Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/ccp/ccp-dev.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* AMD Cryptographic Coprocessor (CCP) driver
4
*
5
* Copyright (C) 2013,2019 Advanced Micro Devices, Inc.
6
*
7
* Author: Tom Lendacky <[email protected]>
8
* Author: Gary R Hook <[email protected]>
9
*/
10
11
#include <linux/module.h>
12
#include <linux/kernel.h>
13
#include <linux/kthread.h>
14
#include <linux/sched.h>
15
#include <linux/interrupt.h>
16
#include <linux/spinlock.h>
17
#include <linux/spinlock_types.h>
18
#include <linux/types.h>
19
#include <linux/mutex.h>
20
#include <linux/delay.h>
21
#include <linux/hw_random.h>
22
#include <linux/cpu.h>
23
#include <linux/atomic.h>
24
#ifdef CONFIG_X86
25
#include <asm/cpu_device_id.h>
26
#endif
27
#include <linux/ccp.h>
28
29
#include "ccp-dev.h"
30
31
#define MAX_CCPS 32
32
33
/* Limit CCP use to a specifed number of queues per device */
34
static unsigned int nqueues;
35
module_param(nqueues, uint, 0444);
36
MODULE_PARM_DESC(nqueues, "Number of queues per CCP (minimum 1; default: all available)");
37
38
/* Limit the maximum number of configured CCPs */
39
static atomic_t dev_count = ATOMIC_INIT(0);
40
static unsigned int max_devs = MAX_CCPS;
41
module_param(max_devs, uint, 0444);
42
MODULE_PARM_DESC(max_devs, "Maximum number of CCPs to enable (default: all; 0 disables all CCPs)");
43
44
struct ccp_tasklet_data {
45
struct completion completion;
46
struct ccp_cmd *cmd;
47
};
48
49
/* Human-readable error strings */
50
#define CCP_MAX_ERROR_CODE 64
51
static char *ccp_error_codes[] = {
52
"",
53
"ILLEGAL_ENGINE",
54
"ILLEGAL_KEY_ID",
55
"ILLEGAL_FUNCTION_TYPE",
56
"ILLEGAL_FUNCTION_MODE",
57
"ILLEGAL_FUNCTION_ENCRYPT",
58
"ILLEGAL_FUNCTION_SIZE",
59
"Zlib_MISSING_INIT_EOM",
60
"ILLEGAL_FUNCTION_RSVD",
61
"ILLEGAL_BUFFER_LENGTH",
62
"VLSB_FAULT",
63
"ILLEGAL_MEM_ADDR",
64
"ILLEGAL_MEM_SEL",
65
"ILLEGAL_CONTEXT_ID",
66
"ILLEGAL_KEY_ADDR",
67
"0xF Reserved",
68
"Zlib_ILLEGAL_MULTI_QUEUE",
69
"Zlib_ILLEGAL_JOBID_CHANGE",
70
"CMD_TIMEOUT",
71
"IDMA0_AXI_SLVERR",
72
"IDMA0_AXI_DECERR",
73
"0x15 Reserved",
74
"IDMA1_AXI_SLAVE_FAULT",
75
"IDMA1_AIXI_DECERR",
76
"0x18 Reserved",
77
"ZLIBVHB_AXI_SLVERR",
78
"ZLIBVHB_AXI_DECERR",
79
"0x1B Reserved",
80
"ZLIB_UNEXPECTED_EOM",
81
"ZLIB_EXTRA_DATA",
82
"ZLIB_BTYPE",
83
"ZLIB_UNDEFINED_SYMBOL",
84
"ZLIB_UNDEFINED_DISTANCE_S",
85
"ZLIB_CODE_LENGTH_SYMBOL",
86
"ZLIB _VHB_ILLEGAL_FETCH",
87
"ZLIB_UNCOMPRESSED_LEN",
88
"ZLIB_LIMIT_REACHED",
89
"ZLIB_CHECKSUM_MISMATCH0",
90
"ODMA0_AXI_SLVERR",
91
"ODMA0_AXI_DECERR",
92
"0x28 Reserved",
93
"ODMA1_AXI_SLVERR",
94
"ODMA1_AXI_DECERR",
95
};
96
97
void ccp_log_error(struct ccp_device *d, unsigned int e)
98
{
99
if (WARN_ON(e >= CCP_MAX_ERROR_CODE))
100
return;
101
102
if (e < ARRAY_SIZE(ccp_error_codes))
103
dev_err(d->dev, "CCP error %d: %s\n", e, ccp_error_codes[e]);
104
else
105
dev_err(d->dev, "CCP error %d: Unknown Error\n", e);
106
}
107
108
/* List of CCPs, CCP count, read-write access lock, and access functions
109
*
110
* Lock structure: get ccp_unit_lock for reading whenever we need to
111
* examine the CCP list. While holding it for reading we can acquire
112
* the RR lock to update the round-robin next-CCP pointer. The unit lock
113
* must be acquired before the RR lock.
114
*
115
* If the unit-lock is acquired for writing, we have total control over
116
* the list, so there's no value in getting the RR lock.
117
*/
118
static DEFINE_RWLOCK(ccp_unit_lock);
119
static LIST_HEAD(ccp_units);
120
121
/* Round-robin counter */
122
static DEFINE_SPINLOCK(ccp_rr_lock);
123
static struct ccp_device *ccp_rr;
124
125
/**
126
* ccp_add_device - add a CCP device to the list
127
*
128
* @ccp: ccp_device struct pointer
129
*
130
* Put this CCP on the unit list, which makes it available
131
* for use.
132
*
133
* Returns zero if a CCP device is present, -ENODEV otherwise.
134
*/
135
void ccp_add_device(struct ccp_device *ccp)
136
{
137
unsigned long flags;
138
139
write_lock_irqsave(&ccp_unit_lock, flags);
140
list_add_tail(&ccp->entry, &ccp_units);
141
if (!ccp_rr)
142
/* We already have the list lock (we're first) so this
143
* pointer can't change on us. Set its initial value.
144
*/
145
ccp_rr = ccp;
146
write_unlock_irqrestore(&ccp_unit_lock, flags);
147
}
148
149
/**
150
* ccp_del_device - remove a CCP device from the list
151
*
152
* @ccp: ccp_device struct pointer
153
*
154
* Remove this unit from the list of devices. If the next device
155
* up for use is this one, adjust the pointer. If this is the last
156
* device, NULL the pointer.
157
*/
158
void ccp_del_device(struct ccp_device *ccp)
159
{
160
unsigned long flags;
161
162
write_lock_irqsave(&ccp_unit_lock, flags);
163
if (ccp_rr == ccp) {
164
/* ccp_unit_lock is read/write; any read access
165
* will be suspended while we make changes to the
166
* list and RR pointer.
167
*/
168
if (list_is_last(&ccp_rr->entry, &ccp_units))
169
ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
170
entry);
171
else
172
ccp_rr = list_next_entry(ccp_rr, entry);
173
}
174
list_del(&ccp->entry);
175
if (list_empty(&ccp_units))
176
ccp_rr = NULL;
177
write_unlock_irqrestore(&ccp_unit_lock, flags);
178
}
179
180
181
182
int ccp_register_rng(struct ccp_device *ccp)
183
{
184
int ret = 0;
185
186
dev_dbg(ccp->dev, "Registering RNG...\n");
187
/* Register an RNG */
188
ccp->hwrng.name = ccp->rngname;
189
ccp->hwrng.read = ccp_trng_read;
190
ret = hwrng_register(&ccp->hwrng);
191
if (ret)
192
dev_err(ccp->dev, "error registering hwrng (%d)\n", ret);
193
194
return ret;
195
}
196
197
void ccp_unregister_rng(struct ccp_device *ccp)
198
{
199
if (ccp->hwrng.name)
200
hwrng_unregister(&ccp->hwrng);
201
}
202
203
static struct ccp_device *ccp_get_device(void)
204
{
205
unsigned long flags;
206
struct ccp_device *dp = NULL;
207
208
/* We round-robin through the unit list.
209
* The (ccp_rr) pointer refers to the next unit to use.
210
*/
211
read_lock_irqsave(&ccp_unit_lock, flags);
212
if (!list_empty(&ccp_units)) {
213
spin_lock(&ccp_rr_lock);
214
dp = ccp_rr;
215
if (list_is_last(&ccp_rr->entry, &ccp_units))
216
ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
217
entry);
218
else
219
ccp_rr = list_next_entry(ccp_rr, entry);
220
spin_unlock(&ccp_rr_lock);
221
}
222
read_unlock_irqrestore(&ccp_unit_lock, flags);
223
224
return dp;
225
}
226
227
/**
228
* ccp_present - check if a CCP device is present
229
*
230
* Returns zero if a CCP device is present, -ENODEV otherwise.
231
*/
232
int ccp_present(void)
233
{
234
unsigned long flags;
235
int ret;
236
237
read_lock_irqsave(&ccp_unit_lock, flags);
238
ret = list_empty(&ccp_units);
239
read_unlock_irqrestore(&ccp_unit_lock, flags);
240
241
return ret ? -ENODEV : 0;
242
}
243
EXPORT_SYMBOL_GPL(ccp_present);
244
245
/**
246
* ccp_version - get the version of the CCP device
247
*
248
* Returns the version from the first unit on the list;
249
* otherwise a zero if no CCP device is present
250
*/
251
unsigned int ccp_version(void)
252
{
253
struct ccp_device *dp;
254
unsigned long flags;
255
int ret = 0;
256
257
read_lock_irqsave(&ccp_unit_lock, flags);
258
if (!list_empty(&ccp_units)) {
259
dp = list_first_entry(&ccp_units, struct ccp_device, entry);
260
ret = dp->vdata->version;
261
}
262
read_unlock_irqrestore(&ccp_unit_lock, flags);
263
264
return ret;
265
}
266
EXPORT_SYMBOL_GPL(ccp_version);
267
268
/**
269
* ccp_enqueue_cmd - queue an operation for processing by the CCP
270
*
271
* @cmd: ccp_cmd struct to be processed
272
*
273
* Queue a cmd to be processed by the CCP. If queueing the cmd
274
* would exceed the defined length of the cmd queue the cmd will
275
* only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
276
* result in a return code of -EBUSY.
277
*
278
* The callback routine specified in the ccp_cmd struct will be
279
* called to notify the caller of completion (if the cmd was not
280
* backlogged) or advancement out of the backlog. If the cmd has
281
* advanced out of the backlog the "err" value of the callback
282
* will be -EINPROGRESS. Any other "err" value during callback is
283
* the result of the operation.
284
*
285
* The cmd has been successfully queued if:
286
* the return code is -EINPROGRESS or
287
* the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
288
*/
289
int ccp_enqueue_cmd(struct ccp_cmd *cmd)
290
{
291
struct ccp_device *ccp;
292
unsigned long flags;
293
unsigned int i;
294
int ret;
295
296
/* Some commands might need to be sent to a specific device */
297
ccp = cmd->ccp ? cmd->ccp : ccp_get_device();
298
299
if (!ccp)
300
return -ENODEV;
301
302
/* Caller must supply a callback routine */
303
if (!cmd->callback)
304
return -EINVAL;
305
306
cmd->ccp = ccp;
307
308
spin_lock_irqsave(&ccp->cmd_lock, flags);
309
310
i = ccp->cmd_q_count;
311
312
if (ccp->cmd_count >= MAX_CMD_QLEN) {
313
if (cmd->flags & CCP_CMD_MAY_BACKLOG) {
314
ret = -EBUSY;
315
list_add_tail(&cmd->entry, &ccp->backlog);
316
} else {
317
ret = -ENOSPC;
318
}
319
} else {
320
ret = -EINPROGRESS;
321
ccp->cmd_count++;
322
list_add_tail(&cmd->entry, &ccp->cmd);
323
324
/* Find an idle queue */
325
if (!ccp->suspending) {
326
for (i = 0; i < ccp->cmd_q_count; i++) {
327
if (ccp->cmd_q[i].active)
328
continue;
329
330
break;
331
}
332
}
333
}
334
335
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
336
337
/* If we found an idle queue, wake it up */
338
if (i < ccp->cmd_q_count)
339
wake_up_process(ccp->cmd_q[i].kthread);
340
341
return ret;
342
}
343
EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
344
345
static void ccp_do_cmd_backlog(struct work_struct *work)
346
{
347
struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
348
struct ccp_device *ccp = cmd->ccp;
349
unsigned long flags;
350
unsigned int i;
351
352
cmd->callback(cmd->data, -EINPROGRESS);
353
354
spin_lock_irqsave(&ccp->cmd_lock, flags);
355
356
ccp->cmd_count++;
357
list_add_tail(&cmd->entry, &ccp->cmd);
358
359
/* Find an idle queue */
360
for (i = 0; i < ccp->cmd_q_count; i++) {
361
if (ccp->cmd_q[i].active)
362
continue;
363
364
break;
365
}
366
367
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
368
369
/* If we found an idle queue, wake it up */
370
if (i < ccp->cmd_q_count)
371
wake_up_process(ccp->cmd_q[i].kthread);
372
}
373
374
static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
375
{
376
struct ccp_device *ccp = cmd_q->ccp;
377
struct ccp_cmd *cmd = NULL;
378
struct ccp_cmd *backlog = NULL;
379
unsigned long flags;
380
381
spin_lock_irqsave(&ccp->cmd_lock, flags);
382
383
cmd_q->active = 0;
384
385
if (ccp->suspending) {
386
cmd_q->suspended = 1;
387
388
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
389
wake_up_interruptible(&ccp->suspend_queue);
390
391
return NULL;
392
}
393
394
if (ccp->cmd_count) {
395
cmd_q->active = 1;
396
397
cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
398
list_del(&cmd->entry);
399
400
ccp->cmd_count--;
401
}
402
403
if (!list_empty(&ccp->backlog)) {
404
backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
405
entry);
406
list_del(&backlog->entry);
407
}
408
409
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
410
411
if (backlog) {
412
INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
413
schedule_work(&backlog->work);
414
}
415
416
return cmd;
417
}
418
419
static void ccp_do_cmd_complete(unsigned long data)
420
{
421
struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data;
422
struct ccp_cmd *cmd = tdata->cmd;
423
424
cmd->callback(cmd->data, cmd->ret);
425
426
complete(&tdata->completion);
427
}
428
429
/**
430
* ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue
431
*
432
* @data: thread-specific data
433
*/
434
int ccp_cmd_queue_thread(void *data)
435
{
436
struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
437
struct ccp_cmd *cmd;
438
struct ccp_tasklet_data tdata;
439
struct tasklet_struct tasklet;
440
441
tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata);
442
443
set_current_state(TASK_INTERRUPTIBLE);
444
while (!kthread_should_stop()) {
445
schedule();
446
447
set_current_state(TASK_INTERRUPTIBLE);
448
449
cmd = ccp_dequeue_cmd(cmd_q);
450
if (!cmd)
451
continue;
452
453
__set_current_state(TASK_RUNNING);
454
455
/* Execute the command */
456
cmd->ret = ccp_run_cmd(cmd_q, cmd);
457
458
/* Schedule the completion callback */
459
tdata.cmd = cmd;
460
init_completion(&tdata.completion);
461
tasklet_schedule(&tasklet);
462
wait_for_completion(&tdata.completion);
463
}
464
465
__set_current_state(TASK_RUNNING);
466
467
return 0;
468
}
469
470
/**
471
* ccp_alloc_struct - allocate and initialize the ccp_device struct
472
*
473
* @sp: sp_device struct of the CCP
474
*/
475
struct ccp_device *ccp_alloc_struct(struct sp_device *sp)
476
{
477
struct device *dev = sp->dev;
478
struct ccp_device *ccp;
479
480
ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL);
481
if (!ccp)
482
return NULL;
483
ccp->dev = dev;
484
ccp->sp = sp;
485
ccp->axcache = sp->axcache;
486
487
INIT_LIST_HEAD(&ccp->cmd);
488
INIT_LIST_HEAD(&ccp->backlog);
489
490
spin_lock_init(&ccp->cmd_lock);
491
mutex_init(&ccp->req_mutex);
492
mutex_init(&ccp->sb_mutex);
493
ccp->sb_count = KSB_COUNT;
494
ccp->sb_start = 0;
495
496
/* Initialize the wait queues */
497
init_waitqueue_head(&ccp->sb_queue);
498
init_waitqueue_head(&ccp->suspend_queue);
499
500
snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", sp->ord);
501
snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", sp->ord);
502
503
return ccp;
504
}
505
506
int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
507
{
508
struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
509
u32 trng_value;
510
int len = min_t(int, sizeof(trng_value), max);
511
512
/* Locking is provided by the caller so we can update device
513
* hwrng-related fields safely
514
*/
515
trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
516
if (!trng_value) {
517
/* Zero is returned if not data is available or if a
518
* bad-entropy error is present. Assume an error if
519
* we exceed TRNG_RETRIES reads of zero.
520
*/
521
if (ccp->hwrng_retries++ > TRNG_RETRIES)
522
return -EIO;
523
524
return 0;
525
}
526
527
/* Reset the counter and save the rng value */
528
ccp->hwrng_retries = 0;
529
memcpy(data, &trng_value, len);
530
531
return len;
532
}
533
534
bool ccp_queues_suspended(struct ccp_device *ccp)
535
{
536
unsigned int suspended = 0;
537
unsigned long flags;
538
unsigned int i;
539
540
spin_lock_irqsave(&ccp->cmd_lock, flags);
541
542
for (i = 0; i < ccp->cmd_q_count; i++)
543
if (ccp->cmd_q[i].suspended)
544
suspended++;
545
546
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
547
548
return ccp->cmd_q_count == suspended;
549
}
550
551
void ccp_dev_suspend(struct sp_device *sp)
552
{
553
struct ccp_device *ccp = sp->ccp_data;
554
unsigned long flags;
555
unsigned int i;
556
557
/* If there's no device there's nothing to do */
558
if (!ccp)
559
return;
560
561
spin_lock_irqsave(&ccp->cmd_lock, flags);
562
563
ccp->suspending = 1;
564
565
/* Wake all the queue kthreads to prepare for suspend */
566
for (i = 0; i < ccp->cmd_q_count; i++)
567
wake_up_process(ccp->cmd_q[i].kthread);
568
569
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
570
571
/* Wait for all queue kthreads to say they're done */
572
while (!ccp_queues_suspended(ccp))
573
wait_event_interruptible(ccp->suspend_queue,
574
ccp_queues_suspended(ccp));
575
}
576
577
void ccp_dev_resume(struct sp_device *sp)
578
{
579
struct ccp_device *ccp = sp->ccp_data;
580
unsigned long flags;
581
unsigned int i;
582
583
/* If there's no device there's nothing to do */
584
if (!ccp)
585
return;
586
587
spin_lock_irqsave(&ccp->cmd_lock, flags);
588
589
ccp->suspending = 0;
590
591
/* Wake up all the kthreads */
592
for (i = 0; i < ccp->cmd_q_count; i++) {
593
ccp->cmd_q[i].suspended = 0;
594
wake_up_process(ccp->cmd_q[i].kthread);
595
}
596
597
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
598
}
599
600
int ccp_dev_init(struct sp_device *sp)
601
{
602
struct device *dev = sp->dev;
603
struct ccp_device *ccp;
604
int ret;
605
606
/*
607
* Check how many we have so far, and stop after reaching
608
* that number
609
*/
610
if (atomic_inc_return(&dev_count) > max_devs)
611
return 0; /* don't fail the load */
612
613
ret = -ENOMEM;
614
ccp = ccp_alloc_struct(sp);
615
if (!ccp)
616
goto e_err;
617
sp->ccp_data = ccp;
618
619
if (!nqueues || (nqueues > MAX_HW_QUEUES))
620
ccp->max_q_count = MAX_HW_QUEUES;
621
else
622
ccp->max_q_count = nqueues;
623
624
ccp->vdata = (struct ccp_vdata *)sp->dev_vdata->ccp_vdata;
625
if (!ccp->vdata || !ccp->vdata->version) {
626
ret = -ENODEV;
627
dev_err(dev, "missing driver data\n");
628
goto e_err;
629
}
630
631
ccp->use_tasklet = sp->use_tasklet;
632
633
ccp->io_regs = sp->io_map + ccp->vdata->offset;
634
if (ccp->vdata->setup)
635
ccp->vdata->setup(ccp);
636
637
ret = ccp->vdata->perform->init(ccp);
638
if (ret) {
639
/* A positive number means that the device cannot be initialized,
640
* but no additional message is required.
641
*/
642
if (ret > 0)
643
goto e_quiet;
644
645
/* An unexpected problem occurred, and should be reported in the log */
646
goto e_err;
647
}
648
649
dev_notice(dev, "ccp enabled\n");
650
651
return 0;
652
653
e_err:
654
dev_notice(dev, "ccp initialization failed\n");
655
656
e_quiet:
657
sp->ccp_data = NULL;
658
659
return ret;
660
}
661
662
void ccp_dev_destroy(struct sp_device *sp)
663
{
664
struct ccp_device *ccp = sp->ccp_data;
665
666
if (!ccp)
667
return;
668
669
ccp->vdata->perform->destroy(ccp);
670
}
671
672