Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/ccp/ccp-crypto-aes-cmac.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* AMD Cryptographic Coprocessor (CCP) AES CMAC crypto API support
4
*
5
* Copyright (C) 2013,2018 Advanced Micro Devices, Inc.
6
*
7
* Author: Tom Lendacky <[email protected]>
8
*/
9
10
#include <linux/module.h>
11
#include <linux/sched.h>
12
#include <linux/delay.h>
13
#include <linux/scatterlist.h>
14
#include <linux/crypto.h>
15
#include <crypto/algapi.h>
16
#include <crypto/aes.h>
17
#include <crypto/hash.h>
18
#include <crypto/internal/hash.h>
19
#include <crypto/scatterwalk.h>
20
21
#include "ccp-crypto.h"
22
23
static int ccp_aes_cmac_complete(struct crypto_async_request *async_req,
24
int ret)
25
{
26
struct ahash_request *req = ahash_request_cast(async_req);
27
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
28
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
29
unsigned int digest_size = crypto_ahash_digestsize(tfm);
30
31
if (ret)
32
goto e_free;
33
34
if (rctx->hash_rem) {
35
/* Save remaining data to buffer */
36
unsigned int offset = rctx->nbytes - rctx->hash_rem;
37
38
scatterwalk_map_and_copy(rctx->buf, rctx->src,
39
offset, rctx->hash_rem, 0);
40
rctx->buf_count = rctx->hash_rem;
41
} else {
42
rctx->buf_count = 0;
43
}
44
45
/* Update result area if supplied */
46
if (req->result && rctx->final)
47
memcpy(req->result, rctx->iv, digest_size);
48
49
e_free:
50
sg_free_table(&rctx->data_sg);
51
52
return ret;
53
}
54
55
static int ccp_do_cmac_update(struct ahash_request *req, unsigned int nbytes,
56
unsigned int final)
57
{
58
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
59
struct ccp_ctx *ctx = crypto_ahash_ctx_dma(tfm);
60
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
61
struct scatterlist *sg, *cmac_key_sg = NULL;
62
unsigned int block_size =
63
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
64
unsigned int need_pad, sg_count;
65
gfp_t gfp;
66
u64 len;
67
int ret;
68
69
if (!ctx->u.aes.key_len)
70
return -EINVAL;
71
72
if (nbytes)
73
rctx->null_msg = 0;
74
75
len = (u64)rctx->buf_count + (u64)nbytes;
76
77
if (!final && (len <= block_size)) {
78
scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
79
0, nbytes, 0);
80
rctx->buf_count += nbytes;
81
82
return 0;
83
}
84
85
rctx->src = req->src;
86
rctx->nbytes = nbytes;
87
88
rctx->final = final;
89
rctx->hash_rem = final ? 0 : len & (block_size - 1);
90
rctx->hash_cnt = len - rctx->hash_rem;
91
if (!final && !rctx->hash_rem) {
92
/* CCP can't do zero length final, so keep some data around */
93
rctx->hash_cnt -= block_size;
94
rctx->hash_rem = block_size;
95
}
96
97
if (final && (rctx->null_msg || (len & (block_size - 1))))
98
need_pad = 1;
99
else
100
need_pad = 0;
101
102
sg_init_one(&rctx->iv_sg, rctx->iv, sizeof(rctx->iv));
103
104
/* Build the data scatterlist table - allocate enough entries for all
105
* possible data pieces (buffer, input data, padding)
106
*/
107
sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2;
108
gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
109
GFP_KERNEL : GFP_ATOMIC;
110
ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
111
if (ret)
112
return ret;
113
114
sg = NULL;
115
if (rctx->buf_count) {
116
sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
117
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
118
if (!sg) {
119
ret = -EINVAL;
120
goto e_free;
121
}
122
}
123
124
if (nbytes) {
125
sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
126
if (!sg) {
127
ret = -EINVAL;
128
goto e_free;
129
}
130
}
131
132
if (need_pad) {
133
int pad_length = block_size - (len & (block_size - 1));
134
135
rctx->hash_cnt += pad_length;
136
137
memset(rctx->pad, 0, sizeof(rctx->pad));
138
rctx->pad[0] = 0x80;
139
sg_init_one(&rctx->pad_sg, rctx->pad, pad_length);
140
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg);
141
if (!sg) {
142
ret = -EINVAL;
143
goto e_free;
144
}
145
}
146
if (sg) {
147
sg_mark_end(sg);
148
sg = rctx->data_sg.sgl;
149
}
150
151
/* Initialize the K1/K2 scatterlist */
152
if (final)
153
cmac_key_sg = (need_pad) ? &ctx->u.aes.k2_sg
154
: &ctx->u.aes.k1_sg;
155
156
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
157
INIT_LIST_HEAD(&rctx->cmd.entry);
158
rctx->cmd.engine = CCP_ENGINE_AES;
159
rctx->cmd.u.aes.type = ctx->u.aes.type;
160
rctx->cmd.u.aes.mode = ctx->u.aes.mode;
161
rctx->cmd.u.aes.action = CCP_AES_ACTION_ENCRYPT;
162
rctx->cmd.u.aes.key = &ctx->u.aes.key_sg;
163
rctx->cmd.u.aes.key_len = ctx->u.aes.key_len;
164
rctx->cmd.u.aes.iv = &rctx->iv_sg;
165
rctx->cmd.u.aes.iv_len = AES_BLOCK_SIZE;
166
rctx->cmd.u.aes.src = sg;
167
rctx->cmd.u.aes.src_len = rctx->hash_cnt;
168
rctx->cmd.u.aes.dst = NULL;
169
rctx->cmd.u.aes.cmac_key = cmac_key_sg;
170
rctx->cmd.u.aes.cmac_key_len = ctx->u.aes.kn_len;
171
rctx->cmd.u.aes.cmac_final = final;
172
173
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
174
175
return ret;
176
177
e_free:
178
sg_free_table(&rctx->data_sg);
179
180
return ret;
181
}
182
183
static int ccp_aes_cmac_init(struct ahash_request *req)
184
{
185
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
186
187
memset(rctx, 0, sizeof(*rctx));
188
189
rctx->null_msg = 1;
190
191
return 0;
192
}
193
194
static int ccp_aes_cmac_update(struct ahash_request *req)
195
{
196
return ccp_do_cmac_update(req, req->nbytes, 0);
197
}
198
199
static int ccp_aes_cmac_final(struct ahash_request *req)
200
{
201
return ccp_do_cmac_update(req, 0, 1);
202
}
203
204
static int ccp_aes_cmac_finup(struct ahash_request *req)
205
{
206
return ccp_do_cmac_update(req, req->nbytes, 1);
207
}
208
209
static int ccp_aes_cmac_digest(struct ahash_request *req)
210
{
211
int ret;
212
213
ret = ccp_aes_cmac_init(req);
214
if (ret)
215
return ret;
216
217
return ccp_aes_cmac_finup(req);
218
}
219
220
static int ccp_aes_cmac_export(struct ahash_request *req, void *out)
221
{
222
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
223
struct ccp_aes_cmac_exp_ctx state;
224
225
/* Don't let anything leak to 'out' */
226
memset(&state, 0, sizeof(state));
227
228
state.null_msg = rctx->null_msg;
229
memcpy(state.iv, rctx->iv, sizeof(state.iv));
230
state.buf_count = rctx->buf_count;
231
memcpy(state.buf, rctx->buf, sizeof(state.buf));
232
233
/* 'out' may not be aligned so memcpy from local variable */
234
memcpy(out, &state, sizeof(state));
235
236
return 0;
237
}
238
239
static int ccp_aes_cmac_import(struct ahash_request *req, const void *in)
240
{
241
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
242
struct ccp_aes_cmac_exp_ctx state;
243
244
/* 'in' may not be aligned so memcpy to local variable */
245
memcpy(&state, in, sizeof(state));
246
247
memset(rctx, 0, sizeof(*rctx));
248
rctx->null_msg = state.null_msg;
249
memcpy(rctx->iv, state.iv, sizeof(rctx->iv));
250
rctx->buf_count = state.buf_count;
251
memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
252
253
return 0;
254
}
255
256
static int ccp_aes_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
257
unsigned int key_len)
258
{
259
struct ccp_ctx *ctx = crypto_ahash_ctx_dma(tfm);
260
struct ccp_crypto_ahash_alg *alg =
261
ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
262
u64 k0_hi, k0_lo, k1_hi, k1_lo, k2_hi, k2_lo;
263
u64 rb_hi = 0x00, rb_lo = 0x87;
264
struct crypto_aes_ctx aes;
265
__be64 *gk;
266
int ret;
267
268
switch (key_len) {
269
case AES_KEYSIZE_128:
270
ctx->u.aes.type = CCP_AES_TYPE_128;
271
break;
272
case AES_KEYSIZE_192:
273
ctx->u.aes.type = CCP_AES_TYPE_192;
274
break;
275
case AES_KEYSIZE_256:
276
ctx->u.aes.type = CCP_AES_TYPE_256;
277
break;
278
default:
279
return -EINVAL;
280
}
281
ctx->u.aes.mode = alg->mode;
282
283
/* Set to zero until complete */
284
ctx->u.aes.key_len = 0;
285
286
/* Set the key for the AES cipher used to generate the keys */
287
ret = aes_expandkey(&aes, key, key_len);
288
if (ret)
289
return ret;
290
291
/* Encrypt a block of zeroes - use key area in context */
292
memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
293
aes_encrypt(&aes, ctx->u.aes.key, ctx->u.aes.key);
294
memzero_explicit(&aes, sizeof(aes));
295
296
/* Generate K1 and K2 */
297
k0_hi = be64_to_cpu(*((__be64 *)ctx->u.aes.key));
298
k0_lo = be64_to_cpu(*((__be64 *)ctx->u.aes.key + 1));
299
300
k1_hi = (k0_hi << 1) | (k0_lo >> 63);
301
k1_lo = k0_lo << 1;
302
if (ctx->u.aes.key[0] & 0x80) {
303
k1_hi ^= rb_hi;
304
k1_lo ^= rb_lo;
305
}
306
gk = (__be64 *)ctx->u.aes.k1;
307
*gk = cpu_to_be64(k1_hi);
308
gk++;
309
*gk = cpu_to_be64(k1_lo);
310
311
k2_hi = (k1_hi << 1) | (k1_lo >> 63);
312
k2_lo = k1_lo << 1;
313
if (ctx->u.aes.k1[0] & 0x80) {
314
k2_hi ^= rb_hi;
315
k2_lo ^= rb_lo;
316
}
317
gk = (__be64 *)ctx->u.aes.k2;
318
*gk = cpu_to_be64(k2_hi);
319
gk++;
320
*gk = cpu_to_be64(k2_lo);
321
322
ctx->u.aes.kn_len = sizeof(ctx->u.aes.k1);
323
sg_init_one(&ctx->u.aes.k1_sg, ctx->u.aes.k1, sizeof(ctx->u.aes.k1));
324
sg_init_one(&ctx->u.aes.k2_sg, ctx->u.aes.k2, sizeof(ctx->u.aes.k2));
325
326
/* Save the supplied key */
327
memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
328
memcpy(ctx->u.aes.key, key, key_len);
329
ctx->u.aes.key_len = key_len;
330
sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
331
332
return ret;
333
}
334
335
static int ccp_aes_cmac_cra_init(struct crypto_tfm *tfm)
336
{
337
struct ccp_ctx *ctx = crypto_tfm_ctx_dma(tfm);
338
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
339
340
ctx->complete = ccp_aes_cmac_complete;
341
ctx->u.aes.key_len = 0;
342
343
crypto_ahash_set_reqsize_dma(ahash,
344
sizeof(struct ccp_aes_cmac_req_ctx));
345
346
return 0;
347
}
348
349
int ccp_register_aes_cmac_algs(struct list_head *head)
350
{
351
struct ccp_crypto_ahash_alg *ccp_alg;
352
struct ahash_alg *alg;
353
struct hash_alg_common *halg;
354
struct crypto_alg *base;
355
int ret;
356
357
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
358
if (!ccp_alg)
359
return -ENOMEM;
360
361
INIT_LIST_HEAD(&ccp_alg->entry);
362
ccp_alg->mode = CCP_AES_MODE_CMAC;
363
364
alg = &ccp_alg->alg;
365
alg->init = ccp_aes_cmac_init;
366
alg->update = ccp_aes_cmac_update;
367
alg->final = ccp_aes_cmac_final;
368
alg->finup = ccp_aes_cmac_finup;
369
alg->digest = ccp_aes_cmac_digest;
370
alg->export = ccp_aes_cmac_export;
371
alg->import = ccp_aes_cmac_import;
372
alg->setkey = ccp_aes_cmac_setkey;
373
374
halg = &alg->halg;
375
halg->digestsize = AES_BLOCK_SIZE;
376
halg->statesize = sizeof(struct ccp_aes_cmac_exp_ctx);
377
378
base = &halg->base;
379
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "cmac(aes)");
380
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "cmac-aes-ccp");
381
base->cra_flags = CRYPTO_ALG_ASYNC |
382
CRYPTO_ALG_ALLOCATES_MEMORY |
383
CRYPTO_ALG_KERN_DRIVER_ONLY |
384
CRYPTO_ALG_NEED_FALLBACK;
385
base->cra_blocksize = AES_BLOCK_SIZE;
386
base->cra_ctxsize = sizeof(struct ccp_ctx) + crypto_dma_padding();
387
base->cra_priority = CCP_CRA_PRIORITY;
388
base->cra_init = ccp_aes_cmac_cra_init;
389
base->cra_module = THIS_MODULE;
390
391
ret = crypto_register_ahash(alg);
392
if (ret) {
393
pr_err("%s ahash algorithm registration error (%d)\n",
394
base->cra_name, ret);
395
kfree(ccp_alg);
396
return ret;
397
}
398
399
list_add(&ccp_alg->entry, head);
400
401
return 0;
402
}
403
404