(dest, nents, src, len, skip);
76
if (copied != len) {
77
flow_log("%s copied %u bytes of %u requested. ",
78
__func__, (u32)copied, len);
79
flow_log("sg with %u entries and skip %u\n", nents, skip);
80
}
81
}
82
83
/**
84
* spu_sg_count() - Determine number of elements in scatterlist to provide a
85
* specified number of bytes.
86
* @sg_list: scatterlist to examine
87
* @skip: index of starting point
88
* @nbytes: consider elements of scatterlist until reaching this number of
89
* bytes
90
*
91
* Return: the number of sg entries contributing to nbytes of data
92
*/
93
int spu_sg_count(struct scatterlist *sg_list, unsigned int skip, int nbytes)
94
{
95
struct scatterlist *sg;
96
int sg_nents = 0;
97
unsigned int offset;
98
99
if (!sg_list)
100
return 0;
101
102
if (spu_sg_at_offset(sg_list, skip, &sg, &offset) < 0)
103
return 0;
104
105
while (sg && (nbytes > 0)) {
106
sg_nents++;
107
nbytes -= (sg->length - offset);
108
offset = 0;
109
sg = sg_next(sg);
110
}
111
return sg_nents;
112
}
113
114
/**
115
* spu_msg_sg_add() - Copy scatterlist entries from one sg to another, up to a
116
* given length.
117
* @to_sg: scatterlist to copy to
118
* @from_sg: scatterlist to copy from
119
* @from_skip: number of bytes to skip in from_sg. Non-zero when previous
120
* request included part of the buffer in entry in from_sg.
121
* Assumes from_skip < from_sg->length.
122
* @from_nents: number of entries in from_sg
123
* @length: number of bytes to copy. may reach this limit before exhausting
124
* from_sg.
125
*
126
* Copies the entries themselves, not the data in the entries. Assumes to_sg has
127
* enough entries. Does not limit the size of an individual buffer in to_sg.
128
*
129
* to_sg, from_sg, skip are all updated to end of copy
130
*
131
* Return: Number of bytes copied
132
*/
133
u32 spu_msg_sg_add(struct scatterlist **to_sg,
134
struct scatterlist **from_sg, u32 *from_skip,
135
u8 from_nents, u32 length)
136
{
137
struct scatterlist *sg; /* an entry in from_sg */
138
struct scatterlist *to = *to_sg;
139
struct scatterlist *from = *from_sg;
140
u32 skip = *from_skip;
141
u32 offset;
142
int i;
143
u32 entry_len = 0;
144
u32 frag_len = 0; /* length of entry added to to_sg */
145
u32 copied = 0; /* number of bytes copied so far */
146
147
if (length == 0)
148
return 0;
149
150
for_each_sg(from, sg, from_nents, i) {
151
/* number of bytes in this from entry not yet used */
152
entry_len = sg->length - skip;
153
frag_len = min(entry_len, length - copied);
154
offset = sg->offset + skip;
155
if (frag_len)
156
sg_set_page(to++, sg_page(sg), frag_len, offset);
157
copied += frag_len;
158
if (copied == entry_len) {
159
/* used up all of from entry */
160
skip = 0; /* start at beginning of next entry */
161
}
162
if (copied == length)
163
break;
164
}
165
*to_sg = to;
166
*from_sg = sg;
167
if (frag_len < entry_len)
168
*from_skip = skip + frag_len;
169
else
170
*from_skip = 0;
171
172
return copied;
173
}
174
175
void add_to_ctr(u8 *ctr_pos, unsigned int increment)
176
{
177
__be64 *high_be = (__be64 *)ctr_pos;
178
__be64 *low_be = high_be + 1;
179
u64 orig_low = __be64_to_cpu(*low_be);
180
u64 new_low = orig_low + (u64)increment;
181
182
*low_be = __cpu_to_be64(new_low);
183
if (new_low < orig_low)
184
/* there was a carry from the low 8 bytes */
185
*high_be = __cpu_to_be64(__be64_to_cpu(*high_be) + 1);
186
}
187
188
struct sdesc {
189
struct shash_desc shash;
190
char ctx[];
191
};
192
193
/**
194
* do_shash() - Do a synchronous hash operation in software
195
* @name: The name of the hash algorithm
196
* @result: Buffer where digest is to be written
197
* @data1: First part of data to hash. May be NULL.
198
* @data1_len: Length of data1, in bytes
199
* @data2: Second part of data to hash. May be NULL.
200
* @data2_len: Length of data2, in bytes
201
* @key: Key (if keyed hash)
202
* @key_len: Length of key, in bytes (or 0 if non-keyed hash)
203
*
204
* Note that the crypto API will not select this driver's own transform because
205
* this driver only registers asynchronous algos.
206
*
207
* Return: 0 if hash successfully stored in result
208
* < 0 otherwise
209
*/
210
int do_shash(unsigned char *name, unsigned char *result,
211
const u8 *data1, unsigned int data1_len,
212
const u8 *data2, unsigned int data2_len,
213
const u8 *key, unsigned int key_len)
214
{
215
int rc;
216
unsigned int size;
217
struct crypto_shash *hash;
218
struct sdesc *sdesc;
219
220
hash = crypto_alloc_shash(name, 0, 0);
221
if (IS_ERR(hash)) {
222
rc = PTR_ERR(hash);
223
pr_err("%s: Crypto %s allocation error %d\n", __func__, name, rc);
224
return rc;
225
}
226
227
size = sizeof(struct shash_desc) + crypto_shash_descsize(hash);
228
sdesc = kmalloc(size, GFP_KERNEL);
229
if (!sdesc) {
230
rc = -ENOMEM;
231
goto do_shash_err;
232
}
233
sdesc->shash.tfm = hash;
234
235
if (key_len > 0) {
236
rc = crypto_shash_setkey(hash, key, key_len);
237
if (rc) {
238
pr_err("%s: Could not setkey %s shash\n", __func__, name);
239
goto do_shash_err;
240
}
241
}
242
243
rc = crypto_shash_init(&sdesc->shash);
244
if (rc) {
245
pr_err("%s: Could not init %s shash\n", __func__, name);
246
goto do_shash_err;
247
}
248
rc = crypto_shash_update(&sdesc->shash, data1, data1_len);
249
if (rc) {
250
pr_err("%s: Could not update1\n", __func__);
251
goto do_shash_err;
252
}
253
if (data2 && data2_len) {
254
rc = crypto_shash_update(&sdesc->shash, data2, data2_len);
255
if (rc) {
256
pr_err("%s: Could not update2\n", __func__);
257
goto do_shash_err;
258
}
259
}
260
rc = crypto_shash_final(&sdesc->shash, result);
261
if (rc)
262
pr_err("%s: Could not generate %s hash\n", __func__, name);
263
264
do_shash_err:
265
crypto_free_shash(hash);
266
kfree(sdesc);
267
268
return rc;
269
}
270
271
#ifdef DEBUG
272
/* Dump len bytes of a scatterlist starting at skip bytes into the sg */
273
void __dump_sg(struct scatterlist *sg, unsigned int skip, unsigned int len)
274
{
275
u8 dbuf[16];
276
unsigned int idx = skip;
277
unsigned int num_out = 0; /* number of bytes dumped so far */
278
unsigned int count;
279
280
if (packet_debug_logging) {
281
while (num_out < len) {
282
count = (len - num_out > 16) ? 16 : len - num_out;
283
sg_copy_part_to_buf(sg, dbuf, count, idx);
284
num_out += count;
285
print_hex_dump(KERN_ALERT, " sg: ", DUMP_PREFIX_NONE,
286
4, 1, dbuf, count, false);
287
idx += 16;
288
}
289
}
290
if (debug_logging_sleep)
291
msleep(debug_logging_sleep);
292
}
293
#endif
294
295
/* Returns the name for a given cipher alg/mode */
296
char *spu_alg_name(enum spu_cipher_alg alg, enum spu_cipher_mode mode)
297
{
298
switch (alg) {
299
case CIPHER_ALG_RC4:
300
return "rc4";
301
case CIPHER_ALG_AES:
302
switch (mode) {
303
case CIPHER_MODE_CBC:
304
return "cbc(aes)";
305
case CIPHER_MODE_ECB:
306
return "ecb(aes)";
307
case CIPHER_MODE_OFB:
308
return "ofb(aes)";
309
case CIPHER_MODE_CFB:
310
return "cfb(aes)";
311
case CIPHER_MODE_CTR:
312
return "ctr(aes)";
313
case CIPHER_MODE_XTS:
314
return "xts(aes)";
315
case CIPHER_MODE_GCM:
316
return "gcm(aes)";
317
default:
318
return "aes";
319
}
320
break;
321
case CIPHER_ALG_DES:
322
switch (mode) {
323
case CIPHER_MODE_CBC:
324
return "cbc(des)";
325
case CIPHER_MODE_ECB:
326
return "ecb(des)";
327
case CIPHER_MODE_CTR:
328
return "ctr(des)";
329
default:
330
return "des";
331
}
332
break;
333
case CIPHER_ALG_3DES:
334
switch (mode) {
335
case CIPHER_MODE_CBC:
336
return "cbc(des3_ede)";
337
case CIPHER_MODE_ECB:
338
return "ecb(des3_ede)";
339
case CIPHER_MODE_CTR:
340
return "ctr(des3_ede)";
341
default:
342
return "3des";
343
}
344
break;
345
default:
346
return "other";
347
}
348
}
349
350
static ssize_t spu_debugfs_read(struct file *filp, char __user *ubuf,
351
size_t count, loff_t *offp)
352
{
353
struct bcm_device_private *ipriv;
354
char *buf;
355
ssize_t ret, out_offset, out_count;
356
int i;
357
u32 fifo_len;
358
u32 spu_ofifo_ctrl;
359
u32 alg;
360
u32 mode;
361
u32 op_cnt;
362
363
out_count = 2048;
364
365
buf = kmalloc(out_count, GFP_KERNEL);
366
if (!buf)
367
return -ENOMEM;
368
369
ipriv = filp->private_data;
370
out_offset = 0;
371
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
372
"Number of SPUs.........%u\n",
373
ipriv->spu.num_spu);
374
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
375
"Current sessions.......%u\n",
376
atomic_read(&ipriv->session_count));
377
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
378
"Session count..........%u\n",
379
atomic_read(&ipriv->stream_count));
380
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
381
"Cipher setkey..........%u\n",
382
atomic_read(&ipriv->setkey_cnt[SPU_OP_CIPHER]));
383
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
384
"Cipher Ops.............%u\n",
385
atomic_read(&ipriv->op_counts[SPU_OP_CIPHER]));
386
for (alg = 0; alg < CIPHER_ALG_LAST; alg++) {
387
for (mode = 0; mode < CIPHER_MODE_LAST; mode++) {
388
op_cnt = atomic_read(&ipriv->cipher_cnt[alg][mode]);
389
if (op_cnt) {
390
out_offset += scnprintf(buf + out_offset,
391
out_count - out_offset,
392
" %-13s%11u\n",
393
spu_alg_name(alg, mode), op_cnt);
394
}
395
}
396
}
397
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
398
"Hash Ops...............%u\n",
399
atomic_read(&ipriv->op_counts[SPU_OP_HASH]));
400
for (alg = 0; alg < HASH_ALG_LAST; alg++) {
401
op_cnt = atomic_read(&ipriv->hash_cnt[alg]);
402
if (op_cnt) {
403
out_offset += scnprintf(buf + out_offset,
404
out_count - out_offset,
405
" %-13s%11u\n",
406
hash_alg_name[alg], op_cnt);
407
}
408
}
409
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
410
"HMAC setkey............%u\n",
411
atomic_read(&ipriv->setkey_cnt[SPU_OP_HMAC]));
412
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
413
"HMAC Ops...............%u\n",
414
atomic_read(&ipriv->op_counts[SPU_OP_HMAC]));
415
for (alg = 0; alg < HASH_ALG_LAST; alg++) {
416
op_cnt = atomic_read(&ipriv->hmac_cnt[alg]);
417
if (op_cnt) {
418
out_offset += scnprintf(buf + out_offset,
419
out_count - out_offset,
420
" %-13s%11u\n",
421
hash_alg_name[alg], op_cnt);
422
}
423
}
424
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
425
"AEAD setkey............%u\n",
426
atomic_read(&ipriv->setkey_cnt[SPU_OP_AEAD]));
427
428
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
429
"AEAD Ops...............%u\n",
430
atomic_read(&ipriv->op_counts[SPU_OP_AEAD]));
431
for (alg = 0; alg < AEAD_TYPE_LAST; alg++) {
432
op_cnt = atomic_read(&ipriv->aead_cnt[alg]);
433
if (op_cnt) {
434
out_offset += scnprintf(buf + out_offset,
435
out_count - out_offset,
436
" %-13s%11u\n",
437
aead_alg_name[alg], op_cnt);
438
}
439
}
440
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
441
"Bytes of req data......%llu\n",
442
(u64)atomic64_read(&ipriv->bytes_out));
443
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
444
"Bytes of resp data.....%llu\n",
445
(u64)atomic64_read(&ipriv->bytes_in));
446
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
447
"Mailbox full...........%u\n",
448
atomic_read(&ipriv->mb_no_spc));
449
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
450
"Mailbox send failures..%u\n",
451
atomic_read(&ipriv->mb_send_fail));
452
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
453
"Check ICV errors.......%u\n",
454
atomic_read(&ipriv->bad_icv));
455
if (ipriv->spu.spu_type == SPU_TYPE_SPUM)
456
for (i = 0; i < ipriv->spu.num_spu; i++) {
457
spu_ofifo_ctrl = ioread32(ipriv->spu.reg_vbase[i] +
458
SPU_OFIFO_CTRL);
459
fifo_len = spu_ofifo_ctrl & SPU_FIFO_WATERMARK;
460
out_offset += scnprintf(buf + out_offset,
461
out_count - out_offset,
462
"SPU %d output FIFO high water.....%u\n",
463
i, fifo_len);
464
}
465
466
if (out_offset > out_count)
467
out_offset = out_count;
468
469
ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
470
kfree(buf);
471
return ret;
472
}
473
474
static const struct file_operations spu_debugfs_stats = {
475
.owner = THIS_MODULE,
476
.open = simple_open,
477
.read = spu_debugfs_read,
478
};
479
480
/*
481
* Create the debug FS directories. If the top-level directory has not yet
482
* been created, create it now. Create a stats file in this directory for
483
* a SPU.
484
*/
485
void spu_setup_debugfs(void)
486
{
487
if (!debugfs_initialized())
488
return;
489
490
if (!iproc_priv.debugfs_dir)
491
iproc_priv.debugfs_dir = debugfs_create_dir(KBUILD_MODNAME,
492
NULL);
493
494
if (!iproc_priv.debugfs_stats)
495
/* Create file with permissions S_IRUSR */
496
debugfs_create_file("stats", 0400, iproc_priv.debugfs_dir,
497
&iproc_priv, &spu_debugfs_stats);
498
}
499
500
void spu_free_debugfs(void)
501
{
502
debugfs_remove_recursive(iproc_priv.debugfs_dir);
503
iproc_priv.debugfs_dir = NULL;
504
}
505
506
/**
507
* format_value_ccm() - Format a value into a buffer, using a specified number
508
* of bytes (i.e. maybe writing value X into a 4 byte
509
* buffer, or maybe into a 12 byte buffer), as per the
510
* SPU CCM spec.
511
*
512
* @val: value to write (up to max of unsigned int)
513
* @buf: (pointer to) buffer to write the value
514
* @len: number of bytes to use (0 to 255)
515
*
516
*/
517
void format_value_ccm(unsigned int val, u8 *buf, u8 len)
518
{
519
int i;
520
521
/* First clear full output buffer */
522
memset(buf, 0, len);
523
524
/* Then, starting from right side, fill in with data */
525
for (i = 0; i < len; i++) {
526
buf[len - i - 1] = (val >> (8 * i)) & 0xff;
527
if (i >= 3)
528
break; /* Only handle up to 32 bits of 'val' */
529
}
530
}
531
532