Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/ccp/sev-dev.c
49644 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* AMD Secure Encrypted Virtualization (SEV) interface
4
*
5
* Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6
*
7
* Author: Brijesh Singh <[email protected]>
8
*/
9
10
#include <linux/bitfield.h>
11
#include <linux/module.h>
12
#include <linux/kernel.h>
13
#include <linux/kthread.h>
14
#include <linux/sched.h>
15
#include <linux/interrupt.h>
16
#include <linux/spinlock.h>
17
#include <linux/spinlock_types.h>
18
#include <linux/types.h>
19
#include <linux/mutex.h>
20
#include <linux/delay.h>
21
#include <linux/hw_random.h>
22
#include <linux/ccp.h>
23
#include <linux/firmware.h>
24
#include <linux/panic_notifier.h>
25
#include <linux/gfp.h>
26
#include <linux/cpufeature.h>
27
#include <linux/fs.h>
28
#include <linux/fs_struct.h>
29
#include <linux/psp.h>
30
#include <linux/amd-iommu.h>
31
#include <linux/crash_dump.h>
32
33
#include <asm/smp.h>
34
#include <asm/cacheflush.h>
35
#include <asm/e820/types.h>
36
#include <asm/sev.h>
37
#include <asm/msr.h>
38
39
#include "psp-dev.h"
40
#include "sev-dev.h"
41
42
#define DEVICE_NAME "sev"
43
#define SEV_FW_FILE "amd/sev.fw"
44
#define SEV_FW_NAME_SIZE 64
45
46
/* Minimum firmware version required for the SEV-SNP support */
47
#define SNP_MIN_API_MAJOR 1
48
#define SNP_MIN_API_MINOR 51
49
50
/*
51
* Maximum number of firmware-writable buffers that might be specified
52
* in the parameters of a legacy SEV command buffer.
53
*/
54
#define CMD_BUF_FW_WRITABLE_MAX 2
55
56
/* Leave room in the descriptor array for an end-of-list indicator. */
57
#define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
58
59
static DEFINE_MUTEX(sev_cmd_mutex);
60
static struct sev_misc_dev *misc_dev;
61
62
static int psp_cmd_timeout = 100;
63
module_param(psp_cmd_timeout, int, 0644);
64
MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
65
66
static int psp_probe_timeout = 5;
67
module_param(psp_probe_timeout, int, 0644);
68
MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
69
70
static char *init_ex_path;
71
module_param(init_ex_path, charp, 0444);
72
MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
73
74
static bool psp_init_on_probe = true;
75
module_param(psp_init_on_probe, bool, 0444);
76
MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
77
78
#if IS_ENABLED(CONFIG_PCI_TSM)
79
static bool sev_tio_enabled = true;
80
module_param_named(tio, sev_tio_enabled, bool, 0444);
81
MODULE_PARM_DESC(tio, "Enables TIO in SNP_INIT_EX");
82
#else
83
static const bool sev_tio_enabled = false;
84
#endif
85
86
MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
87
MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
88
MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
89
MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
90
91
static bool psp_dead;
92
static int psp_timeout;
93
94
enum snp_hv_fixed_pages_state {
95
ALLOCATED,
96
HV_FIXED,
97
};
98
99
struct snp_hv_fixed_pages_entry {
100
struct list_head list;
101
struct page *page;
102
unsigned int order;
103
bool free;
104
enum snp_hv_fixed_pages_state page_state;
105
};
106
107
static LIST_HEAD(snp_hv_fixed_pages);
108
109
/* Trusted Memory Region (TMR):
110
* The TMR is a 1MB area that must be 1MB aligned. Use the page allocator
111
* to allocate the memory, which will return aligned memory for the specified
112
* allocation order.
113
*
114
* When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
115
*/
116
#define SEV_TMR_SIZE (1024 * 1024)
117
#define SNP_TMR_SIZE (2 * 1024 * 1024)
118
119
static void *sev_es_tmr;
120
static size_t sev_es_tmr_size = SEV_TMR_SIZE;
121
122
/* INIT_EX NV Storage:
123
* The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page
124
* allocator to allocate the memory, which will return aligned memory for the
125
* specified allocation order.
126
*/
127
#define NV_LENGTH (32 * 1024)
128
static void *sev_init_ex_buffer;
129
130
/*
131
* SEV_DATA_RANGE_LIST:
132
* Array containing range of pages that firmware transitions to HV-fixed
133
* page state.
134
*/
135
static struct sev_data_range_list *snp_range_list;
136
137
static void __sev_firmware_shutdown(struct sev_device *sev, bool panic);
138
139
static int snp_shutdown_on_panic(struct notifier_block *nb,
140
unsigned long reason, void *arg);
141
142
static struct notifier_block snp_panic_notifier = {
143
.notifier_call = snp_shutdown_on_panic,
144
};
145
146
static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
147
{
148
struct sev_device *sev = psp_master->sev_data;
149
150
if (sev->api_major > maj)
151
return true;
152
153
if (sev->api_major == maj && sev->api_minor >= min)
154
return true;
155
156
return false;
157
}
158
159
static void sev_irq_handler(int irq, void *data, unsigned int status)
160
{
161
struct sev_device *sev = data;
162
int reg;
163
164
/* Check if it is command completion: */
165
if (!(status & SEV_CMD_COMPLETE))
166
return;
167
168
/* Check if it is SEV command completion: */
169
reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
170
if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
171
sev->int_rcvd = 1;
172
wake_up(&sev->int_queue);
173
}
174
}
175
176
static int sev_wait_cmd_ioc(struct sev_device *sev,
177
unsigned int *reg, unsigned int timeout)
178
{
179
int ret;
180
181
/*
182
* If invoked during panic handling, local interrupts are disabled,
183
* so the PSP command completion interrupt can't be used. Poll for
184
* PSP command completion instead.
185
*/
186
if (irqs_disabled()) {
187
unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
188
189
/* Poll for SEV command completion: */
190
while (timeout_usecs--) {
191
*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
192
if (*reg & PSP_CMDRESP_RESP)
193
return 0;
194
195
udelay(10);
196
}
197
return -ETIMEDOUT;
198
}
199
200
ret = wait_event_timeout(sev->int_queue,
201
sev->int_rcvd, timeout * HZ);
202
if (!ret)
203
return -ETIMEDOUT;
204
205
*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
206
207
return 0;
208
}
209
210
static int sev_cmd_buffer_len(int cmd)
211
{
212
switch (cmd) {
213
case SEV_CMD_INIT: return sizeof(struct sev_data_init);
214
case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex);
215
case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex);
216
case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex);
217
case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status);
218
case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr);
219
case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import);
220
case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export);
221
case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start);
222
case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data);
223
case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa);
224
case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish);
225
case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure);
226
case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate);
227
case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate);
228
case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission);
229
case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status);
230
case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg);
231
case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg);
232
case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start);
233
case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data);
234
case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa);
235
case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish);
236
case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start);
237
case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish);
238
case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data);
239
case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa);
240
case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret);
241
case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware);
242
case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id);
243
case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report);
244
case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel);
245
case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr);
246
case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start);
247
case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update);
248
case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate);
249
case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr);
250
case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim);
251
case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status);
252
case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish);
253
case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg);
254
case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg);
255
case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash);
256
case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr);
257
case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request);
258
case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config);
259
case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit);
260
case SEV_CMD_SNP_FEATURE_INFO: return sizeof(struct sev_data_snp_feature_info);
261
case SEV_CMD_SNP_VLEK_LOAD: return sizeof(struct sev_user_data_snp_vlek_load);
262
default: return sev_tio_cmd_buffer_len(cmd);
263
}
264
265
return 0;
266
}
267
268
static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
269
{
270
struct path root __free(path_put) = {};
271
272
task_lock(&init_task);
273
get_fs_root(init_task.fs, &root);
274
task_unlock(&init_task);
275
276
CLASS(prepare_creds, cred)();
277
if (!cred)
278
return ERR_PTR(-ENOMEM);
279
280
cred->fsuid = GLOBAL_ROOT_UID;
281
282
scoped_with_creds(cred)
283
return file_open_root(&root, filename, flags, mode);
284
}
285
286
static int sev_read_init_ex_file(void)
287
{
288
struct sev_device *sev = psp_master->sev_data;
289
struct file *fp;
290
ssize_t nread;
291
292
lockdep_assert_held(&sev_cmd_mutex);
293
294
if (!sev_init_ex_buffer)
295
return -EOPNOTSUPP;
296
297
fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
298
if (IS_ERR(fp)) {
299
int ret = PTR_ERR(fp);
300
301
if (ret == -ENOENT) {
302
dev_info(sev->dev,
303
"SEV: %s does not exist and will be created later.\n",
304
init_ex_path);
305
ret = 0;
306
} else {
307
dev_err(sev->dev,
308
"SEV: could not open %s for read, error %d\n",
309
init_ex_path, ret);
310
}
311
return ret;
312
}
313
314
nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
315
if (nread != NV_LENGTH) {
316
dev_info(sev->dev,
317
"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
318
NV_LENGTH, nread);
319
}
320
321
dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
322
filp_close(fp, NULL);
323
324
return 0;
325
}
326
327
static int sev_write_init_ex_file(void)
328
{
329
struct sev_device *sev = psp_master->sev_data;
330
struct file *fp;
331
loff_t offset = 0;
332
ssize_t nwrite;
333
334
lockdep_assert_held(&sev_cmd_mutex);
335
336
if (!sev_init_ex_buffer)
337
return 0;
338
339
fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
340
if (IS_ERR(fp)) {
341
int ret = PTR_ERR(fp);
342
343
dev_err(sev->dev,
344
"SEV: could not open file for write, error %d\n",
345
ret);
346
return ret;
347
}
348
349
nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
350
vfs_fsync(fp, 0);
351
filp_close(fp, NULL);
352
353
if (nwrite != NV_LENGTH) {
354
dev_err(sev->dev,
355
"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
356
NV_LENGTH, nwrite);
357
return -EIO;
358
}
359
360
dev_dbg(sev->dev, "SEV: write successful to NV file\n");
361
362
return 0;
363
}
364
365
static int sev_write_init_ex_file_if_required(int cmd_id)
366
{
367
lockdep_assert_held(&sev_cmd_mutex);
368
369
if (!sev_init_ex_buffer)
370
return 0;
371
372
/*
373
* Only a few platform commands modify the SPI/NV area, but none of the
374
* non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
375
* PEK_CERT_IMPORT, and PDH_GEN do.
376
*/
377
switch (cmd_id) {
378
case SEV_CMD_FACTORY_RESET:
379
case SEV_CMD_INIT_EX:
380
case SEV_CMD_PDH_GEN:
381
case SEV_CMD_PEK_CERT_IMPORT:
382
case SEV_CMD_PEK_GEN:
383
break;
384
default:
385
return 0;
386
}
387
388
return sev_write_init_ex_file();
389
}
390
391
int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
392
{
393
int ret, err, i;
394
395
paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
396
397
for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
398
struct sev_data_snp_page_reclaim data = {0};
399
400
data.paddr = paddr;
401
402
if (locked)
403
ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
404
else
405
ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
406
407
if (ret)
408
goto cleanup;
409
410
ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
411
if (ret)
412
goto cleanup;
413
}
414
415
return 0;
416
417
cleanup:
418
/*
419
* If there was a failure reclaiming the page then it is no longer safe
420
* to release it back to the system; leak it instead.
421
*/
422
snp_leak_pages(__phys_to_pfn(paddr), npages - i);
423
return ret;
424
}
425
EXPORT_SYMBOL_GPL(snp_reclaim_pages);
426
427
static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
428
{
429
unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
430
int rc, i;
431
432
for (i = 0; i < npages; i++, pfn++) {
433
rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
434
if (rc)
435
goto cleanup;
436
}
437
438
return 0;
439
440
cleanup:
441
/*
442
* Try unrolling the firmware state changes by
443
* reclaiming the pages which were already changed to the
444
* firmware state.
445
*/
446
snp_reclaim_pages(paddr, i, locked);
447
448
return rc;
449
}
450
451
static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked)
452
{
453
unsigned long npages = 1ul << order, paddr;
454
struct sev_device *sev;
455
struct page *page;
456
457
if (!psp_master || !psp_master->sev_data)
458
return NULL;
459
460
page = alloc_pages(gfp_mask, order);
461
if (!page)
462
return NULL;
463
464
/* If SEV-SNP is initialized then add the page in RMP table. */
465
sev = psp_master->sev_data;
466
if (!sev->snp_initialized)
467
return page;
468
469
paddr = __pa((unsigned long)page_address(page));
470
if (rmp_mark_pages_firmware(paddr, npages, locked))
471
return NULL;
472
473
return page;
474
}
475
476
void *snp_alloc_firmware_page(gfp_t gfp_mask)
477
{
478
struct page *page;
479
480
page = __snp_alloc_firmware_pages(gfp_mask, 0, false);
481
482
return page ? page_address(page) : NULL;
483
}
484
EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
485
486
static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
487
{
488
struct sev_device *sev = psp_master->sev_data;
489
unsigned long paddr, npages = 1ul << order;
490
491
if (!page)
492
return;
493
494
paddr = __pa((unsigned long)page_address(page));
495
if (sev->snp_initialized &&
496
snp_reclaim_pages(paddr, npages, locked))
497
return;
498
499
__free_pages(page, order);
500
}
501
502
void snp_free_firmware_page(void *addr)
503
{
504
if (!addr)
505
return;
506
507
__snp_free_firmware_pages(virt_to_page(addr), 0, false);
508
}
509
EXPORT_SYMBOL_GPL(snp_free_firmware_page);
510
511
static void *sev_fw_alloc(unsigned long len)
512
{
513
struct page *page;
514
515
page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true);
516
if (!page)
517
return NULL;
518
519
return page_address(page);
520
}
521
522
/**
523
* struct cmd_buf_desc - descriptors for managing legacy SEV command address
524
* parameters corresponding to buffers that may be written to by firmware.
525
*
526
* @paddr_ptr: pointer to the address parameter in the command buffer which may
527
* need to be saved/restored depending on whether a bounce buffer
528
* is used. In the case of a bounce buffer, the command buffer
529
* needs to be updated with the address of the new bounce buffer
530
* snp_map_cmd_buf_desc() has allocated specifically for it. Must
531
* be NULL if this descriptor is only an end-of-list indicator.
532
*
533
* @paddr_orig: storage for the original address parameter, which can be used to
534
* restore the original value in @paddr_ptr in cases where it is
535
* replaced with the address of a bounce buffer.
536
*
537
* @len: length of buffer located at the address originally stored at @paddr_ptr
538
*
539
* @guest_owned: true if the address corresponds to guest-owned pages, in which
540
* case bounce buffers are not needed.
541
*/
542
struct cmd_buf_desc {
543
u64 *paddr_ptr;
544
u64 paddr_orig;
545
u32 len;
546
bool guest_owned;
547
};
548
549
/*
550
* If a legacy SEV command parameter is a memory address, those pages in
551
* turn need to be transitioned to/from firmware-owned before/after
552
* executing the firmware command.
553
*
554
* Additionally, in cases where those pages are not guest-owned, a bounce
555
* buffer is needed in place of the original memory address parameter.
556
*
557
* A set of descriptors are used to keep track of this handling, and
558
* initialized here based on the specific commands being executed.
559
*/
560
static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
561
struct cmd_buf_desc *desc_list)
562
{
563
switch (cmd) {
564
case SEV_CMD_PDH_CERT_EXPORT: {
565
struct sev_data_pdh_cert_export *data = cmd_buf;
566
567
desc_list[0].paddr_ptr = &data->pdh_cert_address;
568
desc_list[0].len = data->pdh_cert_len;
569
desc_list[1].paddr_ptr = &data->cert_chain_address;
570
desc_list[1].len = data->cert_chain_len;
571
break;
572
}
573
case SEV_CMD_GET_ID: {
574
struct sev_data_get_id *data = cmd_buf;
575
576
desc_list[0].paddr_ptr = &data->address;
577
desc_list[0].len = data->len;
578
break;
579
}
580
case SEV_CMD_PEK_CSR: {
581
struct sev_data_pek_csr *data = cmd_buf;
582
583
desc_list[0].paddr_ptr = &data->address;
584
desc_list[0].len = data->len;
585
break;
586
}
587
case SEV_CMD_LAUNCH_UPDATE_DATA: {
588
struct sev_data_launch_update_data *data = cmd_buf;
589
590
desc_list[0].paddr_ptr = &data->address;
591
desc_list[0].len = data->len;
592
desc_list[0].guest_owned = true;
593
break;
594
}
595
case SEV_CMD_LAUNCH_UPDATE_VMSA: {
596
struct sev_data_launch_update_vmsa *data = cmd_buf;
597
598
desc_list[0].paddr_ptr = &data->address;
599
desc_list[0].len = data->len;
600
desc_list[0].guest_owned = true;
601
break;
602
}
603
case SEV_CMD_LAUNCH_MEASURE: {
604
struct sev_data_launch_measure *data = cmd_buf;
605
606
desc_list[0].paddr_ptr = &data->address;
607
desc_list[0].len = data->len;
608
break;
609
}
610
case SEV_CMD_LAUNCH_UPDATE_SECRET: {
611
struct sev_data_launch_secret *data = cmd_buf;
612
613
desc_list[0].paddr_ptr = &data->guest_address;
614
desc_list[0].len = data->guest_len;
615
desc_list[0].guest_owned = true;
616
break;
617
}
618
case SEV_CMD_DBG_DECRYPT: {
619
struct sev_data_dbg *data = cmd_buf;
620
621
desc_list[0].paddr_ptr = &data->dst_addr;
622
desc_list[0].len = data->len;
623
desc_list[0].guest_owned = true;
624
break;
625
}
626
case SEV_CMD_DBG_ENCRYPT: {
627
struct sev_data_dbg *data = cmd_buf;
628
629
desc_list[0].paddr_ptr = &data->dst_addr;
630
desc_list[0].len = data->len;
631
desc_list[0].guest_owned = true;
632
break;
633
}
634
case SEV_CMD_ATTESTATION_REPORT: {
635
struct sev_data_attestation_report *data = cmd_buf;
636
637
desc_list[0].paddr_ptr = &data->address;
638
desc_list[0].len = data->len;
639
break;
640
}
641
case SEV_CMD_SEND_START: {
642
struct sev_data_send_start *data = cmd_buf;
643
644
desc_list[0].paddr_ptr = &data->session_address;
645
desc_list[0].len = data->session_len;
646
break;
647
}
648
case SEV_CMD_SEND_UPDATE_DATA: {
649
struct sev_data_send_update_data *data = cmd_buf;
650
651
desc_list[0].paddr_ptr = &data->hdr_address;
652
desc_list[0].len = data->hdr_len;
653
desc_list[1].paddr_ptr = &data->trans_address;
654
desc_list[1].len = data->trans_len;
655
break;
656
}
657
case SEV_CMD_SEND_UPDATE_VMSA: {
658
struct sev_data_send_update_vmsa *data = cmd_buf;
659
660
desc_list[0].paddr_ptr = &data->hdr_address;
661
desc_list[0].len = data->hdr_len;
662
desc_list[1].paddr_ptr = &data->trans_address;
663
desc_list[1].len = data->trans_len;
664
break;
665
}
666
case SEV_CMD_RECEIVE_UPDATE_DATA: {
667
struct sev_data_receive_update_data *data = cmd_buf;
668
669
desc_list[0].paddr_ptr = &data->guest_address;
670
desc_list[0].len = data->guest_len;
671
desc_list[0].guest_owned = true;
672
break;
673
}
674
case SEV_CMD_RECEIVE_UPDATE_VMSA: {
675
struct sev_data_receive_update_vmsa *data = cmd_buf;
676
677
desc_list[0].paddr_ptr = &data->guest_address;
678
desc_list[0].len = data->guest_len;
679
desc_list[0].guest_owned = true;
680
break;
681
}
682
default:
683
break;
684
}
685
}
686
687
static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
688
{
689
unsigned int npages;
690
691
if (!desc->len)
692
return 0;
693
694
/* Allocate a bounce buffer if this isn't a guest owned page. */
695
if (!desc->guest_owned) {
696
struct page *page;
697
698
page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
699
if (!page) {
700
pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
701
return -ENOMEM;
702
}
703
704
desc->paddr_orig = *desc->paddr_ptr;
705
*desc->paddr_ptr = __psp_pa(page_to_virt(page));
706
}
707
708
npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
709
710
/* Transition the buffer to firmware-owned. */
711
if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
712
pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
713
return -EFAULT;
714
}
715
716
return 0;
717
}
718
719
static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
720
{
721
unsigned int npages;
722
723
if (!desc->len)
724
return 0;
725
726
npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
727
728
/* Transition the buffers back to hypervisor-owned. */
729
if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
730
pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
731
return -EFAULT;
732
}
733
734
/* Copy data from bounce buffer and then free it. */
735
if (!desc->guest_owned) {
736
void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
737
void *dst_buf = __va(__sme_clr(desc->paddr_orig));
738
739
memcpy(dst_buf, bounce_buf, desc->len);
740
__free_pages(virt_to_page(bounce_buf), get_order(desc->len));
741
742
/* Restore the original address in the command buffer. */
743
*desc->paddr_ptr = desc->paddr_orig;
744
}
745
746
return 0;
747
}
748
749
static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
750
{
751
int i;
752
753
snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
754
755
for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
756
struct cmd_buf_desc *desc = &desc_list[i];
757
758
if (!desc->paddr_ptr)
759
break;
760
761
if (snp_map_cmd_buf_desc(desc))
762
goto err_unmap;
763
}
764
765
return 0;
766
767
err_unmap:
768
for (i--; i >= 0; i--)
769
snp_unmap_cmd_buf_desc(&desc_list[i]);
770
771
return -EFAULT;
772
}
773
774
static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
775
{
776
int i, ret = 0;
777
778
for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
779
struct cmd_buf_desc *desc = &desc_list[i];
780
781
if (!desc->paddr_ptr)
782
break;
783
784
if (snp_unmap_cmd_buf_desc(&desc_list[i]))
785
ret = -EFAULT;
786
}
787
788
return ret;
789
}
790
791
static bool sev_cmd_buf_writable(int cmd)
792
{
793
switch (cmd) {
794
case SEV_CMD_PLATFORM_STATUS:
795
case SEV_CMD_GUEST_STATUS:
796
case SEV_CMD_LAUNCH_START:
797
case SEV_CMD_RECEIVE_START:
798
case SEV_CMD_LAUNCH_MEASURE:
799
case SEV_CMD_SEND_START:
800
case SEV_CMD_SEND_UPDATE_DATA:
801
case SEV_CMD_SEND_UPDATE_VMSA:
802
case SEV_CMD_PEK_CSR:
803
case SEV_CMD_PDH_CERT_EXPORT:
804
case SEV_CMD_GET_ID:
805
case SEV_CMD_ATTESTATION_REPORT:
806
return true;
807
default:
808
return false;
809
}
810
}
811
812
/* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
813
static bool snp_legacy_handling_needed(int cmd)
814
{
815
struct sev_device *sev = psp_master->sev_data;
816
817
return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
818
}
819
820
static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
821
{
822
if (!snp_legacy_handling_needed(cmd))
823
return 0;
824
825
if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
826
return -EFAULT;
827
828
/*
829
* Before command execution, the command buffer needs to be put into
830
* the firmware-owned state.
831
*/
832
if (sev_cmd_buf_writable(cmd)) {
833
if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
834
return -EFAULT;
835
}
836
837
return 0;
838
}
839
840
static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
841
{
842
if (!snp_legacy_handling_needed(cmd))
843
return 0;
844
845
/*
846
* After command completion, the command buffer needs to be put back
847
* into the hypervisor-owned state.
848
*/
849
if (sev_cmd_buf_writable(cmd))
850
if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
851
return -EFAULT;
852
853
return 0;
854
}
855
856
int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
857
{
858
struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
859
struct psp_device *psp = psp_master;
860
struct sev_device *sev;
861
unsigned int cmdbuff_hi, cmdbuff_lo;
862
unsigned int phys_lsb, phys_msb;
863
unsigned int reg;
864
void *cmd_buf;
865
int buf_len;
866
int ret = 0;
867
868
if (!psp || !psp->sev_data)
869
return -ENODEV;
870
871
if (psp_dead)
872
return -EBUSY;
873
874
sev = psp->sev_data;
875
876
buf_len = sev_cmd_buffer_len(cmd);
877
if (WARN_ON_ONCE(!data != !buf_len))
878
return -EINVAL;
879
880
/*
881
* Copy the incoming data to driver's scratch buffer as __pa() will not
882
* work for some memory, e.g. vmalloc'd addresses, and @data may not be
883
* physically contiguous.
884
*/
885
if (data) {
886
/*
887
* Commands are generally issued one at a time and require the
888
* sev_cmd_mutex, but there could be recursive firmware requests
889
* due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
890
* preparing buffers for another command. This is the only known
891
* case of nesting in the current code, so exactly one
892
* additional command buffer is available for that purpose.
893
*/
894
if (!sev->cmd_buf_active) {
895
cmd_buf = sev->cmd_buf;
896
sev->cmd_buf_active = true;
897
} else if (!sev->cmd_buf_backup_active) {
898
cmd_buf = sev->cmd_buf_backup;
899
sev->cmd_buf_backup_active = true;
900
} else {
901
dev_err(sev->dev,
902
"SEV: too many firmware commands in progress, no command buffers available.\n");
903
return -EBUSY;
904
}
905
906
memcpy(cmd_buf, data, buf_len);
907
908
/*
909
* The behavior of the SEV-legacy commands is altered when the
910
* SNP firmware is in the INIT state.
911
*/
912
ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
913
if (ret) {
914
dev_err(sev->dev,
915
"SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
916
cmd, ret);
917
return ret;
918
}
919
} else {
920
cmd_buf = sev->cmd_buf;
921
}
922
923
/* Get the physical address of the command buffer */
924
phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
925
phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
926
927
dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
928
cmd, phys_msb, phys_lsb, psp_timeout);
929
930
print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data,
931
buf_len, false);
932
933
iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
934
iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
935
936
sev->int_rcvd = 0;
937
938
reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd);
939
940
/*
941
* If invoked during panic handling, local interrupts are disabled so
942
* the PSP command completion interrupt can't be used.
943
* sev_wait_cmd_ioc() already checks for interrupts disabled and
944
* polls for PSP command completion. Ensure we do not request an
945
* interrupt from the PSP if irqs disabled.
946
*/
947
if (!irqs_disabled())
948
reg |= SEV_CMDRESP_IOC;
949
950
iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
951
952
/* wait for command completion */
953
ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
954
if (ret) {
955
if (psp_ret)
956
*psp_ret = 0;
957
958
dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
959
psp_dead = true;
960
961
return ret;
962
}
963
964
psp_timeout = psp_cmd_timeout;
965
966
if (psp_ret)
967
*psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
968
969
if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
970
dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
971
cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
972
973
/*
974
* PSP firmware may report additional error information in the
975
* command buffer registers on error. Print contents of command
976
* buffer registers if they changed.
977
*/
978
cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
979
cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
980
if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
981
dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
982
dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi);
983
dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo);
984
}
985
ret = -EIO;
986
} else {
987
ret = sev_write_init_ex_file_if_required(cmd);
988
}
989
990
/*
991
* Copy potential output from the PSP back to data. Do this even on
992
* failure in case the caller wants to glean something from the error.
993
*/
994
if (data) {
995
int ret_reclaim;
996
/*
997
* Restore the page state after the command completes.
998
*/
999
ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
1000
if (ret_reclaim) {
1001
dev_err(sev->dev,
1002
"SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
1003
cmd, ret_reclaim);
1004
return ret_reclaim;
1005
}
1006
1007
memcpy(data, cmd_buf, buf_len);
1008
1009
if (sev->cmd_buf_backup_active)
1010
sev->cmd_buf_backup_active = false;
1011
else
1012
sev->cmd_buf_active = false;
1013
1014
if (snp_unmap_cmd_buf_desc_list(desc_list))
1015
return -EFAULT;
1016
}
1017
1018
print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
1019
buf_len, false);
1020
1021
return ret;
1022
}
1023
1024
int sev_do_cmd(int cmd, void *data, int *psp_ret)
1025
{
1026
int rc;
1027
1028
mutex_lock(&sev_cmd_mutex);
1029
rc = __sev_do_cmd_locked(cmd, data, psp_ret);
1030
mutex_unlock(&sev_cmd_mutex);
1031
1032
return rc;
1033
}
1034
EXPORT_SYMBOL_GPL(sev_do_cmd);
1035
1036
static int __sev_init_locked(int *error)
1037
{
1038
struct sev_data_init data;
1039
1040
memset(&data, 0, sizeof(data));
1041
if (sev_es_tmr) {
1042
/*
1043
* Do not include the encryption mask on the physical
1044
* address of the TMR (firmware should clear it anyway).
1045
*/
1046
data.tmr_address = __pa(sev_es_tmr);
1047
1048
data.flags |= SEV_INIT_FLAGS_SEV_ES;
1049
data.tmr_len = sev_es_tmr_size;
1050
}
1051
1052
return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1053
}
1054
1055
static int __sev_init_ex_locked(int *error)
1056
{
1057
struct sev_data_init_ex data;
1058
1059
memset(&data, 0, sizeof(data));
1060
data.length = sizeof(data);
1061
data.nv_address = __psp_pa(sev_init_ex_buffer);
1062
data.nv_len = NV_LENGTH;
1063
1064
if (sev_es_tmr) {
1065
/*
1066
* Do not include the encryption mask on the physical
1067
* address of the TMR (firmware should clear it anyway).
1068
*/
1069
data.tmr_address = __pa(sev_es_tmr);
1070
1071
data.flags |= SEV_INIT_FLAGS_SEV_ES;
1072
data.tmr_len = sev_es_tmr_size;
1073
}
1074
1075
return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1076
}
1077
1078
static inline int __sev_do_init_locked(int *psp_ret)
1079
{
1080
if (sev_init_ex_buffer)
1081
return __sev_init_ex_locked(psp_ret);
1082
else
1083
return __sev_init_locked(psp_ret);
1084
}
1085
1086
static void snp_set_hsave_pa(void *arg)
1087
{
1088
wrmsrq(MSR_VM_HSAVE_PA, 0);
1089
}
1090
1091
/* Hypervisor Fixed pages API interface */
1092
static void snp_hv_fixed_pages_state_update(struct sev_device *sev,
1093
enum snp_hv_fixed_pages_state page_state)
1094
{
1095
struct snp_hv_fixed_pages_entry *entry;
1096
1097
/* List is protected by sev_cmd_mutex */
1098
lockdep_assert_held(&sev_cmd_mutex);
1099
1100
if (list_empty(&snp_hv_fixed_pages))
1101
return;
1102
1103
list_for_each_entry(entry, &snp_hv_fixed_pages, list)
1104
entry->page_state = page_state;
1105
}
1106
1107
/*
1108
* Allocate HV_FIXED pages in 2MB aligned sizes to ensure the whole
1109
* 2MB pages are marked as HV_FIXED.
1110
*/
1111
struct page *snp_alloc_hv_fixed_pages(unsigned int num_2mb_pages)
1112
{
1113
struct psp_device *psp_master = psp_get_master_device();
1114
struct snp_hv_fixed_pages_entry *entry;
1115
struct sev_device *sev;
1116
unsigned int order;
1117
struct page *page;
1118
1119
if (!psp_master || !psp_master->sev_data)
1120
return NULL;
1121
1122
sev = psp_master->sev_data;
1123
1124
order = get_order(PMD_SIZE * num_2mb_pages);
1125
1126
/*
1127
* SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list
1128
* also needs to be protected using the same mutex.
1129
*/
1130
guard(mutex)(&sev_cmd_mutex);
1131
1132
/*
1133
* This API uses SNP_INIT_EX to transition allocated pages to HV_Fixed
1134
* page state, fail if SNP is already initialized.
1135
*/
1136
if (sev->snp_initialized)
1137
return NULL;
1138
1139
/* Re-use freed pages that match the request */
1140
list_for_each_entry(entry, &snp_hv_fixed_pages, list) {
1141
/* Hypervisor fixed page allocator implements exact fit policy */
1142
if (entry->order == order && entry->free) {
1143
entry->free = false;
1144
memset(page_address(entry->page), 0,
1145
(1 << entry->order) * PAGE_SIZE);
1146
return entry->page;
1147
}
1148
}
1149
1150
page = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1151
if (!page)
1152
return NULL;
1153
1154
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1155
if (!entry) {
1156
__free_pages(page, order);
1157
return NULL;
1158
}
1159
1160
entry->page = page;
1161
entry->order = order;
1162
list_add_tail(&entry->list, &snp_hv_fixed_pages);
1163
1164
return page;
1165
}
1166
1167
void snp_free_hv_fixed_pages(struct page *page)
1168
{
1169
struct psp_device *psp_master = psp_get_master_device();
1170
struct snp_hv_fixed_pages_entry *entry, *nentry;
1171
1172
if (!psp_master || !psp_master->sev_data)
1173
return;
1174
1175
/*
1176
* SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list
1177
* also needs to be protected using the same mutex.
1178
*/
1179
guard(mutex)(&sev_cmd_mutex);
1180
1181
list_for_each_entry_safe(entry, nentry, &snp_hv_fixed_pages, list) {
1182
if (entry->page != page)
1183
continue;
1184
1185
/*
1186
* HV_FIXED page state cannot be changed until reboot
1187
* and they cannot be used by an SNP guest, so they cannot
1188
* be returned back to the page allocator.
1189
* Mark the pages as free internally to allow possible re-use.
1190
*/
1191
if (entry->page_state == HV_FIXED) {
1192
entry->free = true;
1193
} else {
1194
__free_pages(page, entry->order);
1195
list_del(&entry->list);
1196
kfree(entry);
1197
}
1198
return;
1199
}
1200
}
1201
1202
static void snp_add_hv_fixed_pages(struct sev_device *sev, struct sev_data_range_list *range_list)
1203
{
1204
struct snp_hv_fixed_pages_entry *entry;
1205
struct sev_data_range *range;
1206
int num_elements;
1207
1208
lockdep_assert_held(&sev_cmd_mutex);
1209
1210
if (list_empty(&snp_hv_fixed_pages))
1211
return;
1212
1213
num_elements = list_count_nodes(&snp_hv_fixed_pages) +
1214
range_list->num_elements;
1215
1216
/*
1217
* Ensure the list of HV_FIXED pages that will be passed to firmware
1218
* do not exceed the page-sized argument buffer.
1219
*/
1220
if (num_elements * sizeof(*range) + sizeof(*range_list) > PAGE_SIZE) {
1221
dev_warn(sev->dev, "Additional HV_Fixed pages cannot be accommodated, omitting\n");
1222
return;
1223
}
1224
1225
range = &range_list->ranges[range_list->num_elements];
1226
list_for_each_entry(entry, &snp_hv_fixed_pages, list) {
1227
range->base = page_to_pfn(entry->page) << PAGE_SHIFT;
1228
range->page_count = 1 << entry->order;
1229
range++;
1230
}
1231
range_list->num_elements = num_elements;
1232
}
1233
1234
static void snp_leak_hv_fixed_pages(void)
1235
{
1236
struct snp_hv_fixed_pages_entry *entry;
1237
1238
/* List is protected by sev_cmd_mutex */
1239
lockdep_assert_held(&sev_cmd_mutex);
1240
1241
if (list_empty(&snp_hv_fixed_pages))
1242
return;
1243
1244
list_for_each_entry(entry, &snp_hv_fixed_pages, list)
1245
if (entry->page_state == HV_FIXED)
1246
__snp_leak_pages(page_to_pfn(entry->page),
1247
1 << entry->order, false);
1248
}
1249
1250
bool sev_is_snp_ciphertext_hiding_supported(void)
1251
{
1252
struct psp_device *psp = psp_master;
1253
struct sev_device *sev;
1254
1255
if (!psp || !psp->sev_data)
1256
return false;
1257
1258
sev = psp->sev_data;
1259
1260
/*
1261
* Feature information indicates if CipherTextHiding feature is
1262
* supported by the SEV firmware and additionally platform status
1263
* indicates if CipherTextHiding feature is enabled in the
1264
* Platform BIOS.
1265
*/
1266
return ((sev->snp_feat_info_0.ecx & SNP_CIPHER_TEXT_HIDING_SUPPORTED) &&
1267
sev->snp_plat_status.ciphertext_hiding_cap);
1268
}
1269
EXPORT_SYMBOL_GPL(sev_is_snp_ciphertext_hiding_supported);
1270
1271
static int snp_get_platform_data(struct sev_device *sev, int *error)
1272
{
1273
struct sev_data_snp_feature_info snp_feat_info;
1274
struct snp_feature_info *feat_info;
1275
struct sev_data_snp_addr buf;
1276
struct page *page;
1277
int rc;
1278
1279
/*
1280
* This function is expected to be called before SNP is
1281
* initialized.
1282
*/
1283
if (sev->snp_initialized)
1284
return -EINVAL;
1285
1286
buf.address = __psp_pa(&sev->snp_plat_status);
1287
rc = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, error);
1288
if (rc) {
1289
dev_err(sev->dev, "SNP PLATFORM_STATUS command failed, ret = %d, error = %#x\n",
1290
rc, *error);
1291
return rc;
1292
}
1293
1294
sev->api_major = sev->snp_plat_status.api_major;
1295
sev->api_minor = sev->snp_plat_status.api_minor;
1296
sev->build = sev->snp_plat_status.build_id;
1297
1298
/*
1299
* Do feature discovery of the currently loaded firmware,
1300
* and cache feature information from CPUID 0x8000_0024,
1301
* sub-function 0.
1302
*/
1303
if (!sev->snp_plat_status.feature_info)
1304
return 0;
1305
1306
/*
1307
* Use dynamically allocated structure for the SNP_FEATURE_INFO
1308
* command to ensure structure is 8-byte aligned, and does not
1309
* cross a page boundary.
1310
*/
1311
page = alloc_page(GFP_KERNEL);
1312
if (!page)
1313
return -ENOMEM;
1314
1315
feat_info = page_address(page);
1316
snp_feat_info.length = sizeof(snp_feat_info);
1317
snp_feat_info.ecx_in = 0;
1318
snp_feat_info.feature_info_paddr = __psp_pa(feat_info);
1319
1320
rc = sev_do_cmd(SEV_CMD_SNP_FEATURE_INFO, &snp_feat_info, error);
1321
if (!rc)
1322
sev->snp_feat_info_0 = *feat_info;
1323
else
1324
dev_err(sev->dev, "SNP FEATURE_INFO command failed, ret = %d, error = %#x\n",
1325
rc, *error);
1326
1327
__free_page(page);
1328
1329
return rc;
1330
}
1331
1332
static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1333
{
1334
struct sev_data_range_list *range_list = arg;
1335
struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1336
size_t size;
1337
1338
/*
1339
* Ensure the list of HV_FIXED pages that will be passed to firmware
1340
* do not exceed the page-sized argument buffer.
1341
*/
1342
if ((range_list->num_elements * sizeof(struct sev_data_range) +
1343
sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1344
return -E2BIG;
1345
1346
switch (rs->desc) {
1347
case E820_TYPE_RESERVED:
1348
case E820_TYPE_PMEM:
1349
case E820_TYPE_ACPI:
1350
range->base = rs->start & PAGE_MASK;
1351
size = PAGE_ALIGN((rs->end + 1) - rs->start);
1352
range->page_count = size >> PAGE_SHIFT;
1353
range_list->num_elements++;
1354
break;
1355
default:
1356
break;
1357
}
1358
1359
return 0;
1360
}
1361
1362
static int __sev_snp_init_locked(int *error, unsigned int max_snp_asid)
1363
{
1364
struct psp_device *psp = psp_master;
1365
struct sev_data_snp_init_ex data;
1366
struct sev_device *sev;
1367
void *arg = &data;
1368
int cmd, rc = 0;
1369
1370
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1371
return -ENODEV;
1372
1373
sev = psp->sev_data;
1374
1375
if (sev->snp_initialized)
1376
return 0;
1377
1378
if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1379
dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1380
SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1381
return -EOPNOTSUPP;
1382
}
1383
1384
/* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1385
on_each_cpu(snp_set_hsave_pa, NULL, 1);
1386
1387
/*
1388
* Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1389
* of system physical address ranges to convert into HV-fixed page
1390
* states during the RMP initialization. For instance, the memory that
1391
* UEFI reserves should be included in the that list. This allows system
1392
* components that occasionally write to memory (e.g. logging to UEFI
1393
* reserved regions) to not fail due to RMP initialization and SNP
1394
* enablement.
1395
*
1396
*/
1397
if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1398
bool tio_supp = !!(sev->snp_feat_info_0.ebx & SNP_SEV_TIO_SUPPORTED);
1399
1400
/*
1401
* Firmware checks that the pages containing the ranges enumerated
1402
* in the RANGES structure are either in the default page state or in the
1403
* firmware page state.
1404
*/
1405
snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1406
if (!snp_range_list) {
1407
dev_err(sev->dev,
1408
"SEV: SNP_INIT_EX range list memory allocation failed\n");
1409
return -ENOMEM;
1410
}
1411
1412
/*
1413
* Retrieve all reserved memory regions from the e820 memory map
1414
* to be setup as HV-fixed pages.
1415
*/
1416
rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1417
snp_range_list, snp_filter_reserved_mem_regions);
1418
if (rc) {
1419
dev_err(sev->dev,
1420
"SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1421
return rc;
1422
}
1423
1424
/*
1425
* Add HV_Fixed pages from other PSP sub-devices, such as SFS to the
1426
* HV_Fixed page list.
1427
*/
1428
snp_add_hv_fixed_pages(sev, snp_range_list);
1429
1430
memset(&data, 0, sizeof(data));
1431
1432
if (max_snp_asid) {
1433
data.ciphertext_hiding_en = 1;
1434
data.max_snp_asid = max_snp_asid;
1435
}
1436
1437
data.init_rmp = 1;
1438
data.list_paddr_en = 1;
1439
data.list_paddr = __psp_pa(snp_range_list);
1440
1441
data.tio_en = tio_supp && sev_tio_enabled && amd_iommu_sev_tio_supported();
1442
1443
/*
1444
* When psp_init_on_probe is disabled, the userspace calling
1445
* SEV ioctl can inadvertently shut down SNP and SEV-TIO causing
1446
* unexpected state loss.
1447
*/
1448
if (data.tio_en && !psp_init_on_probe)
1449
dev_warn(sev->dev, "SEV-TIO as incompatible with psp_init_on_probe=0\n");
1450
1451
cmd = SEV_CMD_SNP_INIT_EX;
1452
} else {
1453
cmd = SEV_CMD_SNP_INIT;
1454
arg = NULL;
1455
}
1456
1457
/*
1458
* The following sequence must be issued before launching the first SNP
1459
* guest to ensure all dirty cache lines are flushed, including from
1460
* updates to the RMP table itself via the RMPUPDATE instruction:
1461
*
1462
* - WBINVD on all running CPUs
1463
* - SEV_CMD_SNP_INIT[_EX] firmware command
1464
* - WBINVD on all running CPUs
1465
* - SEV_CMD_SNP_DF_FLUSH firmware command
1466
*/
1467
wbinvd_on_all_cpus();
1468
1469
rc = __sev_do_cmd_locked(cmd, arg, error);
1470
if (rc) {
1471
dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n",
1472
cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT",
1473
rc, *error);
1474
return rc;
1475
}
1476
1477
/* Prepare for first SNP guest launch after INIT. */
1478
wbinvd_on_all_cpus();
1479
rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1480
if (rc) {
1481
dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n",
1482
rc, *error);
1483
return rc;
1484
}
1485
1486
snp_hv_fixed_pages_state_update(sev, HV_FIXED);
1487
sev->snp_initialized = true;
1488
dev_dbg(sev->dev, "SEV-SNP firmware initialized, SEV-TIO is %s\n",
1489
data.tio_en ? "enabled" : "disabled");
1490
1491
dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major,
1492
sev->api_minor, sev->build);
1493
1494
atomic_notifier_chain_register(&panic_notifier_list,
1495
&snp_panic_notifier);
1496
1497
if (data.tio_en) {
1498
/*
1499
* This executes with the sev_cmd_mutex held so down the stack
1500
* snp_reclaim_pages(locked=false) might be needed (which is extremely
1501
* unlikely) but will cause a deadlock.
1502
* Instead of exporting __snp_alloc_firmware_pages(), allocate a page
1503
* for this one call here.
1504
*/
1505
void *tio_status = page_address(__snp_alloc_firmware_pages(
1506
GFP_KERNEL_ACCOUNT | __GFP_ZERO, 0, true));
1507
1508
if (tio_status) {
1509
sev_tsm_init_locked(sev, tio_status);
1510
__snp_free_firmware_pages(virt_to_page(tio_status), 0, true);
1511
}
1512
}
1513
1514
sev_es_tmr_size = SNP_TMR_SIZE;
1515
1516
return 0;
1517
}
1518
1519
static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1520
{
1521
if (sev_es_tmr)
1522
return;
1523
1524
/* Obtain the TMR memory area for SEV-ES use */
1525
sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1526
if (sev_es_tmr) {
1527
/* Must flush the cache before giving it to the firmware */
1528
if (!sev->snp_initialized)
1529
clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1530
} else {
1531
dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1532
}
1533
}
1534
1535
/*
1536
* If an init_ex_path is provided allocate a buffer for the file and
1537
* read in the contents. Additionally, if SNP is initialized, convert
1538
* the buffer pages to firmware pages.
1539
*/
1540
static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1541
{
1542
struct page *page;
1543
int rc;
1544
1545
if (!init_ex_path)
1546
return 0;
1547
1548
if (sev_init_ex_buffer)
1549
return 0;
1550
1551
page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1552
if (!page) {
1553
dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1554
return -ENOMEM;
1555
}
1556
1557
sev_init_ex_buffer = page_address(page);
1558
1559
rc = sev_read_init_ex_file();
1560
if (rc)
1561
return rc;
1562
1563
/* If SEV-SNP is initialized, transition to firmware page. */
1564
if (sev->snp_initialized) {
1565
unsigned long npages;
1566
1567
npages = 1UL << get_order(NV_LENGTH);
1568
if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1569
dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1570
return -ENOMEM;
1571
}
1572
}
1573
1574
return 0;
1575
}
1576
1577
static int __sev_platform_init_locked(int *error)
1578
{
1579
int rc, psp_ret, dfflush_error;
1580
struct sev_device *sev;
1581
1582
psp_ret = dfflush_error = SEV_RET_NO_FW_CALL;
1583
1584
if (!psp_master || !psp_master->sev_data)
1585
return -ENODEV;
1586
1587
sev = psp_master->sev_data;
1588
1589
if (sev->sev_plat_status.state == SEV_STATE_INIT)
1590
return 0;
1591
1592
__sev_platform_init_handle_tmr(sev);
1593
1594
rc = __sev_platform_init_handle_init_ex_path(sev);
1595
if (rc)
1596
return rc;
1597
1598
rc = __sev_do_init_locked(&psp_ret);
1599
if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1600
/*
1601
* Initialization command returned an integrity check failure
1602
* status code, meaning that firmware load and validation of SEV
1603
* related persistent data has failed. Retrying the
1604
* initialization function should succeed by replacing the state
1605
* with a reset state.
1606
*/
1607
dev_err(sev->dev,
1608
"SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1609
rc = __sev_do_init_locked(&psp_ret);
1610
}
1611
1612
if (error)
1613
*error = psp_ret;
1614
1615
if (rc) {
1616
dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n",
1617
sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc);
1618
return rc;
1619
}
1620
1621
sev->sev_plat_status.state = SEV_STATE_INIT;
1622
1623
/* Prepare for first SEV guest launch after INIT */
1624
wbinvd_on_all_cpus();
1625
rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error);
1626
if (rc) {
1627
dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n",
1628
dfflush_error, rc);
1629
return rc;
1630
}
1631
1632
dev_dbg(sev->dev, "SEV firmware initialized\n");
1633
1634
dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1635
sev->api_minor, sev->build);
1636
1637
return 0;
1638
}
1639
1640
static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1641
{
1642
struct sev_device *sev;
1643
int rc;
1644
1645
if (!psp_master || !psp_master->sev_data)
1646
return -ENODEV;
1647
1648
/*
1649
* Skip SNP/SEV initialization under a kdump kernel as SEV/SNP
1650
* may already be initialized in the previous kernel. Since no
1651
* SNP/SEV guests are run under a kdump kernel, there is no
1652
* need to initialize SNP or SEV during kdump boot.
1653
*/
1654
if (is_kdump_kernel())
1655
return 0;
1656
1657
sev = psp_master->sev_data;
1658
1659
if (sev->sev_plat_status.state == SEV_STATE_INIT)
1660
return 0;
1661
1662
rc = __sev_snp_init_locked(&args->error, args->max_snp_asid);
1663
if (rc && rc != -ENODEV)
1664
return rc;
1665
1666
/* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1667
if (args->probe && !psp_init_on_probe)
1668
return 0;
1669
1670
return __sev_platform_init_locked(&args->error);
1671
}
1672
1673
int sev_platform_init(struct sev_platform_init_args *args)
1674
{
1675
int rc;
1676
1677
mutex_lock(&sev_cmd_mutex);
1678
rc = _sev_platform_init_locked(args);
1679
mutex_unlock(&sev_cmd_mutex);
1680
1681
return rc;
1682
}
1683
EXPORT_SYMBOL_GPL(sev_platform_init);
1684
1685
static int __sev_platform_shutdown_locked(int *error)
1686
{
1687
struct psp_device *psp = psp_master;
1688
struct sev_device *sev;
1689
int ret;
1690
1691
if (!psp || !psp->sev_data)
1692
return 0;
1693
1694
sev = psp->sev_data;
1695
1696
if (sev->sev_plat_status.state == SEV_STATE_UNINIT)
1697
return 0;
1698
1699
ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1700
if (ret) {
1701
dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n",
1702
*error, ret);
1703
return ret;
1704
}
1705
1706
sev->sev_plat_status.state = SEV_STATE_UNINIT;
1707
dev_dbg(sev->dev, "SEV firmware shutdown\n");
1708
1709
return ret;
1710
}
1711
1712
static int sev_get_platform_state(int *state, int *error)
1713
{
1714
struct sev_user_data_status data;
1715
int rc;
1716
1717
rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1718
if (rc)
1719
return rc;
1720
1721
*state = data.state;
1722
return rc;
1723
}
1724
1725
static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1726
{
1727
struct sev_platform_init_args init_args = {0};
1728
int rc;
1729
1730
rc = _sev_platform_init_locked(&init_args);
1731
if (rc) {
1732
argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1733
return rc;
1734
}
1735
1736
*shutdown_required = true;
1737
1738
return 0;
1739
}
1740
1741
static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1742
{
1743
int error, rc;
1744
1745
rc = __sev_snp_init_locked(&error, 0);
1746
if (rc) {
1747
argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1748
return rc;
1749
}
1750
1751
*shutdown_required = true;
1752
1753
return 0;
1754
}
1755
1756
static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1757
{
1758
int state, rc;
1759
1760
if (!writable)
1761
return -EPERM;
1762
1763
/*
1764
* The SEV spec requires that FACTORY_RESET must be issued in
1765
* UNINIT state. Before we go further lets check if any guest is
1766
* active.
1767
*
1768
* If FW is in WORKING state then deny the request otherwise issue
1769
* SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1770
*
1771
*/
1772
rc = sev_get_platform_state(&state, &argp->error);
1773
if (rc)
1774
return rc;
1775
1776
if (state == SEV_STATE_WORKING)
1777
return -EBUSY;
1778
1779
if (state == SEV_STATE_INIT) {
1780
rc = __sev_platform_shutdown_locked(&argp->error);
1781
if (rc)
1782
return rc;
1783
}
1784
1785
return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1786
}
1787
1788
static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1789
{
1790
struct sev_user_data_status data;
1791
int ret;
1792
1793
memset(&data, 0, sizeof(data));
1794
1795
ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1796
if (ret)
1797
return ret;
1798
1799
if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1800
ret = -EFAULT;
1801
1802
return ret;
1803
}
1804
1805
static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1806
{
1807
struct sev_device *sev = psp_master->sev_data;
1808
bool shutdown_required = false;
1809
int rc;
1810
1811
if (!writable)
1812
return -EPERM;
1813
1814
if (sev->sev_plat_status.state == SEV_STATE_UNINIT) {
1815
rc = sev_move_to_init_state(argp, &shutdown_required);
1816
if (rc)
1817
return rc;
1818
}
1819
1820
rc = __sev_do_cmd_locked(cmd, NULL, &argp->error);
1821
1822
if (shutdown_required)
1823
__sev_firmware_shutdown(sev, false);
1824
1825
return rc;
1826
}
1827
1828
static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1829
{
1830
struct sev_device *sev = psp_master->sev_data;
1831
struct sev_user_data_pek_csr input;
1832
bool shutdown_required = false;
1833
struct sev_data_pek_csr data;
1834
void __user *input_address;
1835
void *blob = NULL;
1836
int ret;
1837
1838
if (!writable)
1839
return -EPERM;
1840
1841
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1842
return -EFAULT;
1843
1844
memset(&data, 0, sizeof(data));
1845
1846
/* userspace wants to query CSR length */
1847
if (!input.address || !input.length)
1848
goto cmd;
1849
1850
/* allocate a physically contiguous buffer to store the CSR blob */
1851
input_address = (void __user *)input.address;
1852
if (input.length > SEV_FW_BLOB_MAX_SIZE)
1853
return -EFAULT;
1854
1855
blob = kzalloc(input.length, GFP_KERNEL);
1856
if (!blob)
1857
return -ENOMEM;
1858
1859
data.address = __psp_pa(blob);
1860
data.len = input.length;
1861
1862
cmd:
1863
if (sev->sev_plat_status.state == SEV_STATE_UNINIT) {
1864
ret = sev_move_to_init_state(argp, &shutdown_required);
1865
if (ret)
1866
goto e_free_blob;
1867
}
1868
1869
ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1870
1871
/* If we query the CSR length, FW responded with expected data. */
1872
input.length = data.len;
1873
1874
if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1875
ret = -EFAULT;
1876
goto e_free_blob;
1877
}
1878
1879
if (blob) {
1880
if (copy_to_user(input_address, blob, input.length))
1881
ret = -EFAULT;
1882
}
1883
1884
e_free_blob:
1885
if (shutdown_required)
1886
__sev_firmware_shutdown(sev, false);
1887
1888
kfree(blob);
1889
return ret;
1890
}
1891
1892
void *psp_copy_user_blob(u64 uaddr, u32 len)
1893
{
1894
if (!uaddr || !len)
1895
return ERR_PTR(-EINVAL);
1896
1897
/* verify that blob length does not exceed our limit */
1898
if (len > SEV_FW_BLOB_MAX_SIZE)
1899
return ERR_PTR(-EINVAL);
1900
1901
return memdup_user((void __user *)uaddr, len);
1902
}
1903
EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1904
1905
static int sev_get_api_version(void)
1906
{
1907
struct sev_device *sev = psp_master->sev_data;
1908
struct sev_user_data_status status;
1909
int error = 0, ret;
1910
1911
/*
1912
* Cache SNP platform status and SNP feature information
1913
* if SNP is available.
1914
*/
1915
if (cc_platform_has(CC_ATTR_HOST_SEV_SNP)) {
1916
ret = snp_get_platform_data(sev, &error);
1917
if (ret)
1918
return 1;
1919
}
1920
1921
ret = sev_platform_status(&status, &error);
1922
if (ret) {
1923
dev_err(sev->dev,
1924
"SEV: failed to get status. Error: %#x\n", error);
1925
return 1;
1926
}
1927
1928
/* Cache SEV platform status */
1929
sev->sev_plat_status = status;
1930
1931
sev->api_major = status.api_major;
1932
sev->api_minor = status.api_minor;
1933
sev->build = status.build;
1934
1935
return 0;
1936
}
1937
1938
static int sev_get_firmware(struct device *dev,
1939
const struct firmware **firmware)
1940
{
1941
char fw_name_specific[SEV_FW_NAME_SIZE];
1942
char fw_name_subset[SEV_FW_NAME_SIZE];
1943
1944
snprintf(fw_name_specific, sizeof(fw_name_specific),
1945
"amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1946
boot_cpu_data.x86, boot_cpu_data.x86_model);
1947
1948
snprintf(fw_name_subset, sizeof(fw_name_subset),
1949
"amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1950
boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1951
1952
/* Check for SEV FW for a particular model.
1953
* Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1954
*
1955
* or
1956
*
1957
* Check for SEV FW common to a subset of models.
1958
* Ex. amd_sev_fam17h_model0xh.sbin for
1959
* Family 17h Model 00h -- Family 17h Model 0Fh
1960
*
1961
* or
1962
*
1963
* Fall-back to using generic name: sev.fw
1964
*/
1965
if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1966
(firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1967
(firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1968
return 0;
1969
1970
return -ENOENT;
1971
}
1972
1973
/* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1974
static int sev_update_firmware(struct device *dev)
1975
{
1976
struct sev_data_download_firmware *data;
1977
const struct firmware *firmware;
1978
int ret, error, order;
1979
struct page *p;
1980
u64 data_size;
1981
1982
if (!sev_version_greater_or_equal(0, 15)) {
1983
dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1984
return -1;
1985
}
1986
1987
if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1988
dev_dbg(dev, "No SEV firmware file present\n");
1989
return -1;
1990
}
1991
1992
/*
1993
* SEV FW expects the physical address given to it to be 32
1994
* byte aligned. Memory allocated has structure placed at the
1995
* beginning followed by the firmware being passed to the SEV
1996
* FW. Allocate enough memory for data structure + alignment
1997
* padding + SEV FW.
1998
*/
1999
data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
2000
2001
order = get_order(firmware->size + data_size);
2002
p = alloc_pages(GFP_KERNEL, order);
2003
if (!p) {
2004
ret = -1;
2005
goto fw_err;
2006
}
2007
2008
/*
2009
* Copy firmware data to a kernel allocated contiguous
2010
* memory region.
2011
*/
2012
data = page_address(p);
2013
memcpy(page_address(p) + data_size, firmware->data, firmware->size);
2014
2015
data->address = __psp_pa(page_address(p) + data_size);
2016
data->len = firmware->size;
2017
2018
ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
2019
2020
/*
2021
* A quirk for fixing the committed TCB version, when upgrading from
2022
* earlier firmware version than 1.50.
2023
*/
2024
if (!ret && !sev_version_greater_or_equal(1, 50))
2025
ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
2026
2027
if (ret)
2028
dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
2029
2030
__free_pages(p, order);
2031
2032
fw_err:
2033
release_firmware(firmware);
2034
2035
return ret;
2036
}
2037
2038
static int __sev_snp_shutdown_locked(int *error, bool panic)
2039
{
2040
struct psp_device *psp = psp_master;
2041
struct sev_device *sev;
2042
struct sev_data_snp_shutdown_ex data;
2043
int ret;
2044
2045
if (!psp || !psp->sev_data)
2046
return 0;
2047
2048
sev = psp->sev_data;
2049
2050
if (!sev->snp_initialized)
2051
return 0;
2052
2053
memset(&data, 0, sizeof(data));
2054
data.len = sizeof(data);
2055
data.iommu_snp_shutdown = 1;
2056
2057
/*
2058
* If invoked during panic handling, local interrupts are disabled
2059
* and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
2060
* In that case, a wbinvd() is done on remote CPUs via the NMI
2061
* callback, so only a local wbinvd() is needed here.
2062
*/
2063
if (!panic)
2064
wbinvd_on_all_cpus();
2065
else
2066
wbinvd();
2067
2068
ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
2069
/* SHUTDOWN may require DF_FLUSH */
2070
if (*error == SEV_RET_DFFLUSH_REQUIRED) {
2071
int dfflush_error = SEV_RET_NO_FW_CALL;
2072
2073
ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error);
2074
if (ret) {
2075
dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n",
2076
ret, dfflush_error);
2077
return ret;
2078
}
2079
/* reissue the shutdown command */
2080
ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
2081
error);
2082
}
2083
if (ret) {
2084
dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n",
2085
ret, *error);
2086
return ret;
2087
}
2088
2089
/*
2090
* SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
2091
* enforcement by the IOMMU and also transitions all pages
2092
* associated with the IOMMU to the Reclaim state.
2093
* Firmware was transitioning the IOMMU pages to Hypervisor state
2094
* before version 1.53. But, accounting for the number of assigned
2095
* 4kB pages in a 2M page was done incorrectly by not transitioning
2096
* to the Reclaim state. This resulted in RMP #PF when later accessing
2097
* the 2M page containing those pages during kexec boot. Hence, the
2098
* firmware now transitions these pages to Reclaim state and hypervisor
2099
* needs to transition these pages to shared state. SNP Firmware
2100
* version 1.53 and above are needed for kexec boot.
2101
*/
2102
ret = amd_iommu_snp_disable();
2103
if (ret) {
2104
dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
2105
return ret;
2106
}
2107
2108
snp_leak_hv_fixed_pages();
2109
sev->snp_initialized = false;
2110
dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
2111
2112
/*
2113
* __sev_snp_shutdown_locked() deadlocks when it tries to unregister
2114
* itself during panic as the panic notifier is called with RCU read
2115
* lock held and notifier unregistration does RCU synchronization.
2116
*/
2117
if (!panic)
2118
atomic_notifier_chain_unregister(&panic_notifier_list,
2119
&snp_panic_notifier);
2120
2121
/* Reset TMR size back to default */
2122
sev_es_tmr_size = SEV_TMR_SIZE;
2123
2124
return ret;
2125
}
2126
2127
static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
2128
{
2129
struct sev_device *sev = psp_master->sev_data;
2130
struct sev_user_data_pek_cert_import input;
2131
struct sev_data_pek_cert_import data;
2132
bool shutdown_required = false;
2133
void *pek_blob, *oca_blob;
2134
int ret;
2135
2136
if (!writable)
2137
return -EPERM;
2138
2139
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2140
return -EFAULT;
2141
2142
/* copy PEK certificate blobs from userspace */
2143
pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
2144
if (IS_ERR(pek_blob))
2145
return PTR_ERR(pek_blob);
2146
2147
data.reserved = 0;
2148
data.pek_cert_address = __psp_pa(pek_blob);
2149
data.pek_cert_len = input.pek_cert_len;
2150
2151
/* copy PEK certificate blobs from userspace */
2152
oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
2153
if (IS_ERR(oca_blob)) {
2154
ret = PTR_ERR(oca_blob);
2155
goto e_free_pek;
2156
}
2157
2158
data.oca_cert_address = __psp_pa(oca_blob);
2159
data.oca_cert_len = input.oca_cert_len;
2160
2161
/* If platform is not in INIT state then transition it to INIT */
2162
if (sev->sev_plat_status.state != SEV_STATE_INIT) {
2163
ret = sev_move_to_init_state(argp, &shutdown_required);
2164
if (ret)
2165
goto e_free_oca;
2166
}
2167
2168
ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
2169
2170
e_free_oca:
2171
if (shutdown_required)
2172
__sev_firmware_shutdown(sev, false);
2173
2174
kfree(oca_blob);
2175
e_free_pek:
2176
kfree(pek_blob);
2177
return ret;
2178
}
2179
2180
static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
2181
{
2182
struct sev_user_data_get_id2 input;
2183
struct sev_data_get_id data;
2184
void __user *input_address;
2185
void *id_blob = NULL;
2186
int ret;
2187
2188
/* SEV GET_ID is available from SEV API v0.16 and up */
2189
if (!sev_version_greater_or_equal(0, 16))
2190
return -ENOTSUPP;
2191
2192
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2193
return -EFAULT;
2194
2195
input_address = (void __user *)input.address;
2196
2197
if (input.address && input.length) {
2198
/*
2199
* The length of the ID shouldn't be assumed by software since
2200
* it may change in the future. The allocation size is limited
2201
* to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
2202
* If the allocation fails, simply return ENOMEM rather than
2203
* warning in the kernel log.
2204
*/
2205
id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
2206
if (!id_blob)
2207
return -ENOMEM;
2208
2209
data.address = __psp_pa(id_blob);
2210
data.len = input.length;
2211
} else {
2212
data.address = 0;
2213
data.len = 0;
2214
}
2215
2216
ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
2217
2218
/*
2219
* Firmware will return the length of the ID value (either the minimum
2220
* required length or the actual length written), return it to the user.
2221
*/
2222
input.length = data.len;
2223
2224
if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2225
ret = -EFAULT;
2226
goto e_free;
2227
}
2228
2229
if (id_blob) {
2230
if (copy_to_user(input_address, id_blob, data.len)) {
2231
ret = -EFAULT;
2232
goto e_free;
2233
}
2234
}
2235
2236
e_free:
2237
kfree(id_blob);
2238
2239
return ret;
2240
}
2241
2242
static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
2243
{
2244
struct sev_data_get_id *data;
2245
u64 data_size, user_size;
2246
void *id_blob, *mem;
2247
int ret;
2248
2249
/* SEV GET_ID available from SEV API v0.16 and up */
2250
if (!sev_version_greater_or_equal(0, 16))
2251
return -ENOTSUPP;
2252
2253
/* SEV FW expects the buffer it fills with the ID to be
2254
* 8-byte aligned. Memory allocated should be enough to
2255
* hold data structure + alignment padding + memory
2256
* where SEV FW writes the ID.
2257
*/
2258
data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
2259
user_size = sizeof(struct sev_user_data_get_id);
2260
2261
mem = kzalloc(data_size + user_size, GFP_KERNEL);
2262
if (!mem)
2263
return -ENOMEM;
2264
2265
data = mem;
2266
id_blob = mem + data_size;
2267
2268
data->address = __psp_pa(id_blob);
2269
data->len = user_size;
2270
2271
ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
2272
if (!ret) {
2273
if (copy_to_user((void __user *)argp->data, id_blob, data->len))
2274
ret = -EFAULT;
2275
}
2276
2277
kfree(mem);
2278
2279
return ret;
2280
}
2281
2282
static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
2283
{
2284
struct sev_device *sev = psp_master->sev_data;
2285
struct sev_user_data_pdh_cert_export input;
2286
void *pdh_blob = NULL, *cert_blob = NULL;
2287
struct sev_data_pdh_cert_export data;
2288
void __user *input_cert_chain_address;
2289
void __user *input_pdh_cert_address;
2290
bool shutdown_required = false;
2291
int ret;
2292
2293
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2294
return -EFAULT;
2295
2296
memset(&data, 0, sizeof(data));
2297
2298
input_pdh_cert_address = (void __user *)input.pdh_cert_address;
2299
input_cert_chain_address = (void __user *)input.cert_chain_address;
2300
2301
/* Userspace wants to query the certificate length. */
2302
if (!input.pdh_cert_address ||
2303
!input.pdh_cert_len ||
2304
!input.cert_chain_address)
2305
goto cmd;
2306
2307
/* Allocate a physically contiguous buffer to store the PDH blob. */
2308
if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
2309
return -EFAULT;
2310
2311
/* Allocate a physically contiguous buffer to store the cert chain blob. */
2312
if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
2313
return -EFAULT;
2314
2315
pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
2316
if (!pdh_blob)
2317
return -ENOMEM;
2318
2319
data.pdh_cert_address = __psp_pa(pdh_blob);
2320
data.pdh_cert_len = input.pdh_cert_len;
2321
2322
cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
2323
if (!cert_blob) {
2324
ret = -ENOMEM;
2325
goto e_free_pdh;
2326
}
2327
2328
data.cert_chain_address = __psp_pa(cert_blob);
2329
data.cert_chain_len = input.cert_chain_len;
2330
2331
cmd:
2332
/* If platform is not in INIT state then transition it to INIT. */
2333
if (sev->sev_plat_status.state != SEV_STATE_INIT) {
2334
if (!writable) {
2335
ret = -EPERM;
2336
goto e_free_cert;
2337
}
2338
ret = sev_move_to_init_state(argp, &shutdown_required);
2339
if (ret)
2340
goto e_free_cert;
2341
}
2342
2343
ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
2344
2345
/* If we query the length, FW responded with expected data. */
2346
input.cert_chain_len = data.cert_chain_len;
2347
input.pdh_cert_len = data.pdh_cert_len;
2348
2349
if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2350
ret = -EFAULT;
2351
goto e_free_cert;
2352
}
2353
2354
if (pdh_blob) {
2355
if (copy_to_user(input_pdh_cert_address,
2356
pdh_blob, input.pdh_cert_len)) {
2357
ret = -EFAULT;
2358
goto e_free_cert;
2359
}
2360
}
2361
2362
if (cert_blob) {
2363
if (copy_to_user(input_cert_chain_address,
2364
cert_blob, input.cert_chain_len))
2365
ret = -EFAULT;
2366
}
2367
2368
e_free_cert:
2369
if (shutdown_required)
2370
__sev_firmware_shutdown(sev, false);
2371
2372
kfree(cert_blob);
2373
e_free_pdh:
2374
kfree(pdh_blob);
2375
return ret;
2376
}
2377
2378
static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
2379
{
2380
struct sev_device *sev = psp_master->sev_data;
2381
bool shutdown_required = false;
2382
struct sev_data_snp_addr buf;
2383
struct page *status_page;
2384
int ret, error;
2385
void *data;
2386
2387
if (!argp->data)
2388
return -EINVAL;
2389
2390
status_page = alloc_page(GFP_KERNEL_ACCOUNT);
2391
if (!status_page)
2392
return -ENOMEM;
2393
2394
data = page_address(status_page);
2395
2396
if (!sev->snp_initialized) {
2397
ret = snp_move_to_init_state(argp, &shutdown_required);
2398
if (ret)
2399
goto cleanup;
2400
}
2401
2402
/*
2403
* Firmware expects status page to be in firmware-owned state, otherwise
2404
* it will report firmware error code INVALID_PAGE_STATE (0x1A).
2405
*/
2406
if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
2407
ret = -EFAULT;
2408
goto cleanup;
2409
}
2410
2411
buf.address = __psp_pa(data);
2412
ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
2413
2414
/*
2415
* Status page will be transitioned to Reclaim state upon success, or
2416
* left in Firmware state in failure. Use snp_reclaim_pages() to
2417
* transition either case back to Hypervisor-owned state.
2418
*/
2419
if (snp_reclaim_pages(__pa(data), 1, true))
2420
return -EFAULT;
2421
2422
if (ret)
2423
goto cleanup;
2424
2425
if (copy_to_user((void __user *)argp->data, data,
2426
sizeof(struct sev_user_data_snp_status)))
2427
ret = -EFAULT;
2428
2429
cleanup:
2430
if (shutdown_required)
2431
__sev_snp_shutdown_locked(&error, false);
2432
2433
__free_pages(status_page, 0);
2434
return ret;
2435
}
2436
2437
static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2438
{
2439
struct sev_device *sev = psp_master->sev_data;
2440
struct sev_data_snp_commit buf;
2441
bool shutdown_required = false;
2442
int ret, error;
2443
2444
if (!sev->snp_initialized) {
2445
ret = snp_move_to_init_state(argp, &shutdown_required);
2446
if (ret)
2447
return ret;
2448
}
2449
2450
buf.len = sizeof(buf);
2451
2452
ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2453
2454
if (shutdown_required)
2455
__sev_snp_shutdown_locked(&error, false);
2456
2457
return ret;
2458
}
2459
2460
static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2461
{
2462
struct sev_device *sev = psp_master->sev_data;
2463
struct sev_user_data_snp_config config;
2464
bool shutdown_required = false;
2465
int ret, error;
2466
2467
if (!argp->data)
2468
return -EINVAL;
2469
2470
if (!writable)
2471
return -EPERM;
2472
2473
if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2474
return -EFAULT;
2475
2476
if (!sev->snp_initialized) {
2477
ret = snp_move_to_init_state(argp, &shutdown_required);
2478
if (ret)
2479
return ret;
2480
}
2481
2482
ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2483
2484
if (shutdown_required)
2485
__sev_snp_shutdown_locked(&error, false);
2486
2487
return ret;
2488
}
2489
2490
static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable)
2491
{
2492
struct sev_device *sev = psp_master->sev_data;
2493
struct sev_user_data_snp_vlek_load input;
2494
bool shutdown_required = false;
2495
int ret, error;
2496
void *blob;
2497
2498
if (!argp->data)
2499
return -EINVAL;
2500
2501
if (!writable)
2502
return -EPERM;
2503
2504
if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input)))
2505
return -EFAULT;
2506
2507
if (input.len != sizeof(input) || input.vlek_wrapped_version != 0)
2508
return -EINVAL;
2509
2510
blob = psp_copy_user_blob(input.vlek_wrapped_address,
2511
sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick));
2512
if (IS_ERR(blob))
2513
return PTR_ERR(blob);
2514
2515
input.vlek_wrapped_address = __psp_pa(blob);
2516
2517
if (!sev->snp_initialized) {
2518
ret = snp_move_to_init_state(argp, &shutdown_required);
2519
if (ret)
2520
goto cleanup;
2521
}
2522
2523
ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error);
2524
2525
if (shutdown_required)
2526
__sev_snp_shutdown_locked(&error, false);
2527
2528
cleanup:
2529
kfree(blob);
2530
2531
return ret;
2532
}
2533
2534
static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2535
{
2536
void __user *argp = (void __user *)arg;
2537
struct sev_issue_cmd input;
2538
int ret = -EFAULT;
2539
bool writable = file->f_mode & FMODE_WRITE;
2540
2541
if (!psp_master || !psp_master->sev_data)
2542
return -ENODEV;
2543
2544
if (ioctl != SEV_ISSUE_CMD)
2545
return -EINVAL;
2546
2547
if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2548
return -EFAULT;
2549
2550
if (input.cmd > SEV_MAX)
2551
return -EINVAL;
2552
2553
mutex_lock(&sev_cmd_mutex);
2554
2555
switch (input.cmd) {
2556
2557
case SEV_FACTORY_RESET:
2558
ret = sev_ioctl_do_reset(&input, writable);
2559
break;
2560
case SEV_PLATFORM_STATUS:
2561
ret = sev_ioctl_do_platform_status(&input);
2562
break;
2563
case SEV_PEK_GEN:
2564
ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2565
break;
2566
case SEV_PDH_GEN:
2567
ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2568
break;
2569
case SEV_PEK_CSR:
2570
ret = sev_ioctl_do_pek_csr(&input, writable);
2571
break;
2572
case SEV_PEK_CERT_IMPORT:
2573
ret = sev_ioctl_do_pek_import(&input, writable);
2574
break;
2575
case SEV_PDH_CERT_EXPORT:
2576
ret = sev_ioctl_do_pdh_export(&input, writable);
2577
break;
2578
case SEV_GET_ID:
2579
pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2580
ret = sev_ioctl_do_get_id(&input);
2581
break;
2582
case SEV_GET_ID2:
2583
ret = sev_ioctl_do_get_id2(&input);
2584
break;
2585
case SNP_PLATFORM_STATUS:
2586
ret = sev_ioctl_do_snp_platform_status(&input);
2587
break;
2588
case SNP_COMMIT:
2589
ret = sev_ioctl_do_snp_commit(&input);
2590
break;
2591
case SNP_SET_CONFIG:
2592
ret = sev_ioctl_do_snp_set_config(&input, writable);
2593
break;
2594
case SNP_VLEK_LOAD:
2595
ret = sev_ioctl_do_snp_vlek_load(&input, writable);
2596
break;
2597
default:
2598
ret = -EINVAL;
2599
goto out;
2600
}
2601
2602
if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2603
ret = -EFAULT;
2604
out:
2605
mutex_unlock(&sev_cmd_mutex);
2606
2607
return ret;
2608
}
2609
2610
static const struct file_operations sev_fops = {
2611
.owner = THIS_MODULE,
2612
.unlocked_ioctl = sev_ioctl,
2613
};
2614
2615
int sev_platform_status(struct sev_user_data_status *data, int *error)
2616
{
2617
return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2618
}
2619
EXPORT_SYMBOL_GPL(sev_platform_status);
2620
2621
int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2622
{
2623
return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2624
}
2625
EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2626
2627
int sev_guest_activate(struct sev_data_activate *data, int *error)
2628
{
2629
return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2630
}
2631
EXPORT_SYMBOL_GPL(sev_guest_activate);
2632
2633
int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2634
{
2635
return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2636
}
2637
EXPORT_SYMBOL_GPL(sev_guest_decommission);
2638
2639
int sev_guest_df_flush(int *error)
2640
{
2641
return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2642
}
2643
EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2644
2645
static void sev_exit(struct kref *ref)
2646
{
2647
misc_deregister(&misc_dev->misc);
2648
kfree(misc_dev);
2649
misc_dev = NULL;
2650
}
2651
2652
static int sev_misc_init(struct sev_device *sev)
2653
{
2654
struct device *dev = sev->dev;
2655
int ret;
2656
2657
/*
2658
* SEV feature support can be detected on multiple devices but the SEV
2659
* FW commands must be issued on the master. During probe, we do not
2660
* know the master hence we create /dev/sev on the first device probe.
2661
* sev_do_cmd() finds the right master device to which to issue the
2662
* command to the firmware.
2663
*/
2664
if (!misc_dev) {
2665
struct miscdevice *misc;
2666
2667
misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2668
if (!misc_dev)
2669
return -ENOMEM;
2670
2671
misc = &misc_dev->misc;
2672
misc->minor = MISC_DYNAMIC_MINOR;
2673
misc->name = DEVICE_NAME;
2674
misc->fops = &sev_fops;
2675
2676
ret = misc_register(misc);
2677
if (ret)
2678
return ret;
2679
2680
kref_init(&misc_dev->refcount);
2681
} else {
2682
kref_get(&misc_dev->refcount);
2683
}
2684
2685
init_waitqueue_head(&sev->int_queue);
2686
sev->misc = misc_dev;
2687
dev_dbg(dev, "registered SEV device\n");
2688
2689
return 0;
2690
}
2691
2692
int sev_dev_init(struct psp_device *psp)
2693
{
2694
struct device *dev = psp->dev;
2695
struct sev_device *sev;
2696
int ret = -ENOMEM;
2697
2698
if (!boot_cpu_has(X86_FEATURE_SEV)) {
2699
dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2700
return 0;
2701
}
2702
2703
sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2704
if (!sev)
2705
goto e_err;
2706
2707
sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2708
if (!sev->cmd_buf)
2709
goto e_sev;
2710
2711
sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2712
2713
psp->sev_data = sev;
2714
2715
sev->dev = dev;
2716
sev->psp = psp;
2717
2718
sev->io_regs = psp->io_regs;
2719
2720
sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2721
if (!sev->vdata) {
2722
ret = -ENODEV;
2723
dev_err(dev, "sev: missing driver data\n");
2724
goto e_buf;
2725
}
2726
2727
psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2728
2729
ret = sev_misc_init(sev);
2730
if (ret)
2731
goto e_irq;
2732
2733
dev_notice(dev, "sev enabled\n");
2734
2735
return 0;
2736
2737
e_irq:
2738
psp_clear_sev_irq_handler(psp);
2739
e_buf:
2740
devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2741
e_sev:
2742
devm_kfree(dev, sev);
2743
e_err:
2744
psp->sev_data = NULL;
2745
2746
dev_notice(dev, "sev initialization failed\n");
2747
2748
return ret;
2749
}
2750
2751
static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2752
{
2753
int error;
2754
2755
__sev_platform_shutdown_locked(&error);
2756
2757
if (sev_es_tmr) {
2758
/*
2759
* The TMR area was encrypted, flush it from the cache.
2760
*
2761
* If invoked during panic handling, local interrupts are
2762
* disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2763
* can't be used. In that case, wbinvd() is done on remote CPUs
2764
* via the NMI callback, and done for this CPU later during
2765
* SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2766
*/
2767
if (!panic)
2768
wbinvd_on_all_cpus();
2769
2770
__snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2771
get_order(sev_es_tmr_size),
2772
true);
2773
sev_es_tmr = NULL;
2774
}
2775
2776
if (sev_init_ex_buffer) {
2777
__snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2778
get_order(NV_LENGTH),
2779
true);
2780
sev_init_ex_buffer = NULL;
2781
}
2782
2783
if (snp_range_list) {
2784
kfree(snp_range_list);
2785
snp_range_list = NULL;
2786
}
2787
2788
__sev_snp_shutdown_locked(&error, panic);
2789
}
2790
2791
static void sev_firmware_shutdown(struct sev_device *sev)
2792
{
2793
/*
2794
* Calling without sev_cmd_mutex held as TSM will likely try disconnecting
2795
* IDE and this ends up calling sev_do_cmd() which locks sev_cmd_mutex.
2796
*/
2797
if (sev->tio_status)
2798
sev_tsm_uninit(sev);
2799
2800
mutex_lock(&sev_cmd_mutex);
2801
2802
__sev_firmware_shutdown(sev, false);
2803
2804
kfree(sev->tio_status);
2805
sev->tio_status = NULL;
2806
2807
mutex_unlock(&sev_cmd_mutex);
2808
}
2809
2810
void sev_platform_shutdown(void)
2811
{
2812
if (!psp_master || !psp_master->sev_data)
2813
return;
2814
2815
sev_firmware_shutdown(psp_master->sev_data);
2816
}
2817
EXPORT_SYMBOL_GPL(sev_platform_shutdown);
2818
2819
u64 sev_get_snp_policy_bits(void)
2820
{
2821
struct psp_device *psp = psp_master;
2822
struct sev_device *sev;
2823
u64 policy_bits;
2824
2825
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
2826
return 0;
2827
2828
if (!psp || !psp->sev_data)
2829
return 0;
2830
2831
sev = psp->sev_data;
2832
2833
policy_bits = SNP_POLICY_MASK_BASE;
2834
2835
if (sev->snp_plat_status.feature_info) {
2836
if (sev->snp_feat_info_0.ecx & SNP_RAPL_DISABLE_SUPPORTED)
2837
policy_bits |= SNP_POLICY_MASK_RAPL_DIS;
2838
2839
if (sev->snp_feat_info_0.ecx & SNP_CIPHER_TEXT_HIDING_SUPPORTED)
2840
policy_bits |= SNP_POLICY_MASK_CIPHERTEXT_HIDING_DRAM;
2841
2842
if (sev->snp_feat_info_0.ecx & SNP_AES_256_XTS_POLICY_SUPPORTED)
2843
policy_bits |= SNP_POLICY_MASK_MEM_AES_256_XTS;
2844
2845
if (sev->snp_feat_info_0.ecx & SNP_CXL_ALLOW_POLICY_SUPPORTED)
2846
policy_bits |= SNP_POLICY_MASK_CXL_ALLOW;
2847
2848
if (sev_version_greater_or_equal(1, 58))
2849
policy_bits |= SNP_POLICY_MASK_PAGE_SWAP_DISABLE;
2850
}
2851
2852
return policy_bits;
2853
}
2854
EXPORT_SYMBOL_GPL(sev_get_snp_policy_bits);
2855
2856
void sev_dev_destroy(struct psp_device *psp)
2857
{
2858
struct sev_device *sev = psp->sev_data;
2859
2860
if (!sev)
2861
return;
2862
2863
sev_firmware_shutdown(sev);
2864
2865
if (sev->misc)
2866
kref_put(&misc_dev->refcount, sev_exit);
2867
2868
psp_clear_sev_irq_handler(psp);
2869
}
2870
2871
static int snp_shutdown_on_panic(struct notifier_block *nb,
2872
unsigned long reason, void *arg)
2873
{
2874
struct sev_device *sev = psp_master->sev_data;
2875
2876
/*
2877
* If sev_cmd_mutex is already acquired, then it's likely
2878
* another PSP command is in flight and issuing a shutdown
2879
* would fail in unexpected ways. Rather than create even
2880
* more confusion during a panic, just bail out here.
2881
*/
2882
if (mutex_is_locked(&sev_cmd_mutex))
2883
return NOTIFY_DONE;
2884
2885
__sev_firmware_shutdown(sev, true);
2886
2887
return NOTIFY_DONE;
2888
}
2889
2890
int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2891
void *data, int *error)
2892
{
2893
if (!filep || filep->f_op != &sev_fops)
2894
return -EBADF;
2895
2896
return sev_do_cmd(cmd, data, error);
2897
}
2898
EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2899
2900
void sev_pci_init(void)
2901
{
2902
struct sev_device *sev = psp_master->sev_data;
2903
u8 api_major, api_minor, build;
2904
2905
if (!sev)
2906
return;
2907
2908
psp_timeout = psp_probe_timeout;
2909
2910
if (sev_get_api_version())
2911
goto err;
2912
2913
api_major = sev->api_major;
2914
api_minor = sev->api_minor;
2915
build = sev->build;
2916
2917
if (sev_update_firmware(sev->dev) == 0)
2918
sev_get_api_version();
2919
2920
if (api_major != sev->api_major || api_minor != sev->api_minor ||
2921
build != sev->build)
2922
dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n",
2923
api_major, api_minor, build,
2924
sev->api_major, sev->api_minor, sev->build);
2925
2926
return;
2927
2928
err:
2929
sev_dev_destroy(psp_master);
2930
2931
psp_master->sev_data = NULL;
2932
}
2933
2934
void sev_pci_exit(void)
2935
{
2936
struct sev_device *sev = psp_master->sev_data;
2937
2938
if (!sev)
2939
return;
2940
2941
sev_firmware_shutdown(sev);
2942
}
2943
2944