Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/ccp/ccp-dev-v5.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* AMD Cryptographic Coprocessor (CCP) driver
4
*
5
* Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6
*
7
* Author: Gary R Hook <[email protected]>
8
*/
9
10
#include <linux/kernel.h>
11
#include <linux/kthread.h>
12
#include <linux/dma-mapping.h>
13
#include <linux/interrupt.h>
14
#include <linux/compiler.h>
15
#include <linux/ccp.h>
16
17
#include "ccp-dev.h"
18
19
/* Allocate the requested number of contiguous LSB slots
20
* from the LSB bitmap. Look in the private range for this
21
* queue first; failing that, check the public area.
22
* If no space is available, wait around.
23
* Return: first slot number
24
*/
25
static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
26
{
27
struct ccp_device *ccp;
28
int start;
29
30
/* First look at the map for the queue */
31
if (cmd_q->lsb >= 0) {
32
start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
33
LSB_SIZE,
34
0, count, 0);
35
if (start < LSB_SIZE) {
36
bitmap_set(cmd_q->lsbmap, start, count);
37
return start + cmd_q->lsb * LSB_SIZE;
38
}
39
}
40
41
/* No joy; try to get an entry from the shared blocks */
42
ccp = cmd_q->ccp;
43
for (;;) {
44
mutex_lock(&ccp->sb_mutex);
45
46
start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
47
MAX_LSB_CNT * LSB_SIZE,
48
0,
49
count, 0);
50
if (start <= MAX_LSB_CNT * LSB_SIZE) {
51
bitmap_set(ccp->lsbmap, start, count);
52
53
mutex_unlock(&ccp->sb_mutex);
54
return start;
55
}
56
57
ccp->sb_avail = 0;
58
59
mutex_unlock(&ccp->sb_mutex);
60
61
/* Wait for KSB entries to become available */
62
if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
63
return 0;
64
}
65
}
66
67
/* Free a number of LSB slots from the bitmap, starting at
68
* the indicated starting slot number.
69
*/
70
static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
71
unsigned int count)
72
{
73
if (!start)
74
return;
75
76
if (cmd_q->lsb == start) {
77
/* An entry from the private LSB */
78
bitmap_clear(cmd_q->lsbmap, start, count);
79
} else {
80
/* From the shared LSBs */
81
struct ccp_device *ccp = cmd_q->ccp;
82
83
mutex_lock(&ccp->sb_mutex);
84
bitmap_clear(ccp->lsbmap, start, count);
85
ccp->sb_avail = 1;
86
mutex_unlock(&ccp->sb_mutex);
87
wake_up_interruptible_all(&ccp->sb_queue);
88
}
89
}
90
91
/* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
92
union ccp_function {
93
struct {
94
u16 size:7;
95
u16 encrypt:1;
96
u16 mode:5;
97
u16 type:2;
98
} aes;
99
struct {
100
u16 size:7;
101
u16 encrypt:1;
102
u16 rsvd:5;
103
u16 type:2;
104
} aes_xts;
105
struct {
106
u16 size:7;
107
u16 encrypt:1;
108
u16 mode:5;
109
u16 type:2;
110
} des3;
111
struct {
112
u16 rsvd1:10;
113
u16 type:4;
114
u16 rsvd2:1;
115
} sha;
116
struct {
117
u16 mode:3;
118
u16 size:12;
119
} rsa;
120
struct {
121
u16 byteswap:2;
122
u16 bitwise:3;
123
u16 reflect:2;
124
u16 rsvd:8;
125
} pt;
126
struct {
127
u16 rsvd:13;
128
} zlib;
129
struct {
130
u16 size:10;
131
u16 type:2;
132
u16 mode:3;
133
} ecc;
134
u16 raw;
135
};
136
137
#define CCP_AES_SIZE(p) ((p)->aes.size)
138
#define CCP_AES_ENCRYPT(p) ((p)->aes.encrypt)
139
#define CCP_AES_MODE(p) ((p)->aes.mode)
140
#define CCP_AES_TYPE(p) ((p)->aes.type)
141
#define CCP_XTS_SIZE(p) ((p)->aes_xts.size)
142
#define CCP_XTS_TYPE(p) ((p)->aes_xts.type)
143
#define CCP_XTS_ENCRYPT(p) ((p)->aes_xts.encrypt)
144
#define CCP_DES3_SIZE(p) ((p)->des3.size)
145
#define CCP_DES3_ENCRYPT(p) ((p)->des3.encrypt)
146
#define CCP_DES3_MODE(p) ((p)->des3.mode)
147
#define CCP_DES3_TYPE(p) ((p)->des3.type)
148
#define CCP_SHA_TYPE(p) ((p)->sha.type)
149
#define CCP_RSA_SIZE(p) ((p)->rsa.size)
150
#define CCP_PT_BYTESWAP(p) ((p)->pt.byteswap)
151
#define CCP_PT_BITWISE(p) ((p)->pt.bitwise)
152
#define CCP_ECC_MODE(p) ((p)->ecc.mode)
153
#define CCP_ECC_AFFINE(p) ((p)->ecc.one)
154
155
/* Word 0 */
156
#define CCP5_CMD_DW0(p) ((p)->dw0)
157
#define CCP5_CMD_SOC(p) (CCP5_CMD_DW0(p).soc)
158
#define CCP5_CMD_IOC(p) (CCP5_CMD_DW0(p).ioc)
159
#define CCP5_CMD_INIT(p) (CCP5_CMD_DW0(p).init)
160
#define CCP5_CMD_EOM(p) (CCP5_CMD_DW0(p).eom)
161
#define CCP5_CMD_FUNCTION(p) (CCP5_CMD_DW0(p).function)
162
#define CCP5_CMD_ENGINE(p) (CCP5_CMD_DW0(p).engine)
163
#define CCP5_CMD_PROT(p) (CCP5_CMD_DW0(p).prot)
164
165
/* Word 1 */
166
#define CCP5_CMD_DW1(p) ((p)->length)
167
#define CCP5_CMD_LEN(p) (CCP5_CMD_DW1(p))
168
169
/* Word 2 */
170
#define CCP5_CMD_DW2(p) ((p)->src_lo)
171
#define CCP5_CMD_SRC_LO(p) (CCP5_CMD_DW2(p))
172
173
/* Word 3 */
174
#define CCP5_CMD_DW3(p) ((p)->dw3)
175
#define CCP5_CMD_SRC_MEM(p) ((p)->dw3.src_mem)
176
#define CCP5_CMD_SRC_HI(p) ((p)->dw3.src_hi)
177
#define CCP5_CMD_LSB_ID(p) ((p)->dw3.lsb_cxt_id)
178
#define CCP5_CMD_FIX_SRC(p) ((p)->dw3.fixed)
179
180
/* Words 4/5 */
181
#define CCP5_CMD_DW4(p) ((p)->dw4)
182
#define CCP5_CMD_DST_LO(p) (CCP5_CMD_DW4(p).dst_lo)
183
#define CCP5_CMD_DW5(p) ((p)->dw5.fields.dst_hi)
184
#define CCP5_CMD_DST_HI(p) (CCP5_CMD_DW5(p))
185
#define CCP5_CMD_DST_MEM(p) ((p)->dw5.fields.dst_mem)
186
#define CCP5_CMD_FIX_DST(p) ((p)->dw5.fields.fixed)
187
#define CCP5_CMD_SHA_LO(p) ((p)->dw4.sha_len_lo)
188
#define CCP5_CMD_SHA_HI(p) ((p)->dw5.sha_len_hi)
189
190
/* Word 6/7 */
191
#define CCP5_CMD_DW6(p) ((p)->key_lo)
192
#define CCP5_CMD_KEY_LO(p) (CCP5_CMD_DW6(p))
193
#define CCP5_CMD_DW7(p) ((p)->dw7)
194
#define CCP5_CMD_KEY_HI(p) ((p)->dw7.key_hi)
195
#define CCP5_CMD_KEY_MEM(p) ((p)->dw7.key_mem)
196
197
static inline u32 low_address(unsigned long addr)
198
{
199
return (u64)addr & 0x0ffffffff;
200
}
201
202
static inline u32 high_address(unsigned long addr)
203
{
204
return ((u64)addr >> 32) & 0x00000ffff;
205
}
206
207
static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
208
{
209
unsigned int head_idx, n;
210
u32 head_lo, queue_start;
211
212
queue_start = low_address(cmd_q->qdma_tail);
213
head_lo = ioread32(cmd_q->reg_head_lo);
214
head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
215
216
n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
217
218
return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
219
}
220
221
static int ccp5_do_cmd(struct ccp5_desc *desc,
222
struct ccp_cmd_queue *cmd_q)
223
{
224
__le32 *mP;
225
u32 *dP;
226
u32 tail;
227
int i;
228
int ret = 0;
229
230
cmd_q->total_ops++;
231
232
if (CCP5_CMD_SOC(desc)) {
233
CCP5_CMD_IOC(desc) = 1;
234
CCP5_CMD_SOC(desc) = 0;
235
}
236
mutex_lock(&cmd_q->q_mutex);
237
238
mP = (__le32 *)&cmd_q->qbase[cmd_q->qidx];
239
dP = (u32 *)desc;
240
for (i = 0; i < 8; i++)
241
mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
242
243
cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
244
245
/* The data used by this command must be flushed to memory */
246
wmb();
247
248
/* Write the new tail address back to the queue register */
249
tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
250
iowrite32(tail, cmd_q->reg_tail_lo);
251
252
/* Turn the queue back on using our cached control register */
253
iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
254
mutex_unlock(&cmd_q->q_mutex);
255
256
if (CCP5_CMD_IOC(desc)) {
257
/* Wait for the job to complete */
258
ret = wait_event_interruptible(cmd_q->int_queue,
259
cmd_q->int_rcvd);
260
if (ret || cmd_q->cmd_error) {
261
/* Log the error and flush the queue by
262
* moving the head pointer
263
*/
264
if (cmd_q->cmd_error)
265
ccp_log_error(cmd_q->ccp,
266
cmd_q->cmd_error);
267
iowrite32(tail, cmd_q->reg_head_lo);
268
if (!ret)
269
ret = -EIO;
270
}
271
cmd_q->int_rcvd = 0;
272
}
273
274
return ret;
275
}
276
277
static int ccp5_perform_aes(struct ccp_op *op)
278
{
279
struct ccp5_desc desc;
280
union ccp_function function;
281
u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
282
283
op->cmd_q->total_aes_ops++;
284
285
/* Zero out all the fields of the command desc */
286
memset(&desc, 0, Q_DESC_SIZE);
287
288
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
289
290
CCP5_CMD_SOC(&desc) = op->soc;
291
CCP5_CMD_IOC(&desc) = 1;
292
CCP5_CMD_INIT(&desc) = op->init;
293
CCP5_CMD_EOM(&desc) = op->eom;
294
CCP5_CMD_PROT(&desc) = 0;
295
296
function.raw = 0;
297
CCP_AES_ENCRYPT(&function) = op->u.aes.action;
298
CCP_AES_MODE(&function) = op->u.aes.mode;
299
CCP_AES_TYPE(&function) = op->u.aes.type;
300
CCP_AES_SIZE(&function) = op->u.aes.size;
301
302
CCP5_CMD_FUNCTION(&desc) = function.raw;
303
304
CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
305
306
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
307
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
308
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
309
310
CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
311
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
312
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
313
314
CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
315
CCP5_CMD_KEY_HI(&desc) = 0;
316
CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
317
CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
318
319
return ccp5_do_cmd(&desc, op->cmd_q);
320
}
321
322
static int ccp5_perform_xts_aes(struct ccp_op *op)
323
{
324
struct ccp5_desc desc;
325
union ccp_function function;
326
u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
327
328
op->cmd_q->total_xts_aes_ops++;
329
330
/* Zero out all the fields of the command desc */
331
memset(&desc, 0, Q_DESC_SIZE);
332
333
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
334
335
CCP5_CMD_SOC(&desc) = op->soc;
336
CCP5_CMD_IOC(&desc) = 1;
337
CCP5_CMD_INIT(&desc) = op->init;
338
CCP5_CMD_EOM(&desc) = op->eom;
339
CCP5_CMD_PROT(&desc) = 0;
340
341
function.raw = 0;
342
CCP_XTS_TYPE(&function) = op->u.xts.type;
343
CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
344
CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
345
CCP5_CMD_FUNCTION(&desc) = function.raw;
346
347
CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
348
349
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
350
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
351
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
352
353
CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
354
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
355
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
356
357
CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
358
CCP5_CMD_KEY_HI(&desc) = 0;
359
CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
360
CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
361
362
return ccp5_do_cmd(&desc, op->cmd_q);
363
}
364
365
static int ccp5_perform_sha(struct ccp_op *op)
366
{
367
struct ccp5_desc desc;
368
union ccp_function function;
369
370
op->cmd_q->total_sha_ops++;
371
372
/* Zero out all the fields of the command desc */
373
memset(&desc, 0, Q_DESC_SIZE);
374
375
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
376
377
CCP5_CMD_SOC(&desc) = op->soc;
378
CCP5_CMD_IOC(&desc) = 1;
379
CCP5_CMD_INIT(&desc) = 1;
380
CCP5_CMD_EOM(&desc) = op->eom;
381
CCP5_CMD_PROT(&desc) = 0;
382
383
function.raw = 0;
384
CCP_SHA_TYPE(&function) = op->u.sha.type;
385
CCP5_CMD_FUNCTION(&desc) = function.raw;
386
387
CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
388
389
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
390
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
391
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
392
393
CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
394
395
if (op->eom) {
396
CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
397
CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
398
} else {
399
CCP5_CMD_SHA_LO(&desc) = 0;
400
CCP5_CMD_SHA_HI(&desc) = 0;
401
}
402
403
return ccp5_do_cmd(&desc, op->cmd_q);
404
}
405
406
static int ccp5_perform_des3(struct ccp_op *op)
407
{
408
struct ccp5_desc desc;
409
union ccp_function function;
410
u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
411
412
op->cmd_q->total_3des_ops++;
413
414
/* Zero out all the fields of the command desc */
415
memset(&desc, 0, sizeof(struct ccp5_desc));
416
417
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_DES3;
418
419
CCP5_CMD_SOC(&desc) = op->soc;
420
CCP5_CMD_IOC(&desc) = 1;
421
CCP5_CMD_INIT(&desc) = op->init;
422
CCP5_CMD_EOM(&desc) = op->eom;
423
CCP5_CMD_PROT(&desc) = 0;
424
425
function.raw = 0;
426
CCP_DES3_ENCRYPT(&function) = op->u.des3.action;
427
CCP_DES3_MODE(&function) = op->u.des3.mode;
428
CCP_DES3_TYPE(&function) = op->u.des3.type;
429
CCP5_CMD_FUNCTION(&desc) = function.raw;
430
431
CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
432
433
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
434
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
435
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
436
437
CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
438
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
439
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
440
441
CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
442
CCP5_CMD_KEY_HI(&desc) = 0;
443
CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
444
CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
445
446
return ccp5_do_cmd(&desc, op->cmd_q);
447
}
448
449
static int ccp5_perform_rsa(struct ccp_op *op)
450
{
451
struct ccp5_desc desc;
452
union ccp_function function;
453
454
op->cmd_q->total_rsa_ops++;
455
456
/* Zero out all the fields of the command desc */
457
memset(&desc, 0, Q_DESC_SIZE);
458
459
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
460
461
CCP5_CMD_SOC(&desc) = op->soc;
462
CCP5_CMD_IOC(&desc) = 1;
463
CCP5_CMD_INIT(&desc) = 0;
464
CCP5_CMD_EOM(&desc) = 1;
465
CCP5_CMD_PROT(&desc) = 0;
466
467
function.raw = 0;
468
CCP_RSA_SIZE(&function) = (op->u.rsa.mod_size + 7) >> 3;
469
CCP5_CMD_FUNCTION(&desc) = function.raw;
470
471
CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
472
473
/* Source is from external memory */
474
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
475
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
476
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
477
478
/* Destination is in external memory */
479
CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
480
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
481
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
482
483
/* Key (Exponent) is in external memory */
484
CCP5_CMD_KEY_LO(&desc) = ccp_addr_lo(&op->exp.u.dma);
485
CCP5_CMD_KEY_HI(&desc) = ccp_addr_hi(&op->exp.u.dma);
486
CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
487
488
return ccp5_do_cmd(&desc, op->cmd_q);
489
}
490
491
static int ccp5_perform_passthru(struct ccp_op *op)
492
{
493
struct ccp5_desc desc;
494
union ccp_function function;
495
struct ccp_dma_info *saddr = &op->src.u.dma;
496
struct ccp_dma_info *daddr = &op->dst.u.dma;
497
498
499
op->cmd_q->total_pt_ops++;
500
501
memset(&desc, 0, Q_DESC_SIZE);
502
503
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
504
505
CCP5_CMD_SOC(&desc) = 0;
506
CCP5_CMD_IOC(&desc) = 1;
507
CCP5_CMD_INIT(&desc) = 0;
508
CCP5_CMD_EOM(&desc) = op->eom;
509
CCP5_CMD_PROT(&desc) = 0;
510
511
function.raw = 0;
512
CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
513
CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
514
CCP5_CMD_FUNCTION(&desc) = function.raw;
515
516
/* Length of source data is always 256 bytes */
517
if (op->src.type == CCP_MEMTYPE_SYSTEM)
518
CCP5_CMD_LEN(&desc) = saddr->length;
519
else
520
CCP5_CMD_LEN(&desc) = daddr->length;
521
522
if (op->src.type == CCP_MEMTYPE_SYSTEM) {
523
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
524
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
525
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
526
527
if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
528
CCP5_CMD_LSB_ID(&desc) = op->sb_key;
529
} else {
530
u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
531
532
CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
533
CCP5_CMD_SRC_HI(&desc) = 0;
534
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
535
}
536
537
if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
538
CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
539
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
540
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
541
} else {
542
u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
543
544
CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
545
CCP5_CMD_DST_HI(&desc) = 0;
546
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
547
}
548
549
return ccp5_do_cmd(&desc, op->cmd_q);
550
}
551
552
static int ccp5_perform_ecc(struct ccp_op *op)
553
{
554
struct ccp5_desc desc;
555
union ccp_function function;
556
557
op->cmd_q->total_ecc_ops++;
558
559
/* Zero out all the fields of the command desc */
560
memset(&desc, 0, Q_DESC_SIZE);
561
562
CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
563
564
CCP5_CMD_SOC(&desc) = 0;
565
CCP5_CMD_IOC(&desc) = 1;
566
CCP5_CMD_INIT(&desc) = 0;
567
CCP5_CMD_EOM(&desc) = 1;
568
CCP5_CMD_PROT(&desc) = 0;
569
570
function.raw = 0;
571
function.ecc.mode = op->u.ecc.function;
572
CCP5_CMD_FUNCTION(&desc) = function.raw;
573
574
CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
575
576
CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
577
CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
578
CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
579
580
CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
581
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
582
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
583
584
return ccp5_do_cmd(&desc, op->cmd_q);
585
}
586
587
static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
588
{
589
int q_mask = 1 << cmd_q->id;
590
int queues = 0;
591
int j;
592
593
/* Build a bit mask to know which LSBs this queue has access to.
594
* Don't bother with segment 0 as it has special privileges.
595
*/
596
for (j = 1; j < MAX_LSB_CNT; j++) {
597
if (status & q_mask)
598
bitmap_set(cmd_q->lsbmask, j, 1);
599
status >>= LSB_REGION_WIDTH;
600
}
601
queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
602
dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
603
cmd_q->id, queues);
604
605
return queues ? 0 : -EINVAL;
606
}
607
608
static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
609
int lsb_cnt, int n_lsbs,
610
unsigned long *lsb_pub)
611
{
612
DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
613
int bitno;
614
int qlsb_wgt;
615
int i;
616
617
/* For each queue:
618
* If the count of potential LSBs available to a queue matches the
619
* ordinal given to us in lsb_cnt:
620
* Copy the mask of possible LSBs for this queue into "qlsb";
621
* For each bit in qlsb, see if the corresponding bit in the
622
* aggregation mask is set; if so, we have a match.
623
* If we have a match, clear the bit in the aggregation to
624
* mark it as no longer available.
625
* If there is no match, clear the bit in qlsb and keep looking.
626
*/
627
for (i = 0; i < ccp->cmd_q_count; i++) {
628
struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
629
630
qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
631
632
if (qlsb_wgt == lsb_cnt) {
633
bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
634
635
bitno = find_first_bit(qlsb, MAX_LSB_CNT);
636
while (bitno < MAX_LSB_CNT) {
637
if (test_bit(bitno, lsb_pub)) {
638
/* We found an available LSB
639
* that this queue can access
640
*/
641
cmd_q->lsb = bitno;
642
bitmap_clear(lsb_pub, bitno, 1);
643
dev_dbg(ccp->dev,
644
"Queue %d gets LSB %d\n",
645
i, bitno);
646
break;
647
}
648
bitmap_clear(qlsb, bitno, 1);
649
bitno = find_first_bit(qlsb, MAX_LSB_CNT);
650
}
651
if (bitno >= MAX_LSB_CNT)
652
return -EINVAL;
653
n_lsbs--;
654
}
655
}
656
return n_lsbs;
657
}
658
659
/* For each queue, from the most- to least-constrained:
660
* find an LSB that can be assigned to the queue. If there are N queues that
661
* can only use M LSBs, where N > M, fail; otherwise, every queue will get a
662
* dedicated LSB. Remaining LSB regions become a shared resource.
663
* If we have fewer LSBs than queues, all LSB regions become shared resources.
664
*/
665
static int ccp_assign_lsbs(struct ccp_device *ccp)
666
{
667
DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
668
DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
669
int n_lsbs = 0;
670
int bitno;
671
int i, lsb_cnt;
672
int rc = 0;
673
674
bitmap_zero(lsb_pub, MAX_LSB_CNT);
675
676
/* Create an aggregate bitmap to get a total count of available LSBs */
677
for (i = 0; i < ccp->cmd_q_count; i++)
678
bitmap_or(lsb_pub,
679
lsb_pub, ccp->cmd_q[i].lsbmask,
680
MAX_LSB_CNT);
681
682
n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
683
684
if (n_lsbs >= ccp->cmd_q_count) {
685
/* We have enough LSBS to give every queue a private LSB.
686
* Brute force search to start with the queues that are more
687
* constrained in LSB choice. When an LSB is privately
688
* assigned, it is removed from the public mask.
689
* This is an ugly N squared algorithm with some optimization.
690
*/
691
for (lsb_cnt = 1;
692
n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
693
lsb_cnt++) {
694
rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
695
lsb_pub);
696
if (rc < 0)
697
return -EINVAL;
698
n_lsbs = rc;
699
}
700
}
701
702
rc = 0;
703
/* What's left of the LSBs, according to the public mask, now become
704
* shared. Any zero bits in the lsb_pub mask represent an LSB region
705
* that can't be used as a shared resource, so mark the LSB slots for
706
* them as "in use".
707
*/
708
bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
709
710
bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
711
while (bitno < MAX_LSB_CNT) {
712
bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
713
bitmap_set(qlsb, bitno, 1);
714
bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
715
}
716
717
return rc;
718
}
719
720
static void ccp5_disable_queue_interrupts(struct ccp_device *ccp)
721
{
722
unsigned int i;
723
724
for (i = 0; i < ccp->cmd_q_count; i++)
725
iowrite32(0x0, ccp->cmd_q[i].reg_int_enable);
726
}
727
728
static void ccp5_enable_queue_interrupts(struct ccp_device *ccp)
729
{
730
unsigned int i;
731
732
for (i = 0; i < ccp->cmd_q_count; i++)
733
iowrite32(SUPPORTED_INTERRUPTS, ccp->cmd_q[i].reg_int_enable);
734
}
735
736
static void ccp5_irq_bh(unsigned long data)
737
{
738
struct ccp_device *ccp = (struct ccp_device *)data;
739
u32 status;
740
unsigned int i;
741
742
for (i = 0; i < ccp->cmd_q_count; i++) {
743
struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
744
745
status = ioread32(cmd_q->reg_interrupt_status);
746
747
if (status) {
748
cmd_q->int_status = status;
749
cmd_q->q_status = ioread32(cmd_q->reg_status);
750
cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
751
752
/* On error, only save the first error value */
753
if ((status & INT_ERROR) && !cmd_q->cmd_error)
754
cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
755
756
cmd_q->int_rcvd = 1;
757
758
/* Acknowledge the interrupt and wake the kthread */
759
iowrite32(status, cmd_q->reg_interrupt_status);
760
wake_up_interruptible(&cmd_q->int_queue);
761
}
762
}
763
ccp5_enable_queue_interrupts(ccp);
764
}
765
766
static irqreturn_t ccp5_irq_handler(int irq, void *data)
767
{
768
struct ccp_device *ccp = (struct ccp_device *)data;
769
770
ccp5_disable_queue_interrupts(ccp);
771
ccp->total_interrupts++;
772
if (ccp->use_tasklet)
773
tasklet_schedule(&ccp->irq_tasklet);
774
else
775
ccp5_irq_bh((unsigned long)ccp);
776
return IRQ_HANDLED;
777
}
778
779
static int ccp5_init(struct ccp_device *ccp)
780
{
781
struct device *dev = ccp->dev;
782
struct ccp_cmd_queue *cmd_q;
783
struct dma_pool *dma_pool;
784
char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
785
unsigned int qmr, i;
786
u64 status;
787
u32 status_lo, status_hi;
788
int ret;
789
790
/* Find available queues */
791
qmr = ioread32(ccp->io_regs + Q_MASK_REG);
792
/*
793
* Check for a access to the registers. If this read returns
794
* 0xffffffff, it's likely that the system is running a broken
795
* BIOS which disallows access to the device. Stop here and fail
796
* the initialization (but not the load, as the PSP could get
797
* properly initialized).
798
*/
799
if (qmr == 0xffffffff) {
800
dev_notice(dev, "ccp: unable to access the device: you might be running a broken BIOS.\n");
801
return 1;
802
}
803
804
for (i = 0; (i < MAX_HW_QUEUES) && (ccp->cmd_q_count < ccp->max_q_count); i++) {
805
if (!(qmr & (1 << i)))
806
continue;
807
808
/* Allocate a dma pool for this queue */
809
snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
810
ccp->name, i);
811
dma_pool = dma_pool_create(dma_pool_name, dev,
812
CCP_DMAPOOL_MAX_SIZE,
813
CCP_DMAPOOL_ALIGN, 0);
814
if (!dma_pool) {
815
dev_err(dev, "unable to allocate dma pool\n");
816
ret = -ENOMEM;
817
goto e_pool;
818
}
819
820
cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
821
ccp->cmd_q_count++;
822
823
cmd_q->ccp = ccp;
824
cmd_q->id = i;
825
cmd_q->dma_pool = dma_pool;
826
mutex_init(&cmd_q->q_mutex);
827
828
/* Page alignment satisfies our needs for N <= 128 */
829
BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
830
cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
831
cmd_q->qbase = dmam_alloc_coherent(dev, cmd_q->qsize,
832
&cmd_q->qbase_dma,
833
GFP_KERNEL);
834
if (!cmd_q->qbase) {
835
dev_err(dev, "unable to allocate command queue\n");
836
ret = -ENOMEM;
837
goto e_pool;
838
}
839
840
cmd_q->qidx = 0;
841
/* Preset some register values and masks that are queue
842
* number dependent
843
*/
844
cmd_q->reg_control = ccp->io_regs +
845
CMD5_Q_STATUS_INCR * (i + 1);
846
cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
847
cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
848
cmd_q->reg_int_enable = cmd_q->reg_control +
849
CMD5_Q_INT_ENABLE_BASE;
850
cmd_q->reg_interrupt_status = cmd_q->reg_control +
851
CMD5_Q_INTERRUPT_STATUS_BASE;
852
cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
853
cmd_q->reg_int_status = cmd_q->reg_control +
854
CMD5_Q_INT_STATUS_BASE;
855
cmd_q->reg_dma_status = cmd_q->reg_control +
856
CMD5_Q_DMA_STATUS_BASE;
857
cmd_q->reg_dma_read_status = cmd_q->reg_control +
858
CMD5_Q_DMA_READ_STATUS_BASE;
859
cmd_q->reg_dma_write_status = cmd_q->reg_control +
860
CMD5_Q_DMA_WRITE_STATUS_BASE;
861
862
init_waitqueue_head(&cmd_q->int_queue);
863
864
dev_dbg(dev, "queue #%u available\n", i);
865
}
866
867
if (ccp->cmd_q_count == 0) {
868
dev_notice(dev, "no command queues available\n");
869
ret = 1;
870
goto e_pool;
871
}
872
873
/* Turn off the queues and disable interrupts until ready */
874
ccp5_disable_queue_interrupts(ccp);
875
for (i = 0; i < ccp->cmd_q_count; i++) {
876
cmd_q = &ccp->cmd_q[i];
877
878
cmd_q->qcontrol = 0; /* Start with nothing */
879
iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
880
881
ioread32(cmd_q->reg_int_status);
882
ioread32(cmd_q->reg_status);
883
884
/* Clear the interrupt status */
885
iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
886
}
887
888
dev_dbg(dev, "Requesting an IRQ...\n");
889
/* Request an irq */
890
ret = sp_request_ccp_irq(ccp->sp, ccp5_irq_handler, ccp->name, ccp);
891
if (ret) {
892
dev_err(dev, "unable to allocate an IRQ\n");
893
goto e_pool;
894
}
895
/* Initialize the ISR tasklet */
896
if (ccp->use_tasklet)
897
tasklet_init(&ccp->irq_tasklet, ccp5_irq_bh,
898
(unsigned long)ccp);
899
900
dev_dbg(dev, "Loading LSB map...\n");
901
/* Copy the private LSB mask to the public registers */
902
status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
903
status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
904
iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
905
iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
906
status = ((u64)status_hi<<30) | (u64)status_lo;
907
908
dev_dbg(dev, "Configuring virtual queues...\n");
909
/* Configure size of each virtual queue accessible to host */
910
for (i = 0; i < ccp->cmd_q_count; i++) {
911
u32 dma_addr_lo;
912
u32 dma_addr_hi;
913
914
cmd_q = &ccp->cmd_q[i];
915
916
cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
917
cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
918
919
cmd_q->qdma_tail = cmd_q->qbase_dma;
920
dma_addr_lo = low_address(cmd_q->qdma_tail);
921
iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
922
iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
923
924
dma_addr_hi = high_address(cmd_q->qdma_tail);
925
cmd_q->qcontrol |= (dma_addr_hi << 16);
926
iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
927
928
/* Find the LSB regions accessible to the queue */
929
ccp_find_lsb_regions(cmd_q, status);
930
cmd_q->lsb = -1; /* Unassigned value */
931
}
932
933
dev_dbg(dev, "Assigning LSBs...\n");
934
ret = ccp_assign_lsbs(ccp);
935
if (ret) {
936
dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
937
goto e_irq;
938
}
939
940
/* Optimization: pre-allocate LSB slots for each queue */
941
for (i = 0; i < ccp->cmd_q_count; i++) {
942
ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
943
ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
944
}
945
946
dev_dbg(dev, "Starting threads...\n");
947
/* Create a kthread for each queue */
948
for (i = 0; i < ccp->cmd_q_count; i++) {
949
struct task_struct *kthread;
950
951
cmd_q = &ccp->cmd_q[i];
952
953
kthread = kthread_run(ccp_cmd_queue_thread, cmd_q,
954
"%s-q%u", ccp->name, cmd_q->id);
955
if (IS_ERR(kthread)) {
956
dev_err(dev, "error creating queue thread (%ld)\n",
957
PTR_ERR(kthread));
958
ret = PTR_ERR(kthread);
959
goto e_kthread;
960
}
961
962
cmd_q->kthread = kthread;
963
}
964
965
dev_dbg(dev, "Enabling interrupts...\n");
966
ccp5_enable_queue_interrupts(ccp);
967
968
dev_dbg(dev, "Registering device...\n");
969
/* Put this on the unit list to make it available */
970
ccp_add_device(ccp);
971
972
ret = ccp_register_rng(ccp);
973
if (ret)
974
goto e_kthread;
975
976
/* Register the DMA engine support */
977
ret = ccp_dmaengine_register(ccp);
978
if (ret)
979
goto e_hwrng;
980
981
#ifdef CONFIG_CRYPTO_DEV_CCP_DEBUGFS
982
/* Set up debugfs entries */
983
ccp5_debugfs_setup(ccp);
984
#endif
985
986
return 0;
987
988
e_hwrng:
989
ccp_unregister_rng(ccp);
990
991
e_kthread:
992
for (i = 0; i < ccp->cmd_q_count; i++)
993
if (ccp->cmd_q[i].kthread)
994
kthread_stop(ccp->cmd_q[i].kthread);
995
996
e_irq:
997
sp_free_ccp_irq(ccp->sp, ccp);
998
999
e_pool:
1000
for (i = 0; i < ccp->cmd_q_count; i++)
1001
dma_pool_destroy(ccp->cmd_q[i].dma_pool);
1002
1003
return ret;
1004
}
1005
1006
static void ccp5_destroy(struct ccp_device *ccp)
1007
{
1008
struct ccp_cmd_queue *cmd_q;
1009
struct ccp_cmd *cmd;
1010
unsigned int i;
1011
1012
/* Unregister the DMA engine */
1013
ccp_dmaengine_unregister(ccp);
1014
1015
/* Unregister the RNG */
1016
ccp_unregister_rng(ccp);
1017
1018
/* Remove this device from the list of available units first */
1019
ccp_del_device(ccp);
1020
1021
#ifdef CONFIG_CRYPTO_DEV_CCP_DEBUGFS
1022
/* We're in the process of tearing down the entire driver;
1023
* when all the devices are gone clean up debugfs
1024
*/
1025
if (ccp_present())
1026
ccp5_debugfs_destroy();
1027
#endif
1028
1029
/* Disable and clear interrupts */
1030
ccp5_disable_queue_interrupts(ccp);
1031
for (i = 0; i < ccp->cmd_q_count; i++) {
1032
cmd_q = &ccp->cmd_q[i];
1033
1034
/* Turn off the run bit */
1035
iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
1036
1037
/* Clear the interrupt status */
1038
iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
1039
ioread32(cmd_q->reg_int_status);
1040
ioread32(cmd_q->reg_status);
1041
}
1042
1043
/* Stop the queue kthreads */
1044
for (i = 0; i < ccp->cmd_q_count; i++)
1045
if (ccp->cmd_q[i].kthread)
1046
kthread_stop(ccp->cmd_q[i].kthread);
1047
1048
sp_free_ccp_irq(ccp->sp, ccp);
1049
1050
/* Flush the cmd and backlog queue */
1051
while (!list_empty(&ccp->cmd)) {
1052
/* Invoke the callback directly with an error code */
1053
cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
1054
list_del(&cmd->entry);
1055
cmd->callback(cmd->data, -ENODEV);
1056
}
1057
while (!list_empty(&ccp->backlog)) {
1058
/* Invoke the callback directly with an error code */
1059
cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
1060
list_del(&cmd->entry);
1061
cmd->callback(cmd->data, -ENODEV);
1062
}
1063
}
1064
1065
static void ccp5_config(struct ccp_device *ccp)
1066
{
1067
/* Public side */
1068
iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
1069
}
1070
1071
static void ccp5other_config(struct ccp_device *ccp)
1072
{
1073
int i;
1074
u32 rnd;
1075
1076
/* We own all of the queues on the NTB CCP */
1077
1078
iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
1079
iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
1080
for (i = 0; i < 12; i++) {
1081
rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
1082
iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
1083
}
1084
1085
iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
1086
iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
1087
iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
1088
1089
iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
1090
iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
1091
1092
iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
1093
1094
ccp5_config(ccp);
1095
}
1096
1097
/* Version 5 adds some function, but is essentially the same as v5 */
1098
static const struct ccp_actions ccp5_actions = {
1099
.aes = ccp5_perform_aes,
1100
.xts_aes = ccp5_perform_xts_aes,
1101
.sha = ccp5_perform_sha,
1102
.des3 = ccp5_perform_des3,
1103
.rsa = ccp5_perform_rsa,
1104
.passthru = ccp5_perform_passthru,
1105
.ecc = ccp5_perform_ecc,
1106
.sballoc = ccp_lsb_alloc,
1107
.sbfree = ccp_lsb_free,
1108
.init = ccp5_init,
1109
.destroy = ccp5_destroy,
1110
.get_free_slots = ccp5_get_free_slots,
1111
};
1112
1113
const struct ccp_vdata ccpv5a = {
1114
.version = CCP_VERSION(5, 0),
1115
.setup = ccp5_config,
1116
.perform = &ccp5_actions,
1117
.offset = 0x0,
1118
.rsamax = CCP5_RSA_MAX_WIDTH,
1119
};
1120
1121
const struct ccp_vdata ccpv5b = {
1122
.version = CCP_VERSION(5, 0),
1123
.dma_chan_attr = DMA_PRIVATE,
1124
.setup = ccp5other_config,
1125
.perform = &ccp5_actions,
1126
.offset = 0x0,
1127
.rsamax = CCP5_RSA_MAX_WIDTH,
1128
};
1129
1130