Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/caam/qi.c
26288 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* CAAM/SEC 4.x QI transport/backend driver
4
* Queue Interface backend functionality
5
*
6
* Copyright 2013-2016 Freescale Semiconductor, Inc.
7
* Copyright 2016-2017, 2019-2020 NXP
8
*/
9
10
#include <linux/cpumask.h>
11
#include <linux/device.h>
12
#include <linux/dma-mapping.h>
13
#include <linux/kernel.h>
14
#include <linux/kthread.h>
15
#include <linux/netdevice.h>
16
#include <linux/platform_device.h>
17
#include <linux/slab.h>
18
#include <linux/string.h>
19
#include <soc/fsl/qman.h>
20
21
#include "debugfs.h"
22
#include "regs.h"
23
#include "qi.h"
24
#include "desc.h"
25
#include "intern.h"
26
#include "desc_constr.h"
27
28
#define PREHDR_RSLS_SHIFT 31
29
#define PREHDR_ABS BIT(25)
30
31
/*
32
* Use a reasonable backlog of frames (per CPU) as congestion threshold,
33
* so that resources used by the in-flight buffers do not become a memory hog.
34
*/
35
#define MAX_RSP_FQ_BACKLOG_PER_CPU 256
36
37
#define CAAM_QI_ENQUEUE_RETRIES 10000
38
39
#define CAAM_NAPI_WEIGHT 63
40
41
/*
42
* caam_napi - struct holding CAAM NAPI-related params
43
* @irqtask: IRQ task for QI backend
44
* @p: QMan portal
45
*/
46
struct caam_napi {
47
struct napi_struct irqtask;
48
struct qman_portal *p;
49
};
50
51
/*
52
* caam_qi_pcpu_priv - percpu private data structure to main list of pending
53
* responses expected on each cpu.
54
* @caam_napi: CAAM NAPI params
55
* @net_dev: netdev used by NAPI
56
* @rsp_fq: response FQ from CAAM
57
*/
58
struct caam_qi_pcpu_priv {
59
struct caam_napi caam_napi;
60
struct net_device *net_dev;
61
struct qman_fq *rsp_fq;
62
} ____cacheline_aligned;
63
64
static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
65
static DEFINE_PER_CPU(int, last_cpu);
66
67
/*
68
* caam_qi_priv - CAAM QI backend private params
69
* @cgr: QMan congestion group
70
*/
71
struct caam_qi_priv {
72
struct qman_cgr cgr;
73
};
74
75
static struct caam_qi_priv qipriv ____cacheline_aligned;
76
77
/*
78
* This is written by only one core - the one that initialized the CGR - and
79
* read by multiple cores (all the others).
80
*/
81
bool caam_congested __read_mostly;
82
EXPORT_SYMBOL(caam_congested);
83
84
/*
85
* This is a cache of buffers, from which the users of CAAM QI driver
86
* can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
87
* doing malloc on the hotpath.
88
* NOTE: A more elegant solution would be to have some headroom in the frames
89
* being processed. This could be added by the dpaa-ethernet driver.
90
* This would pose a problem for userspace application processing which
91
* cannot know of this limitation. So for now, this will work.
92
* NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
93
*/
94
static struct kmem_cache *qi_cache;
95
96
static void *caam_iova_to_virt(struct iommu_domain *domain,
97
dma_addr_t iova_addr)
98
{
99
phys_addr_t phys_addr;
100
101
phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
102
103
return phys_to_virt(phys_addr);
104
}
105
106
int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
107
{
108
struct qm_fd fd;
109
dma_addr_t addr;
110
int ret;
111
int num_retries = 0;
112
113
qm_fd_clear_fd(&fd);
114
qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
115
116
addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
117
DMA_BIDIRECTIONAL);
118
if (dma_mapping_error(qidev, addr)) {
119
dev_err(qidev, "DMA mapping error for QI enqueue request\n");
120
return -EIO;
121
}
122
qm_fd_addr_set64(&fd, addr);
123
124
do {
125
refcount_inc(&req->drv_ctx->refcnt);
126
ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
127
if (likely(!ret))
128
return 0;
129
130
refcount_dec(&req->drv_ctx->refcnt);
131
if (ret != -EBUSY)
132
break;
133
num_retries++;
134
} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
135
136
dev_err(qidev, "qman_enqueue failed: %d\n", ret);
137
138
return ret;
139
}
140
EXPORT_SYMBOL(caam_qi_enqueue);
141
142
static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
143
const union qm_mr_entry *msg)
144
{
145
const struct qm_fd *fd;
146
struct caam_drv_req *drv_req;
147
struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev->dev);
148
struct caam_drv_private *priv = dev_get_drvdata(qidev);
149
150
fd = &msg->ern.fd;
151
152
drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
153
if (!drv_req) {
154
dev_err(qidev,
155
"Can't find original request for CAAM response\n");
156
return;
157
}
158
159
refcount_dec(&drv_req->drv_ctx->refcnt);
160
161
if (qm_fd_get_format(fd) != qm_fd_compound) {
162
dev_err(qidev, "Non-compound FD from CAAM\n");
163
return;
164
}
165
166
dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
167
sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
168
169
if (fd->status)
170
drv_req->cbk(drv_req, be32_to_cpu(fd->status));
171
else
172
drv_req->cbk(drv_req, JRSTA_SSRC_QI);
173
}
174
175
static struct qman_fq *create_caam_req_fq(struct device *qidev,
176
struct qman_fq *rsp_fq,
177
dma_addr_t hwdesc,
178
int fq_sched_flag)
179
{
180
int ret;
181
struct qman_fq *req_fq;
182
struct qm_mcc_initfq opts;
183
184
req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
185
if (!req_fq)
186
return ERR_PTR(-ENOMEM);
187
188
req_fq->cb.ern = caam_fq_ern_cb;
189
req_fq->cb.fqs = NULL;
190
191
ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
192
QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
193
if (ret) {
194
dev_err(qidev, "Failed to create session req FQ\n");
195
goto create_req_fq_fail;
196
}
197
198
memset(&opts, 0, sizeof(opts));
199
opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
200
QM_INITFQ_WE_CONTEXTB |
201
QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
202
opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
203
qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
204
opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
205
qm_fqd_context_a_set64(&opts.fqd, hwdesc);
206
opts.fqd.cgid = qipriv.cgr.cgrid;
207
208
ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
209
if (ret) {
210
dev_err(qidev, "Failed to init session req FQ\n");
211
goto init_req_fq_fail;
212
}
213
214
dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
215
smp_processor_id());
216
return req_fq;
217
218
init_req_fq_fail:
219
qman_destroy_fq(req_fq);
220
create_req_fq_fail:
221
kfree(req_fq);
222
return ERR_PTR(ret);
223
}
224
225
static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
226
{
227
int ret;
228
229
ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
230
QMAN_VOLATILE_FLAG_FINISH,
231
QM_VDQCR_PRECEDENCE_VDQCR |
232
QM_VDQCR_NUMFRAMES_TILLEMPTY);
233
if (ret) {
234
dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
235
return ret;
236
}
237
238
do {
239
struct qman_portal *p;
240
241
p = qman_get_affine_portal(smp_processor_id());
242
qman_p_poll_dqrr(p, 16);
243
} while (fq->flags & QMAN_FQ_STATE_NE);
244
245
return 0;
246
}
247
248
static int kill_fq(struct device *qidev, struct qman_fq *fq)
249
{
250
u32 flags;
251
int ret;
252
253
ret = qman_retire_fq(fq, &flags);
254
if (ret < 0) {
255
dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
256
return ret;
257
}
258
259
if (!ret)
260
goto empty_fq;
261
262
/* Async FQ retirement condition */
263
if (ret == 1) {
264
/* Retry till FQ gets in retired state */
265
do {
266
msleep(20);
267
} while (fq->state != qman_fq_state_retired);
268
269
WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
270
WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
271
}
272
273
empty_fq:
274
if (fq->flags & QMAN_FQ_STATE_NE) {
275
ret = empty_retired_fq(qidev, fq);
276
if (ret) {
277
dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
278
fq->fqid);
279
return ret;
280
}
281
}
282
283
ret = qman_oos_fq(fq);
284
if (ret)
285
dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
286
287
qman_destroy_fq(fq);
288
kfree(fq);
289
290
return ret;
291
}
292
293
static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx)
294
{
295
int ret;
296
int retries = 10;
297
struct qm_mcr_queryfq_np np;
298
299
/* Wait till the older CAAM FQ get empty */
300
do {
301
ret = qman_query_fq_np(fq, &np);
302
if (ret)
303
return ret;
304
305
if (!qm_mcr_np_get(&np, frm_cnt))
306
break;
307
308
msleep(20);
309
} while (1);
310
311
/* Wait until pending jobs from this FQ are processed by CAAM */
312
do {
313
if (refcount_read(&drv_ctx->refcnt) == 1)
314
break;
315
316
msleep(20);
317
} while (--retries);
318
319
if (!retries)
320
dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n",
321
refcount_read(&drv_ctx->refcnt), fq->fqid);
322
323
return 0;
324
}
325
326
int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
327
{
328
int ret;
329
u32 num_words;
330
struct qman_fq *new_fq, *old_fq;
331
struct device *qidev = drv_ctx->qidev;
332
333
num_words = desc_len(sh_desc);
334
if (num_words > MAX_SDLEN) {
335
dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
336
return -EINVAL;
337
}
338
339
/* Note down older req FQ */
340
old_fq = drv_ctx->req_fq;
341
342
/* Create a new req FQ in parked state */
343
new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
344
drv_ctx->context_a, 0);
345
if (IS_ERR(new_fq)) {
346
dev_err(qidev, "FQ allocation for shdesc update failed\n");
347
return PTR_ERR(new_fq);
348
}
349
350
/* Hook up new FQ to context so that new requests keep queuing */
351
drv_ctx->req_fq = new_fq;
352
353
/* Empty and remove the older FQ */
354
ret = empty_caam_fq(old_fq, drv_ctx);
355
if (ret) {
356
dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
357
358
/* We can revert to older FQ */
359
drv_ctx->req_fq = old_fq;
360
361
if (kill_fq(qidev, new_fq))
362
dev_warn(qidev, "New CAAM FQ kill failed\n");
363
364
return ret;
365
}
366
367
/*
368
* Re-initialise pre-header. Set RSLS and SDLEN.
369
* Update the shared descriptor for driver context.
370
*/
371
drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
372
num_words);
373
drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
374
memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
375
dma_sync_single_for_device(qidev, drv_ctx->context_a,
376
sizeof(drv_ctx->sh_desc) +
377
sizeof(drv_ctx->prehdr),
378
DMA_BIDIRECTIONAL);
379
380
/* Put the new FQ in scheduled state */
381
ret = qman_schedule_fq(new_fq);
382
if (ret) {
383
dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
384
385
/*
386
* We can kill new FQ and revert to old FQ.
387
* Since the desc is already modified, it is success case
388
*/
389
390
drv_ctx->req_fq = old_fq;
391
392
if (kill_fq(qidev, new_fq))
393
dev_warn(qidev, "New CAAM FQ kill failed\n");
394
} else if (kill_fq(qidev, old_fq)) {
395
dev_warn(qidev, "Old CAAM FQ kill failed\n");
396
}
397
398
return 0;
399
}
400
EXPORT_SYMBOL(caam_drv_ctx_update);
401
402
struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
403
int *cpu,
404
u32 *sh_desc)
405
{
406
size_t size;
407
u32 num_words;
408
dma_addr_t hwdesc;
409
struct caam_drv_ctx *drv_ctx;
410
const cpumask_t *cpus = qman_affine_cpus();
411
412
num_words = desc_len(sh_desc);
413
if (num_words > MAX_SDLEN) {
414
dev_err(qidev, "Invalid descriptor len: %d words\n",
415
num_words);
416
return ERR_PTR(-EINVAL);
417
}
418
419
drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
420
if (!drv_ctx)
421
return ERR_PTR(-ENOMEM);
422
423
/*
424
* Initialise pre-header - set RSLS and SDLEN - and shared descriptor
425
* and dma-map them.
426
*/
427
drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
428
num_words);
429
drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
430
memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
431
size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
432
hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
433
DMA_BIDIRECTIONAL);
434
if (dma_mapping_error(qidev, hwdesc)) {
435
dev_err(qidev, "DMA map error for preheader + shdesc\n");
436
kfree(drv_ctx);
437
return ERR_PTR(-ENOMEM);
438
}
439
drv_ctx->context_a = hwdesc;
440
441
/* If given CPU does not own the portal, choose another one that does */
442
if (!cpumask_test_cpu(*cpu, cpus)) {
443
int *pcpu = &get_cpu_var(last_cpu);
444
445
*pcpu = cpumask_next_wrap(*pcpu, cpus);
446
*cpu = *pcpu;
447
put_cpu_var(last_cpu);
448
}
449
drv_ctx->cpu = *cpu;
450
451
/* Find response FQ hooked with this CPU */
452
drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
453
454
/* Attach request FQ */
455
drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
456
QMAN_INITFQ_FLAG_SCHED);
457
if (IS_ERR(drv_ctx->req_fq)) {
458
dev_err(qidev, "create_caam_req_fq failed\n");
459
dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
460
kfree(drv_ctx);
461
return ERR_PTR(-ENOMEM);
462
}
463
464
/* init reference counter used to track references to request FQ */
465
refcount_set(&drv_ctx->refcnt, 1);
466
467
drv_ctx->qidev = qidev;
468
return drv_ctx;
469
}
470
EXPORT_SYMBOL(caam_drv_ctx_init);
471
472
void *qi_cache_alloc(gfp_t flags)
473
{
474
return kmem_cache_alloc(qi_cache, flags);
475
}
476
EXPORT_SYMBOL(qi_cache_alloc);
477
478
void qi_cache_free(void *obj)
479
{
480
kmem_cache_free(qi_cache, obj);
481
}
482
EXPORT_SYMBOL(qi_cache_free);
483
484
static int caam_qi_poll(struct napi_struct *napi, int budget)
485
{
486
struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
487
488
int cleaned = qman_p_poll_dqrr(np->p, budget);
489
490
if (cleaned < budget) {
491
napi_complete(napi);
492
qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
493
}
494
495
return cleaned;
496
}
497
498
void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
499
{
500
if (IS_ERR_OR_NULL(drv_ctx))
501
return;
502
503
/* Remove request FQ */
504
if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
505
dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
506
507
dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
508
sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
509
DMA_BIDIRECTIONAL);
510
kfree(drv_ctx);
511
}
512
EXPORT_SYMBOL(caam_drv_ctx_rel);
513
514
static void caam_qi_shutdown(void *data)
515
{
516
int i;
517
struct device *qidev = data;
518
struct caam_qi_priv *priv = &qipriv;
519
const cpumask_t *cpus = qman_affine_cpus();
520
521
for_each_cpu(i, cpus) {
522
struct napi_struct *irqtask;
523
524
irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
525
napi_disable(irqtask);
526
netif_napi_del(irqtask);
527
528
if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
529
dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
530
free_netdev(per_cpu(pcpu_qipriv.net_dev, i));
531
}
532
533
qman_delete_cgr_safe(&priv->cgr);
534
qman_release_cgrid(priv->cgr.cgrid);
535
536
kmem_cache_destroy(qi_cache);
537
}
538
539
static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
540
{
541
caam_congested = congested;
542
543
if (congested) {
544
caam_debugfs_qi_congested();
545
546
pr_debug_ratelimited("CAAM entered congestion\n");
547
548
} else {
549
pr_debug_ratelimited("CAAM exited congestion\n");
550
}
551
}
552
553
static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np,
554
bool sched_napi)
555
{
556
if (sched_napi) {
557
/* Disable QMan IRQ source and invoke NAPI */
558
qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
559
np->p = p;
560
napi_schedule(&np->irqtask);
561
return 1;
562
}
563
return 0;
564
}
565
566
static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
567
struct qman_fq *rsp_fq,
568
const struct qm_dqrr_entry *dqrr,
569
bool sched_napi)
570
{
571
struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
572
struct caam_drv_req *drv_req;
573
const struct qm_fd *fd;
574
struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev->dev);
575
struct caam_drv_private *priv = dev_get_drvdata(qidev);
576
u32 status;
577
578
if (caam_qi_napi_schedule(p, caam_napi, sched_napi))
579
return qman_cb_dqrr_stop;
580
581
fd = &dqrr->fd;
582
583
drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
584
if (unlikely(!drv_req)) {
585
dev_err(qidev,
586
"Can't find original request for caam response\n");
587
return qman_cb_dqrr_consume;
588
}
589
590
refcount_dec(&drv_req->drv_ctx->refcnt);
591
592
status = be32_to_cpu(fd->status);
593
if (unlikely(status)) {
594
u32 ssrc = status & JRSTA_SSRC_MASK;
595
u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
596
597
if (ssrc != JRSTA_SSRC_CCB_ERROR ||
598
err_id != JRSTA_CCBERR_ERRID_ICVCHK)
599
dev_err_ratelimited(qidev,
600
"Error: %#x in CAAM response FD\n",
601
status);
602
}
603
604
if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
605
dev_err(qidev, "Non-compound FD from CAAM\n");
606
return qman_cb_dqrr_consume;
607
}
608
609
dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
610
sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
611
612
drv_req->cbk(drv_req, status);
613
return qman_cb_dqrr_consume;
614
}
615
616
static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
617
{
618
struct qm_mcc_initfq opts;
619
struct qman_fq *fq;
620
int ret;
621
622
fq = kzalloc(sizeof(*fq), GFP_KERNEL);
623
if (!fq)
624
return -ENOMEM;
625
626
fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
627
628
ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
629
QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
630
if (ret) {
631
dev_err(qidev, "Rsp FQ create failed\n");
632
kfree(fq);
633
return -ENODEV;
634
}
635
636
memset(&opts, 0, sizeof(opts));
637
opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
638
QM_INITFQ_WE_CONTEXTB |
639
QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
640
opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
641
QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
642
qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
643
opts.fqd.cgid = qipriv.cgr.cgrid;
644
opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX |
645
QM_STASHING_EXCL_DATA;
646
qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
647
648
ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
649
if (ret) {
650
dev_err(qidev, "Rsp FQ init failed\n");
651
kfree(fq);
652
return -ENODEV;
653
}
654
655
per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
656
657
dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
658
return 0;
659
}
660
661
static int init_cgr(struct device *qidev)
662
{
663
int ret;
664
struct qm_mcc_initcgr opts;
665
const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
666
MAX_RSP_FQ_BACKLOG_PER_CPU;
667
668
ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
669
if (ret) {
670
dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
671
return ret;
672
}
673
674
qipriv.cgr.cb = cgr_cb;
675
memset(&opts, 0, sizeof(opts));
676
opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
677
QM_CGR_WE_MODE);
678
opts.cgr.cscn_en = QM_CGR_EN;
679
opts.cgr.mode = QMAN_CGR_MODE_FRAME;
680
qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
681
682
ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
683
if (ret) {
684
dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
685
qipriv.cgr.cgrid);
686
return ret;
687
}
688
689
dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
690
return 0;
691
}
692
693
static int alloc_rsp_fqs(struct device *qidev)
694
{
695
int ret, i;
696
const cpumask_t *cpus = qman_affine_cpus();
697
698
/*Now create response FQs*/
699
for_each_cpu(i, cpus) {
700
ret = alloc_rsp_fq_cpu(qidev, i);
701
if (ret) {
702
dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
703
return ret;
704
}
705
}
706
707
return 0;
708
}
709
710
static void free_rsp_fqs(void)
711
{
712
int i;
713
const cpumask_t *cpus = qman_affine_cpus();
714
715
for_each_cpu(i, cpus)
716
kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
717
}
718
719
static void free_caam_qi_pcpu_netdev(const cpumask_t *cpus)
720
{
721
struct caam_qi_pcpu_priv *priv;
722
int i;
723
724
for_each_cpu(i, cpus) {
725
priv = per_cpu_ptr(&pcpu_qipriv, i);
726
free_netdev(priv->net_dev);
727
}
728
}
729
730
int caam_qi_init(struct platform_device *caam_pdev)
731
{
732
int err, i;
733
struct device *qidev = &caam_pdev->dev;
734
struct caam_drv_private *ctrlpriv;
735
const cpumask_t *cpus = qman_affine_cpus();
736
cpumask_var_t clean_mask;
737
738
err = -ENOMEM;
739
if (!zalloc_cpumask_var(&clean_mask, GFP_KERNEL))
740
goto fail_cpumask;
741
742
ctrlpriv = dev_get_drvdata(qidev);
743
744
/* Initialize the congestion detection */
745
err = init_cgr(qidev);
746
if (err) {
747
dev_err(qidev, "CGR initialization failed: %d\n", err);
748
goto fail_cgr;
749
}
750
751
/* Initialise response FQs */
752
err = alloc_rsp_fqs(qidev);
753
if (err) {
754
dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
755
goto fail_fqs;
756
}
757
758
/*
759
* Enable the NAPI contexts on each of the core which has an affine
760
* portal.
761
*/
762
for_each_cpu(i, cpus) {
763
struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
764
struct caam_napi *caam_napi = &priv->caam_napi;
765
struct napi_struct *irqtask = &caam_napi->irqtask;
766
struct net_device *net_dev;
767
768
net_dev = alloc_netdev_dummy(0);
769
if (!net_dev) {
770
err = -ENOMEM;
771
goto fail;
772
}
773
cpumask_set_cpu(i, clean_mask);
774
priv->net_dev = net_dev;
775
net_dev->dev = *qidev;
776
777
netif_napi_add_tx_weight(net_dev, irqtask, caam_qi_poll,
778
CAAM_NAPI_WEIGHT);
779
780
napi_enable(irqtask);
781
}
782
783
qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE,
784
dma_get_cache_alignment(), 0, NULL);
785
if (!qi_cache) {
786
dev_err(qidev, "Can't allocate CAAM cache\n");
787
err = -ENOMEM;
788
goto fail;
789
}
790
791
caam_debugfs_qi_init(ctrlpriv);
792
793
err = devm_add_action_or_reset(qidev, caam_qi_shutdown, qidev);
794
if (err)
795
goto fail2;
796
797
dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
798
goto free_cpumask;
799
800
fail2:
801
kmem_cache_destroy(qi_cache);
802
fail:
803
free_caam_qi_pcpu_netdev(clean_mask);
804
fail_fqs:
805
free_rsp_fqs();
806
qman_delete_cgr_safe(&qipriv.cgr);
807
qman_release_cgrid(qipriv.cgr.cgrid);
808
fail_cgr:
809
free_cpumask:
810
free_cpumask_var(clean_mask);
811
fail_cpumask:
812
return err;
813
}
814
815