Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/caam/caamhash.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0+
2
/*
3
* caam - Freescale FSL CAAM support for ahash functions of crypto API
4
*
5
* Copyright 2011 Freescale Semiconductor, Inc.
6
* Copyright 2018-2019, 2023 NXP
7
*
8
* Based on caamalg.c crypto API driver.
9
*
10
* relationship of digest job descriptor or first job descriptor after init to
11
* shared descriptors:
12
*
13
* --------------- ---------------
14
* | JobDesc #1 |-------------------->| ShareDesc |
15
* | *(packet 1) | | (hashKey) |
16
* --------------- | (operation) |
17
* ---------------
18
*
19
* relationship of subsequent job descriptors to shared descriptors:
20
*
21
* --------------- ---------------
22
* | JobDesc #2 |-------------------->| ShareDesc |
23
* | *(packet 2) | |------------->| (hashKey) |
24
* --------------- | |-------->| (operation) |
25
* . | | | (load ctx2) |
26
* . | | ---------------
27
* --------------- | |
28
* | JobDesc #3 |------| |
29
* | *(packet 3) | |
30
* --------------- |
31
* . |
32
* . |
33
* --------------- |
34
* | JobDesc #4 |------------
35
* | *(packet 4) |
36
* ---------------
37
*
38
* The SharedDesc never changes for a connection unless rekeyed, but
39
* each packet will likely be in a different place. So all we need
40
* to know to process the packet is where the input is, where the
41
* output goes, and what context we want to process with. Context is
42
* in the SharedDesc, packet references in the JobDesc.
43
*
44
* So, a job desc looks like:
45
*
46
* ---------------------
47
* | Header |
48
* | ShareDesc Pointer |
49
* | SEQ_OUT_PTR |
50
* | (output buffer) |
51
* | (output length) |
52
* | SEQ_IN_PTR |
53
* | (input buffer) |
54
* | (input length) |
55
* ---------------------
56
*/
57
58
#include "compat.h"
59
60
#include "regs.h"
61
#include "intern.h"
62
#include "desc_constr.h"
63
#include "jr.h"
64
#include "error.h"
65
#include "sg_sw_sec4.h"
66
#include "key_gen.h"
67
#include "caamhash_desc.h"
68
#include <crypto/internal/engine.h>
69
#include <crypto/internal/hash.h>
70
#include <linux/dma-mapping.h>
71
#include <linux/err.h>
72
#include <linux/kernel.h>
73
#include <linux/slab.h>
74
#include <linux/string.h>
75
76
#define CAAM_CRA_PRIORITY 3000
77
78
/* max hash key is max split key size */
79
#define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
80
81
#define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
82
#define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
83
84
#define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
85
CAAM_MAX_HASH_KEY_SIZE)
86
#define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
87
88
/* caam context sizes for hashes: running digest + 8 */
89
#define HASH_MSG_LEN 8
90
#define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
91
92
static struct list_head hash_list;
93
94
/* ahash per-session context */
95
struct caam_hash_ctx {
96
u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
97
u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
98
u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
99
u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
100
u8 key[CAAM_MAX_HASH_KEY_SIZE] ____cacheline_aligned;
101
dma_addr_t sh_desc_update_dma ____cacheline_aligned;
102
dma_addr_t sh_desc_update_first_dma;
103
dma_addr_t sh_desc_fin_dma;
104
dma_addr_t sh_desc_digest_dma;
105
enum dma_data_direction dir;
106
enum dma_data_direction key_dir;
107
struct device *jrdev;
108
int ctx_len;
109
struct alginfo adata;
110
};
111
112
/* ahash state */
113
struct caam_hash_state {
114
dma_addr_t buf_dma;
115
dma_addr_t ctx_dma;
116
int ctx_dma_len;
117
u8 buf[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
118
int buflen;
119
int next_buflen;
120
u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
121
int (*update)(struct ahash_request *req) ____cacheline_aligned;
122
int (*final)(struct ahash_request *req);
123
int (*finup)(struct ahash_request *req);
124
struct ahash_edesc *edesc;
125
void (*ahash_op_done)(struct device *jrdev, u32 *desc, u32 err,
126
void *context);
127
};
128
129
struct caam_export_state {
130
u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
131
u8 caam_ctx[MAX_CTX_LEN];
132
int buflen;
133
int (*update)(struct ahash_request *req);
134
int (*final)(struct ahash_request *req);
135
int (*finup)(struct ahash_request *req);
136
};
137
138
static inline bool is_cmac_aes(u32 algtype)
139
{
140
return (algtype & (OP_ALG_ALGSEL_MASK | OP_ALG_AAI_MASK)) ==
141
(OP_ALG_ALGSEL_AES | OP_ALG_AAI_CMAC);
142
}
143
/* Common job descriptor seq in/out ptr routines */
144
145
/* Map state->caam_ctx, and append seq_out_ptr command that points to it */
146
static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
147
struct caam_hash_state *state,
148
int ctx_len)
149
{
150
state->ctx_dma_len = ctx_len;
151
state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
152
ctx_len, DMA_FROM_DEVICE);
153
if (dma_mapping_error(jrdev, state->ctx_dma)) {
154
dev_err(jrdev, "unable to map ctx\n");
155
state->ctx_dma = 0;
156
return -ENOMEM;
157
}
158
159
append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
160
161
return 0;
162
}
163
164
/* Map current buffer in state (if length > 0) and put it in link table */
165
static inline int buf_map_to_sec4_sg(struct device *jrdev,
166
struct sec4_sg_entry *sec4_sg,
167
struct caam_hash_state *state)
168
{
169
int buflen = state->buflen;
170
171
if (!buflen)
172
return 0;
173
174
state->buf_dma = dma_map_single(jrdev, state->buf, buflen,
175
DMA_TO_DEVICE);
176
if (dma_mapping_error(jrdev, state->buf_dma)) {
177
dev_err(jrdev, "unable to map buf\n");
178
state->buf_dma = 0;
179
return -ENOMEM;
180
}
181
182
dma_to_sec4_sg_one(sec4_sg, state->buf_dma, buflen, 0);
183
184
return 0;
185
}
186
187
/* Map state->caam_ctx, and add it to link table */
188
static inline int ctx_map_to_sec4_sg(struct device *jrdev,
189
struct caam_hash_state *state, int ctx_len,
190
struct sec4_sg_entry *sec4_sg, u32 flag)
191
{
192
state->ctx_dma_len = ctx_len;
193
state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
194
if (dma_mapping_error(jrdev, state->ctx_dma)) {
195
dev_err(jrdev, "unable to map ctx\n");
196
state->ctx_dma = 0;
197
return -ENOMEM;
198
}
199
200
dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
201
202
return 0;
203
}
204
205
static int ahash_set_sh_desc(struct crypto_ahash *ahash)
206
{
207
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
208
int digestsize = crypto_ahash_digestsize(ahash);
209
struct device *jrdev = ctx->jrdev;
210
struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent);
211
u32 *desc;
212
213
ctx->adata.key_virt = ctx->key;
214
215
/* ahash_update shared descriptor */
216
desc = ctx->sh_desc_update;
217
cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len,
218
ctx->ctx_len, true, ctrlpriv->era);
219
dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma,
220
desc_bytes(desc), ctx->dir);
221
222
print_hex_dump_debug("ahash update shdesc@"__stringify(__LINE__)": ",
223
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
224
1);
225
226
/* ahash_update_first shared descriptor */
227
desc = ctx->sh_desc_update_first;
228
cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len,
229
ctx->ctx_len, false, ctrlpriv->era);
230
dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma,
231
desc_bytes(desc), ctx->dir);
232
print_hex_dump_debug("ahash update first shdesc@"__stringify(__LINE__)
233
": ", DUMP_PREFIX_ADDRESS, 16, 4, desc,
234
desc_bytes(desc), 1);
235
236
/* ahash_final shared descriptor */
237
desc = ctx->sh_desc_fin;
238
cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize,
239
ctx->ctx_len, true, ctrlpriv->era);
240
dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma,
241
desc_bytes(desc), ctx->dir);
242
243
print_hex_dump_debug("ahash final shdesc@"__stringify(__LINE__)": ",
244
DUMP_PREFIX_ADDRESS, 16, 4, desc,
245
desc_bytes(desc), 1);
246
247
/* ahash_digest shared descriptor */
248
desc = ctx->sh_desc_digest;
249
cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize,
250
ctx->ctx_len, false, ctrlpriv->era);
251
dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma,
252
desc_bytes(desc), ctx->dir);
253
254
print_hex_dump_debug("ahash digest shdesc@"__stringify(__LINE__)": ",
255
DUMP_PREFIX_ADDRESS, 16, 4, desc,
256
desc_bytes(desc), 1);
257
258
return 0;
259
}
260
261
static int axcbc_set_sh_desc(struct crypto_ahash *ahash)
262
{
263
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
264
int digestsize = crypto_ahash_digestsize(ahash);
265
struct device *jrdev = ctx->jrdev;
266
u32 *desc;
267
268
/* shared descriptor for ahash_update */
269
desc = ctx->sh_desc_update;
270
cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_UPDATE,
271
ctx->ctx_len, ctx->ctx_len);
272
dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma,
273
desc_bytes(desc), ctx->dir);
274
print_hex_dump_debug("axcbc update shdesc@" __stringify(__LINE__)" : ",
275
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
276
1);
277
278
/* shared descriptor for ahash_{final,finup} */
279
desc = ctx->sh_desc_fin;
280
cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_FINALIZE,
281
digestsize, ctx->ctx_len);
282
dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma,
283
desc_bytes(desc), ctx->dir);
284
print_hex_dump_debug("axcbc finup shdesc@" __stringify(__LINE__)" : ",
285
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
286
1);
287
288
/* key is immediate data for INIT and INITFINAL states */
289
ctx->adata.key_virt = ctx->key;
290
291
/* shared descriptor for first invocation of ahash_update */
292
desc = ctx->sh_desc_update_first;
293
cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len,
294
ctx->ctx_len);
295
dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma,
296
desc_bytes(desc), ctx->dir);
297
print_hex_dump_debug("axcbc update first shdesc@" __stringify(__LINE__)
298
" : ", DUMP_PREFIX_ADDRESS, 16, 4, desc,
299
desc_bytes(desc), 1);
300
301
/* shared descriptor for ahash_digest */
302
desc = ctx->sh_desc_digest;
303
cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INITFINAL,
304
digestsize, ctx->ctx_len);
305
dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma,
306
desc_bytes(desc), ctx->dir);
307
print_hex_dump_debug("axcbc digest shdesc@" __stringify(__LINE__)" : ",
308
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
309
1);
310
return 0;
311
}
312
313
static int acmac_set_sh_desc(struct crypto_ahash *ahash)
314
{
315
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
316
int digestsize = crypto_ahash_digestsize(ahash);
317
struct device *jrdev = ctx->jrdev;
318
u32 *desc;
319
320
/* shared descriptor for ahash_update */
321
desc = ctx->sh_desc_update;
322
cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_UPDATE,
323
ctx->ctx_len, ctx->ctx_len);
324
dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma,
325
desc_bytes(desc), ctx->dir);
326
print_hex_dump_debug("acmac update shdesc@" __stringify(__LINE__)" : ",
327
DUMP_PREFIX_ADDRESS, 16, 4, desc,
328
desc_bytes(desc), 1);
329
330
/* shared descriptor for ahash_{final,finup} */
331
desc = ctx->sh_desc_fin;
332
cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_FINALIZE,
333
digestsize, ctx->ctx_len);
334
dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma,
335
desc_bytes(desc), ctx->dir);
336
print_hex_dump_debug("acmac finup shdesc@" __stringify(__LINE__)" : ",
337
DUMP_PREFIX_ADDRESS, 16, 4, desc,
338
desc_bytes(desc), 1);
339
340
/* shared descriptor for first invocation of ahash_update */
341
desc = ctx->sh_desc_update_first;
342
cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len,
343
ctx->ctx_len);
344
dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma,
345
desc_bytes(desc), ctx->dir);
346
print_hex_dump_debug("acmac update first shdesc@" __stringify(__LINE__)
347
" : ", DUMP_PREFIX_ADDRESS, 16, 4, desc,
348
desc_bytes(desc), 1);
349
350
/* shared descriptor for ahash_digest */
351
desc = ctx->sh_desc_digest;
352
cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INITFINAL,
353
digestsize, ctx->ctx_len);
354
dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma,
355
desc_bytes(desc), ctx->dir);
356
print_hex_dump_debug("acmac digest shdesc@" __stringify(__LINE__)" : ",
357
DUMP_PREFIX_ADDRESS, 16, 4, desc,
358
desc_bytes(desc), 1);
359
360
return 0;
361
}
362
363
/* Digest hash size if it is too large */
364
static int hash_digest_key(struct caam_hash_ctx *ctx, u32 *keylen, u8 *key,
365
u32 digestsize)
366
{
367
struct device *jrdev = ctx->jrdev;
368
u32 *desc;
369
struct split_key_result result;
370
dma_addr_t key_dma;
371
int ret;
372
373
desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL);
374
if (!desc)
375
return -ENOMEM;
376
377
init_job_desc(desc, 0);
378
379
key_dma = dma_map_single(jrdev, key, *keylen, DMA_BIDIRECTIONAL);
380
if (dma_mapping_error(jrdev, key_dma)) {
381
dev_err(jrdev, "unable to map key memory\n");
382
kfree(desc);
383
return -ENOMEM;
384
}
385
386
/* Job descriptor to perform unkeyed hash on key_in */
387
append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT |
388
OP_ALG_AS_INITFINAL);
389
append_seq_in_ptr(desc, key_dma, *keylen, 0);
390
append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
391
FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
392
append_seq_out_ptr(desc, key_dma, digestsize, 0);
393
append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
394
LDST_SRCDST_BYTE_CONTEXT);
395
396
print_hex_dump_debug("key_in@"__stringify(__LINE__)": ",
397
DUMP_PREFIX_ADDRESS, 16, 4, key, *keylen, 1);
398
print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ",
399
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
400
1);
401
402
result.err = 0;
403
init_completion(&result.completion);
404
405
ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
406
if (ret == -EINPROGRESS) {
407
/* in progress */
408
wait_for_completion(&result.completion);
409
ret = result.err;
410
411
print_hex_dump_debug("digested key@"__stringify(__LINE__)": ",
412
DUMP_PREFIX_ADDRESS, 16, 4, key,
413
digestsize, 1);
414
}
415
dma_unmap_single(jrdev, key_dma, *keylen, DMA_BIDIRECTIONAL);
416
417
*keylen = digestsize;
418
419
kfree(desc);
420
421
return ret;
422
}
423
424
static int ahash_setkey(struct crypto_ahash *ahash,
425
const u8 *key, unsigned int keylen)
426
{
427
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
428
struct device *jrdev = ctx->jrdev;
429
int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
430
int digestsize = crypto_ahash_digestsize(ahash);
431
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent);
432
int ret;
433
u8 *hashed_key = NULL;
434
435
dev_dbg(jrdev, "keylen %d\n", keylen);
436
437
if (keylen > blocksize) {
438
unsigned int aligned_len =
439
ALIGN(keylen, dma_get_cache_alignment());
440
441
if (aligned_len < keylen)
442
return -EOVERFLOW;
443
444
hashed_key = kmemdup(key, keylen, GFP_KERNEL);
445
if (!hashed_key)
446
return -ENOMEM;
447
ret = hash_digest_key(ctx, &keylen, hashed_key, digestsize);
448
if (ret)
449
goto bad_free_key;
450
key = hashed_key;
451
}
452
453
/*
454
* If DKP is supported, use it in the shared descriptor to generate
455
* the split key.
456
*/
457
if (ctrlpriv->era >= 6) {
458
ctx->adata.key_inline = true;
459
ctx->adata.keylen = keylen;
460
ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
461
OP_ALG_ALGSEL_MASK);
462
463
if (ctx->adata.keylen_pad > CAAM_MAX_HASH_KEY_SIZE)
464
goto bad_free_key;
465
466
memcpy(ctx->key, key, keylen);
467
468
/*
469
* In case |user key| > |derived key|, using DKP<imm,imm>
470
* would result in invalid opcodes (last bytes of user key) in
471
* the resulting descriptor. Use DKP<ptr,imm> instead => both
472
* virtual and dma key addresses are needed.
473
*/
474
if (keylen > ctx->adata.keylen_pad)
475
dma_sync_single_for_device(ctx->jrdev,
476
ctx->adata.key_dma,
477
ctx->adata.keylen_pad,
478
DMA_TO_DEVICE);
479
} else {
480
ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, key,
481
keylen, CAAM_MAX_HASH_KEY_SIZE);
482
if (ret)
483
goto bad_free_key;
484
}
485
486
kfree(hashed_key);
487
return ahash_set_sh_desc(ahash);
488
bad_free_key:
489
kfree(hashed_key);
490
return -EINVAL;
491
}
492
493
static int axcbc_setkey(struct crypto_ahash *ahash, const u8 *key,
494
unsigned int keylen)
495
{
496
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
497
struct device *jrdev = ctx->jrdev;
498
499
if (keylen != AES_KEYSIZE_128)
500
return -EINVAL;
501
502
memcpy(ctx->key, key, keylen);
503
dma_sync_single_for_device(jrdev, ctx->adata.key_dma, keylen,
504
DMA_TO_DEVICE);
505
ctx->adata.keylen = keylen;
506
507
print_hex_dump_debug("axcbc ctx.key@" __stringify(__LINE__)" : ",
508
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, keylen, 1);
509
510
return axcbc_set_sh_desc(ahash);
511
}
512
513
static int acmac_setkey(struct crypto_ahash *ahash, const u8 *key,
514
unsigned int keylen)
515
{
516
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
517
int err;
518
519
err = aes_check_keylen(keylen);
520
if (err)
521
return err;
522
523
/* key is immediate data for all cmac shared descriptors */
524
ctx->adata.key_virt = key;
525
ctx->adata.keylen = keylen;
526
527
print_hex_dump_debug("acmac ctx.key@" __stringify(__LINE__)" : ",
528
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
529
530
return acmac_set_sh_desc(ahash);
531
}
532
533
/*
534
* ahash_edesc - s/w-extended ahash descriptor
535
* @sec4_sg_dma: physical mapped address of h/w link table
536
* @src_nents: number of segments in input scatterlist
537
* @sec4_sg_bytes: length of dma mapped sec4_sg space
538
* @bklog: stored to determine if the request needs backlog
539
* @hw_desc: the h/w job descriptor followed by any referenced link tables
540
* @sec4_sg: h/w link table
541
*/
542
struct ahash_edesc {
543
dma_addr_t sec4_sg_dma;
544
int src_nents;
545
int sec4_sg_bytes;
546
bool bklog;
547
u32 hw_desc[DESC_JOB_IO_LEN_MAX / sizeof(u32)] ____cacheline_aligned;
548
struct sec4_sg_entry sec4_sg[];
549
};
550
551
static inline void ahash_unmap(struct device *dev,
552
struct ahash_edesc *edesc,
553
struct ahash_request *req, int dst_len)
554
{
555
struct caam_hash_state *state = ahash_request_ctx_dma(req);
556
557
if (edesc->src_nents)
558
dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
559
560
if (edesc->sec4_sg_bytes)
561
dma_unmap_single(dev, edesc->sec4_sg_dma,
562
edesc->sec4_sg_bytes, DMA_TO_DEVICE);
563
564
if (state->buf_dma) {
565
dma_unmap_single(dev, state->buf_dma, state->buflen,
566
DMA_TO_DEVICE);
567
state->buf_dma = 0;
568
}
569
}
570
571
static inline void ahash_unmap_ctx(struct device *dev,
572
struct ahash_edesc *edesc,
573
struct ahash_request *req, int dst_len, u32 flag)
574
{
575
struct caam_hash_state *state = ahash_request_ctx_dma(req);
576
577
if (state->ctx_dma) {
578
dma_unmap_single(dev, state->ctx_dma, state->ctx_dma_len, flag);
579
state->ctx_dma = 0;
580
}
581
ahash_unmap(dev, edesc, req, dst_len);
582
}
583
584
static inline void ahash_done_cpy(struct device *jrdev, u32 *desc, u32 err,
585
void *context, enum dma_data_direction dir)
586
{
587
struct ahash_request *req = context;
588
struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev);
589
struct ahash_edesc *edesc;
590
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
591
int digestsize = crypto_ahash_digestsize(ahash);
592
struct caam_hash_state *state = ahash_request_ctx_dma(req);
593
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
594
int ecode = 0;
595
bool has_bklog;
596
597
dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
598
599
edesc = state->edesc;
600
has_bklog = edesc->bklog;
601
602
if (err)
603
ecode = caam_jr_strstatus(jrdev, err);
604
605
ahash_unmap_ctx(jrdev, edesc, req, digestsize, dir);
606
memcpy(req->result, state->caam_ctx, digestsize);
607
kfree(edesc);
608
609
print_hex_dump_debug("ctx@"__stringify(__LINE__)": ",
610
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
611
ctx->ctx_len, 1);
612
613
/*
614
* If no backlog flag, the completion of the request is done
615
* by CAAM, not crypto engine.
616
*/
617
if (!has_bklog)
618
ahash_request_complete(req, ecode);
619
else
620
crypto_finalize_hash_request(jrp->engine, req, ecode);
621
}
622
623
static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
624
void *context)
625
{
626
ahash_done_cpy(jrdev, desc, err, context, DMA_FROM_DEVICE);
627
}
628
629
static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
630
void *context)
631
{
632
ahash_done_cpy(jrdev, desc, err, context, DMA_BIDIRECTIONAL);
633
}
634
635
static inline void ahash_done_switch(struct device *jrdev, u32 *desc, u32 err,
636
void *context, enum dma_data_direction dir)
637
{
638
struct ahash_request *req = context;
639
struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev);
640
struct ahash_edesc *edesc;
641
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
642
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
643
struct caam_hash_state *state = ahash_request_ctx_dma(req);
644
int digestsize = crypto_ahash_digestsize(ahash);
645
int ecode = 0;
646
bool has_bklog;
647
648
dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
649
650
edesc = state->edesc;
651
has_bklog = edesc->bklog;
652
if (err)
653
ecode = caam_jr_strstatus(jrdev, err);
654
655
ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, dir);
656
kfree(edesc);
657
658
scatterwalk_map_and_copy(state->buf, req->src,
659
req->nbytes - state->next_buflen,
660
state->next_buflen, 0);
661
state->buflen = state->next_buflen;
662
663
print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
664
DUMP_PREFIX_ADDRESS, 16, 4, state->buf,
665
state->buflen, 1);
666
667
print_hex_dump_debug("ctx@"__stringify(__LINE__)": ",
668
DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
669
ctx->ctx_len, 1);
670
if (req->result)
671
print_hex_dump_debug("result@"__stringify(__LINE__)": ",
672
DUMP_PREFIX_ADDRESS, 16, 4, req->result,
673
digestsize, 1);
674
675
/*
676
* If no backlog flag, the completion of the request is done
677
* by CAAM, not crypto engine.
678
*/
679
if (!has_bklog)
680
ahash_request_complete(req, ecode);
681
else
682
crypto_finalize_hash_request(jrp->engine, req, ecode);
683
684
}
685
686
static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
687
void *context)
688
{
689
ahash_done_switch(jrdev, desc, err, context, DMA_BIDIRECTIONAL);
690
}
691
692
static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
693
void *context)
694
{
695
ahash_done_switch(jrdev, desc, err, context, DMA_FROM_DEVICE);
696
}
697
698
/*
699
* Allocate an enhanced descriptor, which contains the hardware descriptor
700
* and space for hardware scatter table containing sg_num entries.
701
*/
702
static struct ahash_edesc *ahash_edesc_alloc(struct ahash_request *req,
703
int sg_num, u32 *sh_desc,
704
dma_addr_t sh_desc_dma)
705
{
706
struct caam_hash_state *state = ahash_request_ctx_dma(req);
707
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
708
GFP_KERNEL : GFP_ATOMIC;
709
struct ahash_edesc *edesc;
710
711
sg_num = pad_sg_nents(sg_num);
712
edesc = kzalloc(struct_size(edesc, sec4_sg, sg_num), flags);
713
if (!edesc)
714
return NULL;
715
716
state->edesc = edesc;
717
718
init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc),
719
HDR_SHARE_DEFER | HDR_REVERSE);
720
721
return edesc;
722
}
723
724
static int ahash_edesc_add_src(struct caam_hash_ctx *ctx,
725
struct ahash_edesc *edesc,
726
struct ahash_request *req, int nents,
727
unsigned int first_sg,
728
unsigned int first_bytes, size_t to_hash)
729
{
730
dma_addr_t src_dma;
731
u32 options;
732
733
if (nents > 1 || first_sg) {
734
struct sec4_sg_entry *sg = edesc->sec4_sg;
735
unsigned int sgsize = sizeof(*sg) *
736
pad_sg_nents(first_sg + nents);
737
738
sg_to_sec4_sg_last(req->src, to_hash, sg + first_sg, 0);
739
740
src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE);
741
if (dma_mapping_error(ctx->jrdev, src_dma)) {
742
dev_err(ctx->jrdev, "unable to map S/G table\n");
743
return -ENOMEM;
744
}
745
746
edesc->sec4_sg_bytes = sgsize;
747
edesc->sec4_sg_dma = src_dma;
748
options = LDST_SGF;
749
} else {
750
src_dma = sg_dma_address(req->src);
751
options = 0;
752
}
753
754
append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash,
755
options);
756
757
return 0;
758
}
759
760
static int ahash_do_one_req(struct crypto_engine *engine, void *areq)
761
{
762
struct ahash_request *req = ahash_request_cast(areq);
763
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(crypto_ahash_reqtfm(req));
764
struct caam_hash_state *state = ahash_request_ctx_dma(req);
765
struct device *jrdev = ctx->jrdev;
766
u32 *desc = state->edesc->hw_desc;
767
int ret;
768
769
state->edesc->bklog = true;
770
771
ret = caam_jr_enqueue(jrdev, desc, state->ahash_op_done, req);
772
773
if (ret == -ENOSPC && engine->retry_support)
774
return ret;
775
776
if (ret != -EINPROGRESS) {
777
ahash_unmap(jrdev, state->edesc, req, 0);
778
kfree(state->edesc);
779
} else {
780
ret = 0;
781
}
782
783
return ret;
784
}
785
786
static int ahash_enqueue_req(struct device *jrdev,
787
void (*cbk)(struct device *jrdev, u32 *desc,
788
u32 err, void *context),
789
struct ahash_request *req,
790
int dst_len, enum dma_data_direction dir)
791
{
792
struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev);
793
struct caam_hash_state *state = ahash_request_ctx_dma(req);
794
struct ahash_edesc *edesc = state->edesc;
795
u32 *desc = edesc->hw_desc;
796
int ret;
797
798
state->ahash_op_done = cbk;
799
800
/*
801
* Only the backlog request are sent to crypto-engine since the others
802
* can be handled by CAAM, if free, especially since JR has up to 1024
803
* entries (more than the 10 entries from crypto-engine).
804
*/
805
if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
806
ret = crypto_transfer_hash_request_to_engine(jrpriv->engine,
807
req);
808
else
809
ret = caam_jr_enqueue(jrdev, desc, cbk, req);
810
811
if ((ret != -EINPROGRESS) && (ret != -EBUSY)) {
812
ahash_unmap_ctx(jrdev, edesc, req, dst_len, dir);
813
kfree(edesc);
814
}
815
816
return ret;
817
}
818
819
/* submit update job descriptor */
820
static int ahash_update_ctx(struct ahash_request *req)
821
{
822
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
823
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
824
struct caam_hash_state *state = ahash_request_ctx_dma(req);
825
struct device *jrdev = ctx->jrdev;
826
u8 *buf = state->buf;
827
int *buflen = &state->buflen;
828
int *next_buflen = &state->next_buflen;
829
int blocksize = crypto_ahash_blocksize(ahash);
830
int in_len = *buflen + req->nbytes, to_hash;
831
u32 *desc;
832
int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index;
833
struct ahash_edesc *edesc;
834
int ret = 0;
835
836
*next_buflen = in_len & (blocksize - 1);
837
to_hash = in_len - *next_buflen;
838
839
/*
840
* For XCBC and CMAC, if to_hash is multiple of block size,
841
* keep last block in internal buffer
842
*/
843
if ((is_xcbc_aes(ctx->adata.algtype) ||
844
is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize &&
845
(*next_buflen == 0)) {
846
*next_buflen = blocksize;
847
to_hash -= blocksize;
848
}
849
850
if (to_hash) {
851
int pad_nents;
852
int src_len = req->nbytes - *next_buflen;
853
854
src_nents = sg_nents_for_len(req->src, src_len);
855
if (src_nents < 0) {
856
dev_err(jrdev, "Invalid number of src SG.\n");
857
return src_nents;
858
}
859
860
if (src_nents) {
861
mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
862
DMA_TO_DEVICE);
863
if (!mapped_nents) {
864
dev_err(jrdev, "unable to DMA map source\n");
865
return -ENOMEM;
866
}
867
} else {
868
mapped_nents = 0;
869
}
870
871
sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
872
pad_nents = pad_sg_nents(sec4_sg_src_index + mapped_nents);
873
sec4_sg_bytes = pad_nents * sizeof(struct sec4_sg_entry);
874
875
/*
876
* allocate space for base edesc and hw desc commands,
877
* link tables
878
*/
879
edesc = ahash_edesc_alloc(req, pad_nents, ctx->sh_desc_update,
880
ctx->sh_desc_update_dma);
881
if (!edesc) {
882
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
883
return -ENOMEM;
884
}
885
886
edesc->src_nents = src_nents;
887
edesc->sec4_sg_bytes = sec4_sg_bytes;
888
889
ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len,
890
edesc->sec4_sg, DMA_BIDIRECTIONAL);
891
if (ret)
892
goto unmap_ctx;
893
894
ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
895
if (ret)
896
goto unmap_ctx;
897
898
if (mapped_nents)
899
sg_to_sec4_sg_last(req->src, src_len,
900
edesc->sec4_sg + sec4_sg_src_index,
901
0);
902
else
903
sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index -
904
1);
905
906
desc = edesc->hw_desc;
907
908
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
909
sec4_sg_bytes,
910
DMA_TO_DEVICE);
911
if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
912
dev_err(jrdev, "unable to map S/G table\n");
913
ret = -ENOMEM;
914
goto unmap_ctx;
915
}
916
917
append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
918
to_hash, LDST_SGF);
919
920
append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
921
922
print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ",
923
DUMP_PREFIX_ADDRESS, 16, 4, desc,
924
desc_bytes(desc), 1);
925
926
ret = ahash_enqueue_req(jrdev, ahash_done_bi, req,
927
ctx->ctx_len, DMA_BIDIRECTIONAL);
928
} else if (*next_buflen) {
929
scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
930
req->nbytes, 0);
931
*buflen = *next_buflen;
932
933
print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
934
DUMP_PREFIX_ADDRESS, 16, 4, buf,
935
*buflen, 1);
936
}
937
938
return ret;
939
unmap_ctx:
940
ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
941
kfree(edesc);
942
return ret;
943
}
944
945
static int ahash_final_ctx(struct ahash_request *req)
946
{
947
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
948
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
949
struct caam_hash_state *state = ahash_request_ctx_dma(req);
950
struct device *jrdev = ctx->jrdev;
951
int buflen = state->buflen;
952
u32 *desc;
953
int sec4_sg_bytes;
954
int digestsize = crypto_ahash_digestsize(ahash);
955
struct ahash_edesc *edesc;
956
int ret;
957
958
sec4_sg_bytes = pad_sg_nents(1 + (buflen ? 1 : 0)) *
959
sizeof(struct sec4_sg_entry);
960
961
/* allocate space for base edesc and hw desc commands, link tables */
962
edesc = ahash_edesc_alloc(req, 4, ctx->sh_desc_fin,
963
ctx->sh_desc_fin_dma);
964
if (!edesc)
965
return -ENOMEM;
966
967
desc = edesc->hw_desc;
968
969
edesc->sec4_sg_bytes = sec4_sg_bytes;
970
971
ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len,
972
edesc->sec4_sg, DMA_BIDIRECTIONAL);
973
if (ret)
974
goto unmap_ctx;
975
976
ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
977
if (ret)
978
goto unmap_ctx;
979
980
sg_to_sec4_set_last(edesc->sec4_sg + (buflen ? 1 : 0));
981
982
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
983
sec4_sg_bytes, DMA_TO_DEVICE);
984
if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
985
dev_err(jrdev, "unable to map S/G table\n");
986
ret = -ENOMEM;
987
goto unmap_ctx;
988
}
989
990
append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
991
LDST_SGF);
992
append_seq_out_ptr(desc, state->ctx_dma, digestsize, 0);
993
994
print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ",
995
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
996
1);
997
998
return ahash_enqueue_req(jrdev, ahash_done_ctx_src, req,
999
digestsize, DMA_BIDIRECTIONAL);
1000
unmap_ctx:
1001
ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_BIDIRECTIONAL);
1002
kfree(edesc);
1003
return ret;
1004
}
1005
1006
static int ahash_finup_ctx(struct ahash_request *req)
1007
{
1008
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1009
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
1010
struct caam_hash_state *state = ahash_request_ctx_dma(req);
1011
struct device *jrdev = ctx->jrdev;
1012
int buflen = state->buflen;
1013
u32 *desc;
1014
int sec4_sg_src_index;
1015
int src_nents, mapped_nents;
1016
int digestsize = crypto_ahash_digestsize(ahash);
1017
struct ahash_edesc *edesc;
1018
int ret;
1019
1020
src_nents = sg_nents_for_len(req->src, req->nbytes);
1021
if (src_nents < 0) {
1022
dev_err(jrdev, "Invalid number of src SG.\n");
1023
return src_nents;
1024
}
1025
1026
if (src_nents) {
1027
mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
1028
DMA_TO_DEVICE);
1029
if (!mapped_nents) {
1030
dev_err(jrdev, "unable to DMA map source\n");
1031
return -ENOMEM;
1032
}
1033
} else {
1034
mapped_nents = 0;
1035
}
1036
1037
sec4_sg_src_index = 1 + (buflen ? 1 : 0);
1038
1039
/* allocate space for base edesc and hw desc commands, link tables */
1040
edesc = ahash_edesc_alloc(req, sec4_sg_src_index + mapped_nents,
1041
ctx->sh_desc_fin, ctx->sh_desc_fin_dma);
1042
if (!edesc) {
1043
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
1044
return -ENOMEM;
1045
}
1046
1047
desc = edesc->hw_desc;
1048
1049
edesc->src_nents = src_nents;
1050
1051
ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len,
1052
edesc->sec4_sg, DMA_BIDIRECTIONAL);
1053
if (ret)
1054
goto unmap_ctx;
1055
1056
ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
1057
if (ret)
1058
goto unmap_ctx;
1059
1060
ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents,
1061
sec4_sg_src_index, ctx->ctx_len + buflen,
1062
req->nbytes);
1063
if (ret)
1064
goto unmap_ctx;
1065
1066
append_seq_out_ptr(desc, state->ctx_dma, digestsize, 0);
1067
1068
print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ",
1069
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
1070
1);
1071
1072
return ahash_enqueue_req(jrdev, ahash_done_ctx_src, req,
1073
digestsize, DMA_BIDIRECTIONAL);
1074
unmap_ctx:
1075
ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_BIDIRECTIONAL);
1076
kfree(edesc);
1077
return ret;
1078
}
1079
1080
static int ahash_digest(struct ahash_request *req)
1081
{
1082
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1083
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
1084
struct caam_hash_state *state = ahash_request_ctx_dma(req);
1085
struct device *jrdev = ctx->jrdev;
1086
u32 *desc;
1087
int digestsize = crypto_ahash_digestsize(ahash);
1088
int src_nents, mapped_nents;
1089
struct ahash_edesc *edesc;
1090
int ret;
1091
1092
state->buf_dma = 0;
1093
1094
src_nents = sg_nents_for_len(req->src, req->nbytes);
1095
if (src_nents < 0) {
1096
dev_err(jrdev, "Invalid number of src SG.\n");
1097
return src_nents;
1098
}
1099
1100
if (src_nents) {
1101
mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
1102
DMA_TO_DEVICE);
1103
if (!mapped_nents) {
1104
dev_err(jrdev, "unable to map source for DMA\n");
1105
return -ENOMEM;
1106
}
1107
} else {
1108
mapped_nents = 0;
1109
}
1110
1111
/* allocate space for base edesc and hw desc commands, link tables */
1112
edesc = ahash_edesc_alloc(req, mapped_nents > 1 ? mapped_nents : 0,
1113
ctx->sh_desc_digest, ctx->sh_desc_digest_dma);
1114
if (!edesc) {
1115
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
1116
return -ENOMEM;
1117
}
1118
1119
edesc->src_nents = src_nents;
1120
1121
ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
1122
req->nbytes);
1123
if (ret) {
1124
ahash_unmap(jrdev, edesc, req, digestsize);
1125
kfree(edesc);
1126
return ret;
1127
}
1128
1129
desc = edesc->hw_desc;
1130
1131
ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize);
1132
if (ret) {
1133
ahash_unmap(jrdev, edesc, req, digestsize);
1134
kfree(edesc);
1135
return -ENOMEM;
1136
}
1137
1138
print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ",
1139
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
1140
1);
1141
1142
return ahash_enqueue_req(jrdev, ahash_done, req, digestsize,
1143
DMA_FROM_DEVICE);
1144
}
1145
1146
/* submit ahash final if it the first job descriptor */
1147
static int ahash_final_no_ctx(struct ahash_request *req)
1148
{
1149
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1150
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
1151
struct caam_hash_state *state = ahash_request_ctx_dma(req);
1152
struct device *jrdev = ctx->jrdev;
1153
u8 *buf = state->buf;
1154
int buflen = state->buflen;
1155
u32 *desc;
1156
int digestsize = crypto_ahash_digestsize(ahash);
1157
struct ahash_edesc *edesc;
1158
int ret;
1159
1160
/* allocate space for base edesc and hw desc commands, link tables */
1161
edesc = ahash_edesc_alloc(req, 0, ctx->sh_desc_digest,
1162
ctx->sh_desc_digest_dma);
1163
if (!edesc)
1164
return -ENOMEM;
1165
1166
desc = edesc->hw_desc;
1167
1168
if (buflen) {
1169
state->buf_dma = dma_map_single(jrdev, buf, buflen,
1170
DMA_TO_DEVICE);
1171
if (dma_mapping_error(jrdev, state->buf_dma)) {
1172
dev_err(jrdev, "unable to map src\n");
1173
goto unmap;
1174
}
1175
1176
append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
1177
}
1178
1179
ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize);
1180
if (ret)
1181
goto unmap;
1182
1183
print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ",
1184
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
1185
1);
1186
1187
return ahash_enqueue_req(jrdev, ahash_done, req,
1188
digestsize, DMA_FROM_DEVICE);
1189
unmap:
1190
ahash_unmap(jrdev, edesc, req, digestsize);
1191
kfree(edesc);
1192
return -ENOMEM;
1193
}
1194
1195
/* submit ahash update if it the first job descriptor after update */
1196
static int ahash_update_no_ctx(struct ahash_request *req)
1197
{
1198
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1199
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
1200
struct caam_hash_state *state = ahash_request_ctx_dma(req);
1201
struct device *jrdev = ctx->jrdev;
1202
u8 *buf = state->buf;
1203
int *buflen = &state->buflen;
1204
int *next_buflen = &state->next_buflen;
1205
int blocksize = crypto_ahash_blocksize(ahash);
1206
int in_len = *buflen + req->nbytes, to_hash;
1207
int sec4_sg_bytes, src_nents, mapped_nents;
1208
struct ahash_edesc *edesc;
1209
u32 *desc;
1210
int ret = 0;
1211
1212
*next_buflen = in_len & (blocksize - 1);
1213
to_hash = in_len - *next_buflen;
1214
1215
/*
1216
* For XCBC and CMAC, if to_hash is multiple of block size,
1217
* keep last block in internal buffer
1218
*/
1219
if ((is_xcbc_aes(ctx->adata.algtype) ||
1220
is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize &&
1221
(*next_buflen == 0)) {
1222
*next_buflen = blocksize;
1223
to_hash -= blocksize;
1224
}
1225
1226
if (to_hash) {
1227
int pad_nents;
1228
int src_len = req->nbytes - *next_buflen;
1229
1230
src_nents = sg_nents_for_len(req->src, src_len);
1231
if (src_nents < 0) {
1232
dev_err(jrdev, "Invalid number of src SG.\n");
1233
return src_nents;
1234
}
1235
1236
if (src_nents) {
1237
mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
1238
DMA_TO_DEVICE);
1239
if (!mapped_nents) {
1240
dev_err(jrdev, "unable to DMA map source\n");
1241
return -ENOMEM;
1242
}
1243
} else {
1244
mapped_nents = 0;
1245
}
1246
1247
pad_nents = pad_sg_nents(1 + mapped_nents);
1248
sec4_sg_bytes = pad_nents * sizeof(struct sec4_sg_entry);
1249
1250
/*
1251
* allocate space for base edesc and hw desc commands,
1252
* link tables
1253
*/
1254
edesc = ahash_edesc_alloc(req, pad_nents,
1255
ctx->sh_desc_update_first,
1256
ctx->sh_desc_update_first_dma);
1257
if (!edesc) {
1258
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
1259
return -ENOMEM;
1260
}
1261
1262
edesc->src_nents = src_nents;
1263
edesc->sec4_sg_bytes = sec4_sg_bytes;
1264
1265
ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state);
1266
if (ret)
1267
goto unmap_ctx;
1268
1269
sg_to_sec4_sg_last(req->src, src_len, edesc->sec4_sg + 1, 0);
1270
1271
desc = edesc->hw_desc;
1272
1273
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
1274
sec4_sg_bytes,
1275
DMA_TO_DEVICE);
1276
if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
1277
dev_err(jrdev, "unable to map S/G table\n");
1278
ret = -ENOMEM;
1279
goto unmap_ctx;
1280
}
1281
1282
append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
1283
1284
ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
1285
if (ret)
1286
goto unmap_ctx;
1287
1288
print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ",
1289
DUMP_PREFIX_ADDRESS, 16, 4, desc,
1290
desc_bytes(desc), 1);
1291
1292
ret = ahash_enqueue_req(jrdev, ahash_done_ctx_dst, req,
1293
ctx->ctx_len, DMA_TO_DEVICE);
1294
if ((ret != -EINPROGRESS) && (ret != -EBUSY))
1295
return ret;
1296
state->update = ahash_update_ctx;
1297
state->finup = ahash_finup_ctx;
1298
state->final = ahash_final_ctx;
1299
} else if (*next_buflen) {
1300
scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
1301
req->nbytes, 0);
1302
*buflen = *next_buflen;
1303
1304
print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
1305
DUMP_PREFIX_ADDRESS, 16, 4, buf,
1306
*buflen, 1);
1307
}
1308
1309
return ret;
1310
unmap_ctx:
1311
ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
1312
kfree(edesc);
1313
return ret;
1314
}
1315
1316
/* submit ahash finup if it the first job descriptor after update */
1317
static int ahash_finup_no_ctx(struct ahash_request *req)
1318
{
1319
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1320
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
1321
struct caam_hash_state *state = ahash_request_ctx_dma(req);
1322
struct device *jrdev = ctx->jrdev;
1323
int buflen = state->buflen;
1324
u32 *desc;
1325
int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents;
1326
int digestsize = crypto_ahash_digestsize(ahash);
1327
struct ahash_edesc *edesc;
1328
int ret;
1329
1330
src_nents = sg_nents_for_len(req->src, req->nbytes);
1331
if (src_nents < 0) {
1332
dev_err(jrdev, "Invalid number of src SG.\n");
1333
return src_nents;
1334
}
1335
1336
if (src_nents) {
1337
mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
1338
DMA_TO_DEVICE);
1339
if (!mapped_nents) {
1340
dev_err(jrdev, "unable to DMA map source\n");
1341
return -ENOMEM;
1342
}
1343
} else {
1344
mapped_nents = 0;
1345
}
1346
1347
sec4_sg_src_index = 2;
1348
sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
1349
sizeof(struct sec4_sg_entry);
1350
1351
/* allocate space for base edesc and hw desc commands, link tables */
1352
edesc = ahash_edesc_alloc(req, sec4_sg_src_index + mapped_nents,
1353
ctx->sh_desc_digest, ctx->sh_desc_digest_dma);
1354
if (!edesc) {
1355
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
1356
return -ENOMEM;
1357
}
1358
1359
desc = edesc->hw_desc;
1360
1361
edesc->src_nents = src_nents;
1362
edesc->sec4_sg_bytes = sec4_sg_bytes;
1363
1364
ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state);
1365
if (ret)
1366
goto unmap;
1367
1368
ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen,
1369
req->nbytes);
1370
if (ret) {
1371
dev_err(jrdev, "unable to map S/G table\n");
1372
goto unmap;
1373
}
1374
1375
ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize);
1376
if (ret)
1377
goto unmap;
1378
1379
print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ",
1380
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
1381
1);
1382
1383
return ahash_enqueue_req(jrdev, ahash_done, req,
1384
digestsize, DMA_FROM_DEVICE);
1385
unmap:
1386
ahash_unmap(jrdev, edesc, req, digestsize);
1387
kfree(edesc);
1388
return -ENOMEM;
1389
1390
}
1391
1392
/* submit first update job descriptor after init */
1393
static int ahash_update_first(struct ahash_request *req)
1394
{
1395
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1396
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
1397
struct caam_hash_state *state = ahash_request_ctx_dma(req);
1398
struct device *jrdev = ctx->jrdev;
1399
u8 *buf = state->buf;
1400
int *buflen = &state->buflen;
1401
int *next_buflen = &state->next_buflen;
1402
int to_hash;
1403
int blocksize = crypto_ahash_blocksize(ahash);
1404
u32 *desc;
1405
int src_nents, mapped_nents;
1406
struct ahash_edesc *edesc;
1407
int ret = 0;
1408
1409
*next_buflen = req->nbytes & (blocksize - 1);
1410
to_hash = req->nbytes - *next_buflen;
1411
1412
/*
1413
* For XCBC and CMAC, if to_hash is multiple of block size,
1414
* keep last block in internal buffer
1415
*/
1416
if ((is_xcbc_aes(ctx->adata.algtype) ||
1417
is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize &&
1418
(*next_buflen == 0)) {
1419
*next_buflen = blocksize;
1420
to_hash -= blocksize;
1421
}
1422
1423
if (to_hash) {
1424
src_nents = sg_nents_for_len(req->src,
1425
req->nbytes - *next_buflen);
1426
if (src_nents < 0) {
1427
dev_err(jrdev, "Invalid number of src SG.\n");
1428
return src_nents;
1429
}
1430
1431
if (src_nents) {
1432
mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
1433
DMA_TO_DEVICE);
1434
if (!mapped_nents) {
1435
dev_err(jrdev, "unable to map source for DMA\n");
1436
return -ENOMEM;
1437
}
1438
} else {
1439
mapped_nents = 0;
1440
}
1441
1442
/*
1443
* allocate space for base edesc and hw desc commands,
1444
* link tables
1445
*/
1446
edesc = ahash_edesc_alloc(req, mapped_nents > 1 ?
1447
mapped_nents : 0,
1448
ctx->sh_desc_update_first,
1449
ctx->sh_desc_update_first_dma);
1450
if (!edesc) {
1451
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
1452
return -ENOMEM;
1453
}
1454
1455
edesc->src_nents = src_nents;
1456
1457
ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
1458
to_hash);
1459
if (ret)
1460
goto unmap_ctx;
1461
1462
desc = edesc->hw_desc;
1463
1464
ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
1465
if (ret)
1466
goto unmap_ctx;
1467
1468
print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ",
1469
DUMP_PREFIX_ADDRESS, 16, 4, desc,
1470
desc_bytes(desc), 1);
1471
1472
ret = ahash_enqueue_req(jrdev, ahash_done_ctx_dst, req,
1473
ctx->ctx_len, DMA_TO_DEVICE);
1474
if ((ret != -EINPROGRESS) && (ret != -EBUSY))
1475
return ret;
1476
state->update = ahash_update_ctx;
1477
state->finup = ahash_finup_ctx;
1478
state->final = ahash_final_ctx;
1479
} else if (*next_buflen) {
1480
state->update = ahash_update_no_ctx;
1481
state->finup = ahash_finup_no_ctx;
1482
state->final = ahash_final_no_ctx;
1483
scatterwalk_map_and_copy(buf, req->src, 0,
1484
req->nbytes, 0);
1485
*buflen = *next_buflen;
1486
1487
print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
1488
DUMP_PREFIX_ADDRESS, 16, 4, buf,
1489
*buflen, 1);
1490
}
1491
1492
return ret;
1493
unmap_ctx:
1494
ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
1495
kfree(edesc);
1496
return ret;
1497
}
1498
1499
static int ahash_finup_first(struct ahash_request *req)
1500
{
1501
return ahash_digest(req);
1502
}
1503
1504
static int ahash_init(struct ahash_request *req)
1505
{
1506
struct caam_hash_state *state = ahash_request_ctx_dma(req);
1507
1508
state->update = ahash_update_first;
1509
state->finup = ahash_finup_first;
1510
state->final = ahash_final_no_ctx;
1511
1512
state->ctx_dma = 0;
1513
state->ctx_dma_len = 0;
1514
state->buf_dma = 0;
1515
state->buflen = 0;
1516
state->next_buflen = 0;
1517
1518
return 0;
1519
}
1520
1521
static int ahash_update(struct ahash_request *req)
1522
{
1523
struct caam_hash_state *state = ahash_request_ctx_dma(req);
1524
1525
return state->update(req);
1526
}
1527
1528
static int ahash_finup(struct ahash_request *req)
1529
{
1530
struct caam_hash_state *state = ahash_request_ctx_dma(req);
1531
1532
return state->finup(req);
1533
}
1534
1535
static int ahash_final(struct ahash_request *req)
1536
{
1537
struct caam_hash_state *state = ahash_request_ctx_dma(req);
1538
1539
return state->final(req);
1540
}
1541
1542
static int ahash_export(struct ahash_request *req, void *out)
1543
{
1544
struct caam_hash_state *state = ahash_request_ctx_dma(req);
1545
struct caam_export_state *export = out;
1546
u8 *buf = state->buf;
1547
int len = state->buflen;
1548
1549
memcpy(export->buf, buf, len);
1550
memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
1551
export->buflen = len;
1552
export->update = state->update;
1553
export->final = state->final;
1554
export->finup = state->finup;
1555
1556
return 0;
1557
}
1558
1559
static int ahash_import(struct ahash_request *req, const void *in)
1560
{
1561
struct caam_hash_state *state = ahash_request_ctx_dma(req);
1562
const struct caam_export_state *export = in;
1563
1564
memset(state, 0, sizeof(*state));
1565
memcpy(state->buf, export->buf, export->buflen);
1566
memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
1567
state->buflen = export->buflen;
1568
state->update = export->update;
1569
state->final = export->final;
1570
state->finup = export->finup;
1571
1572
return 0;
1573
}
1574
1575
struct caam_hash_template {
1576
char name[CRYPTO_MAX_ALG_NAME];
1577
char driver_name[CRYPTO_MAX_ALG_NAME];
1578
char hmac_name[CRYPTO_MAX_ALG_NAME];
1579
char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
1580
unsigned int blocksize;
1581
struct ahash_alg template_ahash;
1582
u32 alg_type;
1583
};
1584
1585
/* ahash descriptors */
1586
static struct caam_hash_template driver_hash[] = {
1587
{
1588
.name = "sha1",
1589
.driver_name = "sha1-caam",
1590
.hmac_name = "hmac(sha1)",
1591
.hmac_driver_name = "hmac-sha1-caam",
1592
.blocksize = SHA1_BLOCK_SIZE,
1593
.template_ahash = {
1594
.init = ahash_init,
1595
.update = ahash_update,
1596
.final = ahash_final,
1597
.finup = ahash_finup,
1598
.digest = ahash_digest,
1599
.export = ahash_export,
1600
.import = ahash_import,
1601
.setkey = ahash_setkey,
1602
.halg = {
1603
.digestsize = SHA1_DIGEST_SIZE,
1604
.statesize = sizeof(struct caam_export_state),
1605
},
1606
},
1607
.alg_type = OP_ALG_ALGSEL_SHA1,
1608
}, {
1609
.name = "sha224",
1610
.driver_name = "sha224-caam",
1611
.hmac_name = "hmac(sha224)",
1612
.hmac_driver_name = "hmac-sha224-caam",
1613
.blocksize = SHA224_BLOCK_SIZE,
1614
.template_ahash = {
1615
.init = ahash_init,
1616
.update = ahash_update,
1617
.final = ahash_final,
1618
.finup = ahash_finup,
1619
.digest = ahash_digest,
1620
.export = ahash_export,
1621
.import = ahash_import,
1622
.setkey = ahash_setkey,
1623
.halg = {
1624
.digestsize = SHA224_DIGEST_SIZE,
1625
.statesize = sizeof(struct caam_export_state),
1626
},
1627
},
1628
.alg_type = OP_ALG_ALGSEL_SHA224,
1629
}, {
1630
.name = "sha256",
1631
.driver_name = "sha256-caam",
1632
.hmac_name = "hmac(sha256)",
1633
.hmac_driver_name = "hmac-sha256-caam",
1634
.blocksize = SHA256_BLOCK_SIZE,
1635
.template_ahash = {
1636
.init = ahash_init,
1637
.update = ahash_update,
1638
.final = ahash_final,
1639
.finup = ahash_finup,
1640
.digest = ahash_digest,
1641
.export = ahash_export,
1642
.import = ahash_import,
1643
.setkey = ahash_setkey,
1644
.halg = {
1645
.digestsize = SHA256_DIGEST_SIZE,
1646
.statesize = sizeof(struct caam_export_state),
1647
},
1648
},
1649
.alg_type = OP_ALG_ALGSEL_SHA256,
1650
}, {
1651
.name = "sha384",
1652
.driver_name = "sha384-caam",
1653
.hmac_name = "hmac(sha384)",
1654
.hmac_driver_name = "hmac-sha384-caam",
1655
.blocksize = SHA384_BLOCK_SIZE,
1656
.template_ahash = {
1657
.init = ahash_init,
1658
.update = ahash_update,
1659
.final = ahash_final,
1660
.finup = ahash_finup,
1661
.digest = ahash_digest,
1662
.export = ahash_export,
1663
.import = ahash_import,
1664
.setkey = ahash_setkey,
1665
.halg = {
1666
.digestsize = SHA384_DIGEST_SIZE,
1667
.statesize = sizeof(struct caam_export_state),
1668
},
1669
},
1670
.alg_type = OP_ALG_ALGSEL_SHA384,
1671
}, {
1672
.name = "sha512",
1673
.driver_name = "sha512-caam",
1674
.hmac_name = "hmac(sha512)",
1675
.hmac_driver_name = "hmac-sha512-caam",
1676
.blocksize = SHA512_BLOCK_SIZE,
1677
.template_ahash = {
1678
.init = ahash_init,
1679
.update = ahash_update,
1680
.final = ahash_final,
1681
.finup = ahash_finup,
1682
.digest = ahash_digest,
1683
.export = ahash_export,
1684
.import = ahash_import,
1685
.setkey = ahash_setkey,
1686
.halg = {
1687
.digestsize = SHA512_DIGEST_SIZE,
1688
.statesize = sizeof(struct caam_export_state),
1689
},
1690
},
1691
.alg_type = OP_ALG_ALGSEL_SHA512,
1692
}, {
1693
.name = "md5",
1694
.driver_name = "md5-caam",
1695
.hmac_name = "hmac(md5)",
1696
.hmac_driver_name = "hmac-md5-caam",
1697
.blocksize = MD5_BLOCK_WORDS * 4,
1698
.template_ahash = {
1699
.init = ahash_init,
1700
.update = ahash_update,
1701
.final = ahash_final,
1702
.finup = ahash_finup,
1703
.digest = ahash_digest,
1704
.export = ahash_export,
1705
.import = ahash_import,
1706
.setkey = ahash_setkey,
1707
.halg = {
1708
.digestsize = MD5_DIGEST_SIZE,
1709
.statesize = sizeof(struct caam_export_state),
1710
},
1711
},
1712
.alg_type = OP_ALG_ALGSEL_MD5,
1713
}, {
1714
.hmac_name = "xcbc(aes)",
1715
.hmac_driver_name = "xcbc-aes-caam",
1716
.blocksize = AES_BLOCK_SIZE,
1717
.template_ahash = {
1718
.init = ahash_init,
1719
.update = ahash_update,
1720
.final = ahash_final,
1721
.finup = ahash_finup,
1722
.digest = ahash_digest,
1723
.export = ahash_export,
1724
.import = ahash_import,
1725
.setkey = axcbc_setkey,
1726
.halg = {
1727
.digestsize = AES_BLOCK_SIZE,
1728
.statesize = sizeof(struct caam_export_state),
1729
},
1730
},
1731
.alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XCBC_MAC,
1732
}, {
1733
.hmac_name = "cmac(aes)",
1734
.hmac_driver_name = "cmac-aes-caam",
1735
.blocksize = AES_BLOCK_SIZE,
1736
.template_ahash = {
1737
.init = ahash_init,
1738
.update = ahash_update,
1739
.final = ahash_final,
1740
.finup = ahash_finup,
1741
.digest = ahash_digest,
1742
.export = ahash_export,
1743
.import = ahash_import,
1744
.setkey = acmac_setkey,
1745
.halg = {
1746
.digestsize = AES_BLOCK_SIZE,
1747
.statesize = sizeof(struct caam_export_state),
1748
},
1749
},
1750
.alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CMAC,
1751
},
1752
};
1753
1754
struct caam_hash_alg {
1755
struct list_head entry;
1756
int alg_type;
1757
bool is_hmac;
1758
struct ahash_engine_alg ahash_alg;
1759
};
1760
1761
static int caam_hash_cra_init(struct crypto_tfm *tfm)
1762
{
1763
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
1764
struct crypto_alg *base = tfm->__crt_alg;
1765
struct hash_alg_common *halg =
1766
container_of(base, struct hash_alg_common, base);
1767
struct ahash_alg *alg =
1768
container_of(halg, struct ahash_alg, halg);
1769
struct caam_hash_alg *caam_hash =
1770
container_of(alg, struct caam_hash_alg, ahash_alg.base);
1771
struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash);
1772
/* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
1773
static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
1774
HASH_MSG_LEN + SHA1_DIGEST_SIZE,
1775
HASH_MSG_LEN + 32,
1776
HASH_MSG_LEN + SHA256_DIGEST_SIZE,
1777
HASH_MSG_LEN + 64,
1778
HASH_MSG_LEN + SHA512_DIGEST_SIZE };
1779
const size_t sh_desc_update_offset = offsetof(struct caam_hash_ctx,
1780
sh_desc_update);
1781
dma_addr_t dma_addr;
1782
struct caam_drv_private *priv;
1783
1784
/*
1785
* Get a Job ring from Job Ring driver to ensure in-order
1786
* crypto request processing per tfm
1787
*/
1788
ctx->jrdev = caam_jr_alloc();
1789
if (IS_ERR(ctx->jrdev)) {
1790
pr_err("Job Ring Device allocation for transform failed\n");
1791
return PTR_ERR(ctx->jrdev);
1792
}
1793
1794
priv = dev_get_drvdata(ctx->jrdev->parent);
1795
1796
if (is_xcbc_aes(caam_hash->alg_type)) {
1797
ctx->dir = DMA_TO_DEVICE;
1798
ctx->key_dir = DMA_BIDIRECTIONAL;
1799
ctx->adata.algtype = OP_TYPE_CLASS1_ALG | caam_hash->alg_type;
1800
ctx->ctx_len = 48;
1801
} else if (is_cmac_aes(caam_hash->alg_type)) {
1802
ctx->dir = DMA_TO_DEVICE;
1803
ctx->key_dir = DMA_NONE;
1804
ctx->adata.algtype = OP_TYPE_CLASS1_ALG | caam_hash->alg_type;
1805
ctx->ctx_len = 32;
1806
} else {
1807
if (priv->era >= 6) {
1808
ctx->dir = DMA_BIDIRECTIONAL;
1809
ctx->key_dir = caam_hash->is_hmac ? DMA_TO_DEVICE : DMA_NONE;
1810
} else {
1811
ctx->dir = DMA_TO_DEVICE;
1812
ctx->key_dir = DMA_NONE;
1813
}
1814
ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
1815
ctx->ctx_len = runninglen[(ctx->adata.algtype &
1816
OP_ALG_ALGSEL_SUBMASK) >>
1817
OP_ALG_ALGSEL_SHIFT];
1818
}
1819
1820
if (ctx->key_dir != DMA_NONE) {
1821
ctx->adata.key_dma = dma_map_single_attrs(ctx->jrdev, ctx->key,
1822
ARRAY_SIZE(ctx->key),
1823
ctx->key_dir,
1824
DMA_ATTR_SKIP_CPU_SYNC);
1825
if (dma_mapping_error(ctx->jrdev, ctx->adata.key_dma)) {
1826
dev_err(ctx->jrdev, "unable to map key\n");
1827
caam_jr_free(ctx->jrdev);
1828
return -ENOMEM;
1829
}
1830
}
1831
1832
dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_update,
1833
offsetof(struct caam_hash_ctx, key) -
1834
sh_desc_update_offset,
1835
ctx->dir, DMA_ATTR_SKIP_CPU_SYNC);
1836
if (dma_mapping_error(ctx->jrdev, dma_addr)) {
1837
dev_err(ctx->jrdev, "unable to map shared descriptors\n");
1838
1839
if (ctx->key_dir != DMA_NONE)
1840
dma_unmap_single_attrs(ctx->jrdev, ctx->adata.key_dma,
1841
ARRAY_SIZE(ctx->key),
1842
ctx->key_dir,
1843
DMA_ATTR_SKIP_CPU_SYNC);
1844
1845
caam_jr_free(ctx->jrdev);
1846
return -ENOMEM;
1847
}
1848
1849
ctx->sh_desc_update_dma = dma_addr;
1850
ctx->sh_desc_update_first_dma = dma_addr +
1851
offsetof(struct caam_hash_ctx,
1852
sh_desc_update_first) -
1853
sh_desc_update_offset;
1854
ctx->sh_desc_fin_dma = dma_addr + offsetof(struct caam_hash_ctx,
1855
sh_desc_fin) -
1856
sh_desc_update_offset;
1857
ctx->sh_desc_digest_dma = dma_addr + offsetof(struct caam_hash_ctx,
1858
sh_desc_digest) -
1859
sh_desc_update_offset;
1860
1861
crypto_ahash_set_reqsize_dma(ahash, sizeof(struct caam_hash_state));
1862
1863
/*
1864
* For keyed hash algorithms shared descriptors
1865
* will be created later in setkey() callback
1866
*/
1867
return caam_hash->is_hmac ? 0 : ahash_set_sh_desc(ahash);
1868
}
1869
1870
static void caam_hash_cra_exit(struct crypto_tfm *tfm)
1871
{
1872
struct caam_hash_ctx *ctx = crypto_tfm_ctx_dma(tfm);
1873
1874
dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_update_dma,
1875
offsetof(struct caam_hash_ctx, key) -
1876
offsetof(struct caam_hash_ctx, sh_desc_update),
1877
ctx->dir, DMA_ATTR_SKIP_CPU_SYNC);
1878
if (ctx->key_dir != DMA_NONE)
1879
dma_unmap_single_attrs(ctx->jrdev, ctx->adata.key_dma,
1880
ARRAY_SIZE(ctx->key), ctx->key_dir,
1881
DMA_ATTR_SKIP_CPU_SYNC);
1882
caam_jr_free(ctx->jrdev);
1883
}
1884
1885
void caam_algapi_hash_exit(void)
1886
{
1887
struct caam_hash_alg *t_alg, *n;
1888
1889
if (!hash_list.next)
1890
return;
1891
1892
list_for_each_entry_safe(t_alg, n, &hash_list, entry) {
1893
crypto_engine_unregister_ahash(&t_alg->ahash_alg);
1894
list_del(&t_alg->entry);
1895
kfree(t_alg);
1896
}
1897
}
1898
1899
static struct caam_hash_alg *
1900
caam_hash_alloc(struct caam_hash_template *template,
1901
bool keyed)
1902
{
1903
struct caam_hash_alg *t_alg;
1904
struct ahash_alg *halg;
1905
struct crypto_alg *alg;
1906
1907
t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
1908
if (!t_alg)
1909
return ERR_PTR(-ENOMEM);
1910
1911
t_alg->ahash_alg.base = template->template_ahash;
1912
halg = &t_alg->ahash_alg.base;
1913
alg = &halg->halg.base;
1914
1915
if (keyed) {
1916
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
1917
template->hmac_name);
1918
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1919
template->hmac_driver_name);
1920
t_alg->is_hmac = true;
1921
} else {
1922
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
1923
template->name);
1924
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1925
template->driver_name);
1926
halg->setkey = NULL;
1927
t_alg->is_hmac = false;
1928
}
1929
alg->cra_module = THIS_MODULE;
1930
alg->cra_init = caam_hash_cra_init;
1931
alg->cra_exit = caam_hash_cra_exit;
1932
alg->cra_ctxsize = sizeof(struct caam_hash_ctx) + crypto_dma_padding();
1933
alg->cra_priority = CAAM_CRA_PRIORITY;
1934
alg->cra_blocksize = template->blocksize;
1935
alg->cra_alignmask = 0;
1936
alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
1937
1938
t_alg->alg_type = template->alg_type;
1939
t_alg->ahash_alg.op.do_one_request = ahash_do_one_req;
1940
1941
return t_alg;
1942
}
1943
1944
int caam_algapi_hash_init(struct device *ctrldev)
1945
{
1946
int i = 0, err = 0;
1947
struct caam_drv_private *priv = dev_get_drvdata(ctrldev);
1948
unsigned int md_limit = SHA512_DIGEST_SIZE;
1949
u32 md_inst, md_vid;
1950
1951
/*
1952
* Register crypto algorithms the device supports. First, identify
1953
* presence and attributes of MD block.
1954
*/
1955
if (priv->era < 10) {
1956
struct caam_perfmon __iomem *perfmon = &priv->jr[0]->perfmon;
1957
1958
md_vid = (rd_reg32(&perfmon->cha_id_ls) &
1959
CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT;
1960
md_inst = (rd_reg32(&perfmon->cha_num_ls) &
1961
CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT;
1962
} else {
1963
u32 mdha = rd_reg32(&priv->jr[0]->vreg.mdha);
1964
1965
md_vid = (mdha & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT;
1966
md_inst = mdha & CHA_VER_NUM_MASK;
1967
}
1968
1969
/*
1970
* Skip registration of any hashing algorithms if MD block
1971
* is not present.
1972
*/
1973
if (!md_inst)
1974
return 0;
1975
1976
/* Limit digest size based on LP256 */
1977
if (md_vid == CHA_VER_VID_MD_LP256)
1978
md_limit = SHA256_DIGEST_SIZE;
1979
1980
INIT_LIST_HEAD(&hash_list);
1981
1982
/* register crypto algorithms the device supports */
1983
for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
1984
struct caam_hash_alg *t_alg;
1985
struct caam_hash_template *alg = driver_hash + i;
1986
1987
/* If MD size is not supported by device, skip registration */
1988
if (is_mdha(alg->alg_type) &&
1989
alg->template_ahash.halg.digestsize > md_limit)
1990
continue;
1991
1992
/* register hmac version */
1993
t_alg = caam_hash_alloc(alg, true);
1994
if (IS_ERR(t_alg)) {
1995
err = PTR_ERR(t_alg);
1996
pr_warn("%s alg allocation failed\n",
1997
alg->hmac_driver_name);
1998
continue;
1999
}
2000
2001
err = crypto_engine_register_ahash(&t_alg->ahash_alg);
2002
if (err) {
2003
pr_warn("%s alg registration failed: %d\n",
2004
t_alg->ahash_alg.base.halg.base.cra_driver_name,
2005
err);
2006
kfree(t_alg);
2007
} else
2008
list_add_tail(&t_alg->entry, &hash_list);
2009
2010
if ((alg->alg_type & OP_ALG_ALGSEL_MASK) == OP_ALG_ALGSEL_AES)
2011
continue;
2012
2013
/* register unkeyed version */
2014
t_alg = caam_hash_alloc(alg, false);
2015
if (IS_ERR(t_alg)) {
2016
err = PTR_ERR(t_alg);
2017
pr_warn("%s alg allocation failed\n", alg->driver_name);
2018
continue;
2019
}
2020
2021
err = crypto_engine_register_ahash(&t_alg->ahash_alg);
2022
if (err) {
2023
pr_warn("%s alg registration failed: %d\n",
2024
t_alg->ahash_alg.base.halg.base.cra_driver_name,
2025
err);
2026
kfree(t_alg);
2027
} else
2028
list_add_tail(&t_alg->entry, &hash_list);
2029
}
2030
2031
return err;
2032
}
2033
2034