Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/cavium/nitrox/nitrox_hal.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include <linux/delay.h>
3
4
#include "nitrox_dev.h"
5
#include "nitrox_csr.h"
6
#include "nitrox_hal.h"
7
8
#define PLL_REF_CLK 50
9
#define MAX_CSR_RETRIES 10
10
11
/**
12
* emu_enable_cores - Enable EMU cluster cores.
13
* @ndev: NITROX device
14
*/
15
static void emu_enable_cores(struct nitrox_device *ndev)
16
{
17
union emu_se_enable emu_se;
18
union emu_ae_enable emu_ae;
19
int i;
20
21
/* AE cores 20 per cluster */
22
emu_ae.value = 0;
23
emu_ae.s.enable = 0xfffff;
24
25
/* SE cores 16 per cluster */
26
emu_se.value = 0;
27
emu_se.s.enable = 0xffff;
28
29
/* enable per cluster cores */
30
for (i = 0; i < NR_CLUSTERS; i++) {
31
nitrox_write_csr(ndev, EMU_AE_ENABLEX(i), emu_ae.value);
32
nitrox_write_csr(ndev, EMU_SE_ENABLEX(i), emu_se.value);
33
}
34
}
35
36
/**
37
* nitrox_config_emu_unit - configure EMU unit.
38
* @ndev: NITROX device
39
*/
40
void nitrox_config_emu_unit(struct nitrox_device *ndev)
41
{
42
union emu_wd_int_ena_w1s emu_wd_int;
43
union emu_ge_int_ena_w1s emu_ge_int;
44
u64 offset;
45
int i;
46
47
/* enable cores */
48
emu_enable_cores(ndev);
49
50
/* enable general error and watch dog interrupts */
51
emu_ge_int.value = 0;
52
emu_ge_int.s.se_ge = 0xffff;
53
emu_ge_int.s.ae_ge = 0xfffff;
54
emu_wd_int.value = 0;
55
emu_wd_int.s.se_wd = 1;
56
57
for (i = 0; i < NR_CLUSTERS; i++) {
58
offset = EMU_WD_INT_ENA_W1SX(i);
59
nitrox_write_csr(ndev, offset, emu_wd_int.value);
60
offset = EMU_GE_INT_ENA_W1SX(i);
61
nitrox_write_csr(ndev, offset, emu_ge_int.value);
62
}
63
}
64
65
static void reset_pkt_input_ring(struct nitrox_device *ndev, int ring)
66
{
67
union nps_pkt_in_instr_ctl pkt_in_ctl;
68
union nps_pkt_in_done_cnts pkt_in_cnts;
69
int max_retries = MAX_CSR_RETRIES;
70
u64 offset;
71
72
/* step 1: disable the ring, clear enable bit */
73
offset = NPS_PKT_IN_INSTR_CTLX(ring);
74
pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
75
pkt_in_ctl.s.enb = 0;
76
nitrox_write_csr(ndev, offset, pkt_in_ctl.value);
77
78
/* step 2: wait to clear [ENB] */
79
usleep_range(100, 150);
80
do {
81
pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
82
if (!pkt_in_ctl.s.enb)
83
break;
84
udelay(50);
85
} while (max_retries--);
86
87
/* step 3: clear done counts */
88
offset = NPS_PKT_IN_DONE_CNTSX(ring);
89
pkt_in_cnts.value = nitrox_read_csr(ndev, offset);
90
nitrox_write_csr(ndev, offset, pkt_in_cnts.value);
91
usleep_range(50, 100);
92
}
93
94
void enable_pkt_input_ring(struct nitrox_device *ndev, int ring)
95
{
96
union nps_pkt_in_instr_ctl pkt_in_ctl;
97
int max_retries = MAX_CSR_RETRIES;
98
u64 offset;
99
100
/* 64-byte instruction size */
101
offset = NPS_PKT_IN_INSTR_CTLX(ring);
102
pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
103
pkt_in_ctl.s.is64b = 1;
104
pkt_in_ctl.s.enb = 1;
105
nitrox_write_csr(ndev, offset, pkt_in_ctl.value);
106
107
/* wait for set [ENB] */
108
do {
109
pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
110
if (pkt_in_ctl.s.enb)
111
break;
112
udelay(50);
113
} while (max_retries--);
114
}
115
116
/**
117
* nitrox_config_pkt_input_rings - configure Packet Input Rings
118
* @ndev: NITROX device
119
*/
120
void nitrox_config_pkt_input_rings(struct nitrox_device *ndev)
121
{
122
int i;
123
124
for (i = 0; i < ndev->nr_queues; i++) {
125
struct nitrox_cmdq *cmdq = &ndev->pkt_inq[i];
126
union nps_pkt_in_instr_rsize pkt_in_rsize;
127
union nps_pkt_in_instr_baoff_dbell pkt_in_dbell;
128
u64 offset;
129
130
reset_pkt_input_ring(ndev, i);
131
132
/**
133
* step 4:
134
* configure ring base address 16-byte aligned,
135
* size and interrupt threshold.
136
*/
137
offset = NPS_PKT_IN_INSTR_BADDRX(i);
138
nitrox_write_csr(ndev, offset, cmdq->dma);
139
140
/* configure ring size */
141
offset = NPS_PKT_IN_INSTR_RSIZEX(i);
142
pkt_in_rsize.value = 0;
143
pkt_in_rsize.s.rsize = ndev->qlen;
144
nitrox_write_csr(ndev, offset, pkt_in_rsize.value);
145
146
/* set high threshold for pkt input ring interrupts */
147
offset = NPS_PKT_IN_INT_LEVELSX(i);
148
nitrox_write_csr(ndev, offset, 0xffffffff);
149
150
/* step 5: clear off door bell counts */
151
offset = NPS_PKT_IN_INSTR_BAOFF_DBELLX(i);
152
pkt_in_dbell.value = 0;
153
pkt_in_dbell.s.dbell = 0xffffffff;
154
nitrox_write_csr(ndev, offset, pkt_in_dbell.value);
155
156
/* enable the ring */
157
enable_pkt_input_ring(ndev, i);
158
}
159
}
160
161
static void reset_pkt_solicit_port(struct nitrox_device *ndev, int port)
162
{
163
union nps_pkt_slc_ctl pkt_slc_ctl;
164
union nps_pkt_slc_cnts pkt_slc_cnts;
165
int max_retries = MAX_CSR_RETRIES;
166
u64 offset;
167
168
/* step 1: disable slc port */
169
offset = NPS_PKT_SLC_CTLX(port);
170
pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
171
pkt_slc_ctl.s.enb = 0;
172
nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);
173
174
/* step 2 */
175
usleep_range(100, 150);
176
/* wait to clear [ENB] */
177
do {
178
pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
179
if (!pkt_slc_ctl.s.enb)
180
break;
181
udelay(50);
182
} while (max_retries--);
183
184
/* step 3: clear slc counters */
185
offset = NPS_PKT_SLC_CNTSX(port);
186
pkt_slc_cnts.value = nitrox_read_csr(ndev, offset);
187
nitrox_write_csr(ndev, offset, pkt_slc_cnts.value);
188
usleep_range(50, 100);
189
}
190
191
void enable_pkt_solicit_port(struct nitrox_device *ndev, int port)
192
{
193
union nps_pkt_slc_ctl pkt_slc_ctl;
194
int max_retries = MAX_CSR_RETRIES;
195
u64 offset;
196
197
offset = NPS_PKT_SLC_CTLX(port);
198
pkt_slc_ctl.value = 0;
199
pkt_slc_ctl.s.enb = 1;
200
/*
201
* 8 trailing 0x00 bytes will be added
202
* to the end of the outgoing packet.
203
*/
204
pkt_slc_ctl.s.z = 1;
205
/* enable response header */
206
pkt_slc_ctl.s.rh = 1;
207
nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);
208
209
/* wait to set [ENB] */
210
do {
211
pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
212
if (pkt_slc_ctl.s.enb)
213
break;
214
udelay(50);
215
} while (max_retries--);
216
}
217
218
static void config_pkt_solicit_port(struct nitrox_device *ndev, int port)
219
{
220
union nps_pkt_slc_int_levels pkt_slc_int;
221
u64 offset;
222
223
reset_pkt_solicit_port(ndev, port);
224
225
/* step 4: configure interrupt levels */
226
offset = NPS_PKT_SLC_INT_LEVELSX(port);
227
pkt_slc_int.value = 0;
228
/* time interrupt threshold */
229
pkt_slc_int.s.timet = 0x3fffff;
230
nitrox_write_csr(ndev, offset, pkt_slc_int.value);
231
232
/* enable the solicit port */
233
enable_pkt_solicit_port(ndev, port);
234
}
235
236
void nitrox_config_pkt_solicit_ports(struct nitrox_device *ndev)
237
{
238
int i;
239
240
for (i = 0; i < ndev->nr_queues; i++)
241
config_pkt_solicit_port(ndev, i);
242
}
243
244
/**
245
* enable_nps_core_interrupts - enable NPS core interrutps
246
* @ndev: NITROX device.
247
*
248
* This includes NPS core interrupts.
249
*/
250
static void enable_nps_core_interrupts(struct nitrox_device *ndev)
251
{
252
union nps_core_int_ena_w1s core_int;
253
254
/* NPS core interrutps */
255
core_int.value = 0;
256
core_int.s.host_wr_err = 1;
257
core_int.s.host_wr_timeout = 1;
258
core_int.s.exec_wr_timeout = 1;
259
core_int.s.npco_dma_malform = 1;
260
core_int.s.host_nps_wr_err = 1;
261
nitrox_write_csr(ndev, NPS_CORE_INT_ENA_W1S, core_int.value);
262
}
263
264
void nitrox_config_nps_core_unit(struct nitrox_device *ndev)
265
{
266
union nps_core_gbl_vfcfg core_gbl_vfcfg;
267
268
/* endian control information */
269
nitrox_write_csr(ndev, NPS_CORE_CONTROL, 1ULL);
270
271
/* disable ILK interface */
272
core_gbl_vfcfg.value = 0;
273
core_gbl_vfcfg.s.ilk_disable = 1;
274
core_gbl_vfcfg.s.cfg = __NDEV_MODE_PF;
275
nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, core_gbl_vfcfg.value);
276
277
/* enable nps core interrupts */
278
enable_nps_core_interrupts(ndev);
279
}
280
281
/**
282
* enable_nps_pkt_interrupts - enable NPS packet interrutps
283
* @ndev: NITROX device.
284
*
285
* This includes NPS packet in and slc interrupts.
286
*/
287
static void enable_nps_pkt_interrupts(struct nitrox_device *ndev)
288
{
289
/* NPS packet in ring interrupts */
290
nitrox_write_csr(ndev, NPS_PKT_IN_RERR_LO_ENA_W1S, (~0ULL));
291
nitrox_write_csr(ndev, NPS_PKT_IN_RERR_HI_ENA_W1S, (~0ULL));
292
nitrox_write_csr(ndev, NPS_PKT_IN_ERR_TYPE_ENA_W1S, (~0ULL));
293
/* NPS packet slc port interrupts */
294
nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_HI_ENA_W1S, (~0ULL));
295
nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_LO_ENA_W1S, (~0ULL));
296
nitrox_write_csr(ndev, NPS_PKT_SLC_ERR_TYPE_ENA_W1S, (~0uLL));
297
}
298
299
void nitrox_config_nps_pkt_unit(struct nitrox_device *ndev)
300
{
301
/* config input and solicit ports */
302
nitrox_config_pkt_input_rings(ndev);
303
nitrox_config_pkt_solicit_ports(ndev);
304
305
/* enable nps packet interrupts */
306
enable_nps_pkt_interrupts(ndev);
307
}
308
309
static void reset_aqm_ring(struct nitrox_device *ndev, int ring)
310
{
311
union aqmq_en aqmq_en_reg;
312
union aqmq_activity_stat activity_stat;
313
union aqmq_cmp_cnt cmp_cnt;
314
int max_retries = MAX_CSR_RETRIES;
315
u64 offset;
316
317
/* step 1: disable the queue */
318
offset = AQMQ_ENX(ring);
319
aqmq_en_reg.value = 0;
320
aqmq_en_reg.queue_enable = 0;
321
nitrox_write_csr(ndev, offset, aqmq_en_reg.value);
322
323
/* step 2: wait for AQMQ_ACTIVITY_STATX[QUEUE_ACTIVE] to clear */
324
usleep_range(100, 150);
325
offset = AQMQ_ACTIVITY_STATX(ring);
326
do {
327
activity_stat.value = nitrox_read_csr(ndev, offset);
328
if (!activity_stat.queue_active)
329
break;
330
udelay(50);
331
} while (max_retries--);
332
333
/* step 3: clear commands completed count */
334
offset = AQMQ_CMP_CNTX(ring);
335
cmp_cnt.value = nitrox_read_csr(ndev, offset);
336
nitrox_write_csr(ndev, offset, cmp_cnt.value);
337
usleep_range(50, 100);
338
}
339
340
void enable_aqm_ring(struct nitrox_device *ndev, int ring)
341
{
342
union aqmq_en aqmq_en_reg;
343
u64 offset;
344
345
offset = AQMQ_ENX(ring);
346
aqmq_en_reg.value = 0;
347
aqmq_en_reg.queue_enable = 1;
348
nitrox_write_csr(ndev, offset, aqmq_en_reg.value);
349
usleep_range(50, 100);
350
}
351
352
void nitrox_config_aqm_rings(struct nitrox_device *ndev)
353
{
354
int ring;
355
356
for (ring = 0; ring < ndev->nr_queues; ring++) {
357
struct nitrox_cmdq *cmdq = ndev->aqmq[ring];
358
union aqmq_drbl drbl;
359
union aqmq_qsz qsize;
360
union aqmq_cmp_thr cmp_thr;
361
u64 offset;
362
363
/* steps 1 - 3 */
364
reset_aqm_ring(ndev, ring);
365
366
/* step 4: clear doorbell count of ring */
367
offset = AQMQ_DRBLX(ring);
368
drbl.value = 0;
369
drbl.dbell_count = 0xFFFFFFFF;
370
nitrox_write_csr(ndev, offset, drbl.value);
371
372
/* step 5: configure host ring details */
373
374
/* set host address for next command of ring */
375
offset = AQMQ_NXT_CMDX(ring);
376
nitrox_write_csr(ndev, offset, 0ULL);
377
378
/* set host address of ring base */
379
offset = AQMQ_BADRX(ring);
380
nitrox_write_csr(ndev, offset, cmdq->dma);
381
382
/* set ring size */
383
offset = AQMQ_QSZX(ring);
384
qsize.value = 0;
385
qsize.host_queue_size = ndev->qlen;
386
nitrox_write_csr(ndev, offset, qsize.value);
387
388
/* set command completion threshold */
389
offset = AQMQ_CMP_THRX(ring);
390
cmp_thr.value = 0;
391
cmp_thr.commands_completed_threshold = 1;
392
nitrox_write_csr(ndev, offset, cmp_thr.value);
393
394
/* step 6: enable the queue */
395
enable_aqm_ring(ndev, ring);
396
}
397
}
398
399
static void enable_aqm_interrupts(struct nitrox_device *ndev)
400
{
401
/* clear interrupt enable bits */
402
nitrox_write_csr(ndev, AQM_DBELL_OVF_LO_ENA_W1S, (~0ULL));
403
nitrox_write_csr(ndev, AQM_DBELL_OVF_HI_ENA_W1S, (~0ULL));
404
nitrox_write_csr(ndev, AQM_DMA_RD_ERR_LO_ENA_W1S, (~0ULL));
405
nitrox_write_csr(ndev, AQM_DMA_RD_ERR_HI_ENA_W1S, (~0ULL));
406
nitrox_write_csr(ndev, AQM_EXEC_NA_LO_ENA_W1S, (~0ULL));
407
nitrox_write_csr(ndev, AQM_EXEC_NA_HI_ENA_W1S, (~0ULL));
408
nitrox_write_csr(ndev, AQM_EXEC_ERR_LO_ENA_W1S, (~0ULL));
409
nitrox_write_csr(ndev, AQM_EXEC_ERR_HI_ENA_W1S, (~0ULL));
410
}
411
412
void nitrox_config_aqm_unit(struct nitrox_device *ndev)
413
{
414
/* config aqm command queues */
415
nitrox_config_aqm_rings(ndev);
416
417
/* enable aqm interrupts */
418
enable_aqm_interrupts(ndev);
419
}
420
421
void nitrox_config_pom_unit(struct nitrox_device *ndev)
422
{
423
union pom_int_ena_w1s pom_int;
424
int i;
425
426
/* enable pom interrupts */
427
pom_int.value = 0;
428
pom_int.s.illegal_dport = 1;
429
nitrox_write_csr(ndev, POM_INT_ENA_W1S, pom_int.value);
430
431
/* enable perf counters */
432
for (i = 0; i < ndev->hw.se_cores; i++)
433
nitrox_write_csr(ndev, POM_PERF_CTL, BIT_ULL(i));
434
}
435
436
/**
437
* nitrox_config_rand_unit - enable NITROX random number unit
438
* @ndev: NITROX device
439
*/
440
void nitrox_config_rand_unit(struct nitrox_device *ndev)
441
{
442
union efl_rnm_ctl_status efl_rnm_ctl;
443
u64 offset;
444
445
offset = EFL_RNM_CTL_STATUS;
446
efl_rnm_ctl.value = nitrox_read_csr(ndev, offset);
447
efl_rnm_ctl.s.ent_en = 1;
448
efl_rnm_ctl.s.rng_en = 1;
449
nitrox_write_csr(ndev, offset, efl_rnm_ctl.value);
450
}
451
452
void nitrox_config_efl_unit(struct nitrox_device *ndev)
453
{
454
int i;
455
456
for (i = 0; i < NR_CLUSTERS; i++) {
457
union efl_core_int_ena_w1s efl_core_int;
458
u64 offset;
459
460
/* EFL core interrupts */
461
offset = EFL_CORE_INT_ENA_W1SX(i);
462
efl_core_int.value = 0;
463
efl_core_int.s.len_ovr = 1;
464
efl_core_int.s.d_left = 1;
465
efl_core_int.s.epci_decode_err = 1;
466
nitrox_write_csr(ndev, offset, efl_core_int.value);
467
468
offset = EFL_CORE_VF_ERR_INT0_ENA_W1SX(i);
469
nitrox_write_csr(ndev, offset, (~0ULL));
470
offset = EFL_CORE_VF_ERR_INT1_ENA_W1SX(i);
471
nitrox_write_csr(ndev, offset, (~0ULL));
472
}
473
}
474
475
void nitrox_config_bmi_unit(struct nitrox_device *ndev)
476
{
477
union bmi_ctl bmi_ctl;
478
union bmi_int_ena_w1s bmi_int_ena;
479
u64 offset;
480
481
/* no threshold limits for PCIe */
482
offset = BMI_CTL;
483
bmi_ctl.value = nitrox_read_csr(ndev, offset);
484
bmi_ctl.s.max_pkt_len = 0xff;
485
bmi_ctl.s.nps_free_thrsh = 0xff;
486
bmi_ctl.s.nps_hdrq_thrsh = 0x7a;
487
nitrox_write_csr(ndev, offset, bmi_ctl.value);
488
489
/* enable interrupts */
490
offset = BMI_INT_ENA_W1S;
491
bmi_int_ena.value = 0;
492
bmi_int_ena.s.max_len_err_nps = 1;
493
bmi_int_ena.s.pkt_rcv_err_nps = 1;
494
bmi_int_ena.s.fpf_undrrn = 1;
495
nitrox_write_csr(ndev, offset, bmi_int_ena.value);
496
}
497
498
void nitrox_config_bmo_unit(struct nitrox_device *ndev)
499
{
500
union bmo_ctl2 bmo_ctl2;
501
u64 offset;
502
503
/* no threshold limits for PCIe */
504
offset = BMO_CTL2;
505
bmo_ctl2.value = nitrox_read_csr(ndev, offset);
506
bmo_ctl2.s.nps_slc_buf_thrsh = 0xff;
507
nitrox_write_csr(ndev, offset, bmo_ctl2.value);
508
}
509
510
void invalidate_lbc(struct nitrox_device *ndev)
511
{
512
union lbc_inval_ctl lbc_ctl;
513
union lbc_inval_status lbc_stat;
514
int max_retries = MAX_CSR_RETRIES;
515
u64 offset;
516
517
/* invalidate LBC */
518
offset = LBC_INVAL_CTL;
519
lbc_ctl.value = nitrox_read_csr(ndev, offset);
520
lbc_ctl.s.cam_inval_start = 1;
521
nitrox_write_csr(ndev, offset, lbc_ctl.value);
522
523
offset = LBC_INVAL_STATUS;
524
do {
525
lbc_stat.value = nitrox_read_csr(ndev, offset);
526
if (lbc_stat.s.done)
527
break;
528
udelay(50);
529
} while (max_retries--);
530
}
531
532
void nitrox_config_lbc_unit(struct nitrox_device *ndev)
533
{
534
union lbc_int_ena_w1s lbc_int_ena;
535
u64 offset;
536
537
invalidate_lbc(ndev);
538
539
/* enable interrupts */
540
offset = LBC_INT_ENA_W1S;
541
lbc_int_ena.value = 0;
542
lbc_int_ena.s.dma_rd_err = 1;
543
lbc_int_ena.s.over_fetch_err = 1;
544
lbc_int_ena.s.cam_inval_abort = 1;
545
lbc_int_ena.s.cam_hard_err = 1;
546
nitrox_write_csr(ndev, offset, lbc_int_ena.value);
547
548
offset = LBC_PLM_VF1_64_INT_ENA_W1S;
549
nitrox_write_csr(ndev, offset, (~0ULL));
550
offset = LBC_PLM_VF65_128_INT_ENA_W1S;
551
nitrox_write_csr(ndev, offset, (~0ULL));
552
553
offset = LBC_ELM_VF1_64_INT_ENA_W1S;
554
nitrox_write_csr(ndev, offset, (~0ULL));
555
offset = LBC_ELM_VF65_128_INT_ENA_W1S;
556
nitrox_write_csr(ndev, offset, (~0ULL));
557
}
558
559
void config_nps_core_vfcfg_mode(struct nitrox_device *ndev, enum vf_mode mode)
560
{
561
union nps_core_gbl_vfcfg vfcfg;
562
563
vfcfg.value = nitrox_read_csr(ndev, NPS_CORE_GBL_VFCFG);
564
vfcfg.s.cfg = mode & 0x7;
565
566
nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, vfcfg.value);
567
}
568
569
static const char *get_core_option(u8 se_cores, u8 ae_cores)
570
{
571
const char *option = "";
572
573
if (ae_cores == AE_MAX_CORES) {
574
switch (se_cores) {
575
case SE_MAX_CORES:
576
option = "60";
577
break;
578
case 40:
579
option = "60s";
580
break;
581
}
582
} else if (ae_cores == (AE_MAX_CORES / 2)) {
583
option = "30";
584
} else {
585
option = "60i";
586
}
587
588
return option;
589
}
590
591
static const char *get_feature_option(u8 zip_cores, int core_freq)
592
{
593
if (zip_cores == 0)
594
return "";
595
else if (zip_cores < ZIP_MAX_CORES)
596
return "-C15";
597
598
if (core_freq >= 850)
599
return "-C45";
600
else if (core_freq >= 750)
601
return "-C35";
602
else if (core_freq >= 550)
603
return "-C25";
604
605
return "";
606
}
607
608
void nitrox_get_hwinfo(struct nitrox_device *ndev)
609
{
610
union emu_fuse_map emu_fuse;
611
union rst_boot rst_boot;
612
union fus_dat1 fus_dat1;
613
unsigned char name[IFNAMSIZ * 2] = {};
614
int i, dead_cores;
615
u64 offset;
616
617
/* get core frequency */
618
offset = RST_BOOT;
619
rst_boot.value = nitrox_read_csr(ndev, offset);
620
ndev->hw.freq = (rst_boot.pnr_mul + 3) * PLL_REF_CLK;
621
622
for (i = 0; i < NR_CLUSTERS; i++) {
623
offset = EMU_FUSE_MAPX(i);
624
emu_fuse.value = nitrox_read_csr(ndev, offset);
625
if (emu_fuse.s.valid) {
626
dead_cores = hweight32(emu_fuse.s.ae_fuse);
627
ndev->hw.ae_cores += AE_CORES_PER_CLUSTER - dead_cores;
628
dead_cores = hweight16(emu_fuse.s.se_fuse);
629
ndev->hw.se_cores += SE_CORES_PER_CLUSTER - dead_cores;
630
}
631
}
632
/* find zip hardware availability */
633
offset = FUS_DAT1;
634
fus_dat1.value = nitrox_read_csr(ndev, offset);
635
if (!fus_dat1.nozip) {
636
dead_cores = hweight8(fus_dat1.zip_info);
637
ndev->hw.zip_cores = ZIP_MAX_CORES - dead_cores;
638
}
639
640
/* determine the partname
641
* CNN55<core option>-<freq><pincount>-<feature option>-<rev>
642
*/
643
snprintf(name, sizeof(name), "CNN55%s-%3dBG676%s-1.%u",
644
get_core_option(ndev->hw.se_cores, ndev->hw.ae_cores),
645
ndev->hw.freq,
646
get_feature_option(ndev->hw.zip_cores, ndev->hw.freq),
647
ndev->hw.revision_id);
648
649
/* copy partname */
650
strscpy(ndev->hw.partname, name, sizeof(ndev->hw.partname));
651
}
652
653
void enable_pf2vf_mbox_interrupts(struct nitrox_device *ndev)
654
{
655
u64 value = ~0ULL;
656
u64 reg_addr;
657
658
/* Mailbox interrupt low enable set register */
659
reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1S;
660
nitrox_write_csr(ndev, reg_addr, value);
661
662
/* Mailbox interrupt high enable set register */
663
reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1S;
664
nitrox_write_csr(ndev, reg_addr, value);
665
}
666
667
void disable_pf2vf_mbox_interrupts(struct nitrox_device *ndev)
668
{
669
u64 value = ~0ULL;
670
u64 reg_addr;
671
672
/* Mailbox interrupt low enable clear register */
673
reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1C;
674
nitrox_write_csr(ndev, reg_addr, value);
675
676
/* Mailbox interrupt high enable clear register */
677
reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1C;
678
nitrox_write_csr(ndev, reg_addr, value);
679
}
680
681