Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/ccp/sev-dev.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* AMD Secure Encrypted Virtualization (SEV) interface
4
*
5
* Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6
*
7
* Author: Brijesh Singh <[email protected]>
8
*/
9
10
#include <linux/bitfield.h>
11
#include <linux/module.h>
12
#include <linux/kernel.h>
13
#include <linux/kthread.h>
14
#include <linux/sched.h>
15
#include <linux/interrupt.h>
16
#include <linux/spinlock.h>
17
#include <linux/spinlock_types.h>
18
#include <linux/types.h>
19
#include <linux/mutex.h>
20
#include <linux/delay.h>
21
#include <linux/hw_random.h>
22
#include <linux/ccp.h>
23
#include <linux/firmware.h>
24
#include <linux/panic_notifier.h>
25
#include <linux/gfp.h>
26
#include <linux/cpufeature.h>
27
#include <linux/fs.h>
28
#include <linux/fs_struct.h>
29
#include <linux/psp.h>
30
#include <linux/amd-iommu.h>
31
32
#include <asm/smp.h>
33
#include <asm/cacheflush.h>
34
#include <asm/e820/types.h>
35
#include <asm/sev.h>
36
#include <asm/msr.h>
37
38
#include "psp-dev.h"
39
#include "sev-dev.h"
40
41
#define DEVICE_NAME "sev"
42
#define SEV_FW_FILE "amd/sev.fw"
43
#define SEV_FW_NAME_SIZE 64
44
45
/* Minimum firmware version required for the SEV-SNP support */
46
#define SNP_MIN_API_MAJOR 1
47
#define SNP_MIN_API_MINOR 51
48
49
/*
50
* Maximum number of firmware-writable buffers that might be specified
51
* in the parameters of a legacy SEV command buffer.
52
*/
53
#define CMD_BUF_FW_WRITABLE_MAX 2
54
55
/* Leave room in the descriptor array for an end-of-list indicator. */
56
#define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
57
58
static DEFINE_MUTEX(sev_cmd_mutex);
59
static struct sev_misc_dev *misc_dev;
60
61
static int psp_cmd_timeout = 100;
62
module_param(psp_cmd_timeout, int, 0644);
63
MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
64
65
static int psp_probe_timeout = 5;
66
module_param(psp_probe_timeout, int, 0644);
67
MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
68
69
static char *init_ex_path;
70
module_param(init_ex_path, charp, 0444);
71
MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
72
73
static bool psp_init_on_probe = true;
74
module_param(psp_init_on_probe, bool, 0444);
75
MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
76
77
MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
78
MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
79
MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
80
MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
81
82
static bool psp_dead;
83
static int psp_timeout;
84
85
/* Trusted Memory Region (TMR):
86
* The TMR is a 1MB area that must be 1MB aligned. Use the page allocator
87
* to allocate the memory, which will return aligned memory for the specified
88
* allocation order.
89
*
90
* When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
91
*/
92
#define SEV_TMR_SIZE (1024 * 1024)
93
#define SNP_TMR_SIZE (2 * 1024 * 1024)
94
95
static void *sev_es_tmr;
96
static size_t sev_es_tmr_size = SEV_TMR_SIZE;
97
98
/* INIT_EX NV Storage:
99
* The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page
100
* allocator to allocate the memory, which will return aligned memory for the
101
* specified allocation order.
102
*/
103
#define NV_LENGTH (32 * 1024)
104
static void *sev_init_ex_buffer;
105
106
/*
107
* SEV_DATA_RANGE_LIST:
108
* Array containing range of pages that firmware transitions to HV-fixed
109
* page state.
110
*/
111
static struct sev_data_range_list *snp_range_list;
112
113
static void __sev_firmware_shutdown(struct sev_device *sev, bool panic);
114
115
static int snp_shutdown_on_panic(struct notifier_block *nb,
116
unsigned long reason, void *arg);
117
118
static struct notifier_block snp_panic_notifier = {
119
.notifier_call = snp_shutdown_on_panic,
120
};
121
122
static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
123
{
124
struct sev_device *sev = psp_master->sev_data;
125
126
if (sev->api_major > maj)
127
return true;
128
129
if (sev->api_major == maj && sev->api_minor >= min)
130
return true;
131
132
return false;
133
}
134
135
static void sev_irq_handler(int irq, void *data, unsigned int status)
136
{
137
struct sev_device *sev = data;
138
int reg;
139
140
/* Check if it is command completion: */
141
if (!(status & SEV_CMD_COMPLETE))
142
return;
143
144
/* Check if it is SEV command completion: */
145
reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
146
if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
147
sev->int_rcvd = 1;
148
wake_up(&sev->int_queue);
149
}
150
}
151
152
static int sev_wait_cmd_ioc(struct sev_device *sev,
153
unsigned int *reg, unsigned int timeout)
154
{
155
int ret;
156
157
/*
158
* If invoked during panic handling, local interrupts are disabled,
159
* so the PSP command completion interrupt can't be used. Poll for
160
* PSP command completion instead.
161
*/
162
if (irqs_disabled()) {
163
unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
164
165
/* Poll for SEV command completion: */
166
while (timeout_usecs--) {
167
*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
168
if (*reg & PSP_CMDRESP_RESP)
169
return 0;
170
171
udelay(10);
172
}
173
return -ETIMEDOUT;
174
}
175
176
ret = wait_event_timeout(sev->int_queue,
177
sev->int_rcvd, timeout * HZ);
178
if (!ret)
179
return -ETIMEDOUT;
180
181
*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
182
183
return 0;
184
}
185
186
static int sev_cmd_buffer_len(int cmd)
187
{
188
switch (cmd) {
189
case SEV_CMD_INIT: return sizeof(struct sev_data_init);
190
case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex);
191
case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex);
192
case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex);
193
case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status);
194
case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr);
195
case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import);
196
case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export);
197
case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start);
198
case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data);
199
case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa);
200
case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish);
201
case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure);
202
case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate);
203
case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate);
204
case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission);
205
case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status);
206
case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg);
207
case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg);
208
case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start);
209
case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data);
210
case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa);
211
case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish);
212
case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start);
213
case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish);
214
case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data);
215
case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa);
216
case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret);
217
case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware);
218
case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id);
219
case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report);
220
case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel);
221
case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr);
222
case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start);
223
case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update);
224
case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate);
225
case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr);
226
case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim);
227
case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status);
228
case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish);
229
case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg);
230
case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg);
231
case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash);
232
case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr);
233
case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request);
234
case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config);
235
case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit);
236
default: return 0;
237
}
238
239
return 0;
240
}
241
242
static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
243
{
244
struct file *fp;
245
struct path root;
246
struct cred *cred;
247
const struct cred *old_cred;
248
249
task_lock(&init_task);
250
get_fs_root(init_task.fs, &root);
251
task_unlock(&init_task);
252
253
cred = prepare_creds();
254
if (!cred)
255
return ERR_PTR(-ENOMEM);
256
cred->fsuid = GLOBAL_ROOT_UID;
257
old_cred = override_creds(cred);
258
259
fp = file_open_root(&root, filename, flags, mode);
260
path_put(&root);
261
262
put_cred(revert_creds(old_cred));
263
264
return fp;
265
}
266
267
static int sev_read_init_ex_file(void)
268
{
269
struct sev_device *sev = psp_master->sev_data;
270
struct file *fp;
271
ssize_t nread;
272
273
lockdep_assert_held(&sev_cmd_mutex);
274
275
if (!sev_init_ex_buffer)
276
return -EOPNOTSUPP;
277
278
fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
279
if (IS_ERR(fp)) {
280
int ret = PTR_ERR(fp);
281
282
if (ret == -ENOENT) {
283
dev_info(sev->dev,
284
"SEV: %s does not exist and will be created later.\n",
285
init_ex_path);
286
ret = 0;
287
} else {
288
dev_err(sev->dev,
289
"SEV: could not open %s for read, error %d\n",
290
init_ex_path, ret);
291
}
292
return ret;
293
}
294
295
nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
296
if (nread != NV_LENGTH) {
297
dev_info(sev->dev,
298
"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
299
NV_LENGTH, nread);
300
}
301
302
dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
303
filp_close(fp, NULL);
304
305
return 0;
306
}
307
308
static int sev_write_init_ex_file(void)
309
{
310
struct sev_device *sev = psp_master->sev_data;
311
struct file *fp;
312
loff_t offset = 0;
313
ssize_t nwrite;
314
315
lockdep_assert_held(&sev_cmd_mutex);
316
317
if (!sev_init_ex_buffer)
318
return 0;
319
320
fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
321
if (IS_ERR(fp)) {
322
int ret = PTR_ERR(fp);
323
324
dev_err(sev->dev,
325
"SEV: could not open file for write, error %d\n",
326
ret);
327
return ret;
328
}
329
330
nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
331
vfs_fsync(fp, 0);
332
filp_close(fp, NULL);
333
334
if (nwrite != NV_LENGTH) {
335
dev_err(sev->dev,
336
"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
337
NV_LENGTH, nwrite);
338
return -EIO;
339
}
340
341
dev_dbg(sev->dev, "SEV: write successful to NV file\n");
342
343
return 0;
344
}
345
346
static int sev_write_init_ex_file_if_required(int cmd_id)
347
{
348
lockdep_assert_held(&sev_cmd_mutex);
349
350
if (!sev_init_ex_buffer)
351
return 0;
352
353
/*
354
* Only a few platform commands modify the SPI/NV area, but none of the
355
* non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
356
* PEK_CERT_IMPORT, and PDH_GEN do.
357
*/
358
switch (cmd_id) {
359
case SEV_CMD_FACTORY_RESET:
360
case SEV_CMD_INIT_EX:
361
case SEV_CMD_PDH_GEN:
362
case SEV_CMD_PEK_CERT_IMPORT:
363
case SEV_CMD_PEK_GEN:
364
break;
365
default:
366
return 0;
367
}
368
369
return sev_write_init_ex_file();
370
}
371
372
/*
373
* snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
374
* needs snp_reclaim_pages(), so a forward declaration is needed.
375
*/
376
static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
377
378
static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
379
{
380
int ret, err, i;
381
382
paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
383
384
for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
385
struct sev_data_snp_page_reclaim data = {0};
386
387
data.paddr = paddr;
388
389
if (locked)
390
ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
391
else
392
ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
393
394
if (ret)
395
goto cleanup;
396
397
ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
398
if (ret)
399
goto cleanup;
400
}
401
402
return 0;
403
404
cleanup:
405
/*
406
* If there was a failure reclaiming the page then it is no longer safe
407
* to release it back to the system; leak it instead.
408
*/
409
snp_leak_pages(__phys_to_pfn(paddr), npages - i);
410
return ret;
411
}
412
413
static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
414
{
415
unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
416
int rc, i;
417
418
for (i = 0; i < npages; i++, pfn++) {
419
rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
420
if (rc)
421
goto cleanup;
422
}
423
424
return 0;
425
426
cleanup:
427
/*
428
* Try unrolling the firmware state changes by
429
* reclaiming the pages which were already changed to the
430
* firmware state.
431
*/
432
snp_reclaim_pages(paddr, i, locked);
433
434
return rc;
435
}
436
437
static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked)
438
{
439
unsigned long npages = 1ul << order, paddr;
440
struct sev_device *sev;
441
struct page *page;
442
443
if (!psp_master || !psp_master->sev_data)
444
return NULL;
445
446
page = alloc_pages(gfp_mask, order);
447
if (!page)
448
return NULL;
449
450
/* If SEV-SNP is initialized then add the page in RMP table. */
451
sev = psp_master->sev_data;
452
if (!sev->snp_initialized)
453
return page;
454
455
paddr = __pa((unsigned long)page_address(page));
456
if (rmp_mark_pages_firmware(paddr, npages, locked))
457
return NULL;
458
459
return page;
460
}
461
462
void *snp_alloc_firmware_page(gfp_t gfp_mask)
463
{
464
struct page *page;
465
466
page = __snp_alloc_firmware_pages(gfp_mask, 0, false);
467
468
return page ? page_address(page) : NULL;
469
}
470
EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
471
472
static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
473
{
474
struct sev_device *sev = psp_master->sev_data;
475
unsigned long paddr, npages = 1ul << order;
476
477
if (!page)
478
return;
479
480
paddr = __pa((unsigned long)page_address(page));
481
if (sev->snp_initialized &&
482
snp_reclaim_pages(paddr, npages, locked))
483
return;
484
485
__free_pages(page, order);
486
}
487
488
void snp_free_firmware_page(void *addr)
489
{
490
if (!addr)
491
return;
492
493
__snp_free_firmware_pages(virt_to_page(addr), 0, false);
494
}
495
EXPORT_SYMBOL_GPL(snp_free_firmware_page);
496
497
static void *sev_fw_alloc(unsigned long len)
498
{
499
struct page *page;
500
501
page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true);
502
if (!page)
503
return NULL;
504
505
return page_address(page);
506
}
507
508
/**
509
* struct cmd_buf_desc - descriptors for managing legacy SEV command address
510
* parameters corresponding to buffers that may be written to by firmware.
511
*
512
* @paddr_ptr: pointer to the address parameter in the command buffer which may
513
* need to be saved/restored depending on whether a bounce buffer
514
* is used. In the case of a bounce buffer, the command buffer
515
* needs to be updated with the address of the new bounce buffer
516
* snp_map_cmd_buf_desc() has allocated specifically for it. Must
517
* be NULL if this descriptor is only an end-of-list indicator.
518
*
519
* @paddr_orig: storage for the original address parameter, which can be used to
520
* restore the original value in @paddr_ptr in cases where it is
521
* replaced with the address of a bounce buffer.
522
*
523
* @len: length of buffer located at the address originally stored at @paddr_ptr
524
*
525
* @guest_owned: true if the address corresponds to guest-owned pages, in which
526
* case bounce buffers are not needed.
527
*/
528
struct cmd_buf_desc {
529
u64 *paddr_ptr;
530
u64 paddr_orig;
531
u32 len;
532
bool guest_owned;
533
};
534
535
/*
536
* If a legacy SEV command parameter is a memory address, those pages in
537
* turn need to be transitioned to/from firmware-owned before/after
538
* executing the firmware command.
539
*
540
* Additionally, in cases where those pages are not guest-owned, a bounce
541
* buffer is needed in place of the original memory address parameter.
542
*
543
* A set of descriptors are used to keep track of this handling, and
544
* initialized here based on the specific commands being executed.
545
*/
546
static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
547
struct cmd_buf_desc *desc_list)
548
{
549
switch (cmd) {
550
case SEV_CMD_PDH_CERT_EXPORT: {
551
struct sev_data_pdh_cert_export *data = cmd_buf;
552
553
desc_list[0].paddr_ptr = &data->pdh_cert_address;
554
desc_list[0].len = data->pdh_cert_len;
555
desc_list[1].paddr_ptr = &data->cert_chain_address;
556
desc_list[1].len = data->cert_chain_len;
557
break;
558
}
559
case SEV_CMD_GET_ID: {
560
struct sev_data_get_id *data = cmd_buf;
561
562
desc_list[0].paddr_ptr = &data->address;
563
desc_list[0].len = data->len;
564
break;
565
}
566
case SEV_CMD_PEK_CSR: {
567
struct sev_data_pek_csr *data = cmd_buf;
568
569
desc_list[0].paddr_ptr = &data->address;
570
desc_list[0].len = data->len;
571
break;
572
}
573
case SEV_CMD_LAUNCH_UPDATE_DATA: {
574
struct sev_data_launch_update_data *data = cmd_buf;
575
576
desc_list[0].paddr_ptr = &data->address;
577
desc_list[0].len = data->len;
578
desc_list[0].guest_owned = true;
579
break;
580
}
581
case SEV_CMD_LAUNCH_UPDATE_VMSA: {
582
struct sev_data_launch_update_vmsa *data = cmd_buf;
583
584
desc_list[0].paddr_ptr = &data->address;
585
desc_list[0].len = data->len;
586
desc_list[0].guest_owned = true;
587
break;
588
}
589
case SEV_CMD_LAUNCH_MEASURE: {
590
struct sev_data_launch_measure *data = cmd_buf;
591
592
desc_list[0].paddr_ptr = &data->address;
593
desc_list[0].len = data->len;
594
break;
595
}
596
case SEV_CMD_LAUNCH_UPDATE_SECRET: {
597
struct sev_data_launch_secret *data = cmd_buf;
598
599
desc_list[0].paddr_ptr = &data->guest_address;
600
desc_list[0].len = data->guest_len;
601
desc_list[0].guest_owned = true;
602
break;
603
}
604
case SEV_CMD_DBG_DECRYPT: {
605
struct sev_data_dbg *data = cmd_buf;
606
607
desc_list[0].paddr_ptr = &data->dst_addr;
608
desc_list[0].len = data->len;
609
desc_list[0].guest_owned = true;
610
break;
611
}
612
case SEV_CMD_DBG_ENCRYPT: {
613
struct sev_data_dbg *data = cmd_buf;
614
615
desc_list[0].paddr_ptr = &data->dst_addr;
616
desc_list[0].len = data->len;
617
desc_list[0].guest_owned = true;
618
break;
619
}
620
case SEV_CMD_ATTESTATION_REPORT: {
621
struct sev_data_attestation_report *data = cmd_buf;
622
623
desc_list[0].paddr_ptr = &data->address;
624
desc_list[0].len = data->len;
625
break;
626
}
627
case SEV_CMD_SEND_START: {
628
struct sev_data_send_start *data = cmd_buf;
629
630
desc_list[0].paddr_ptr = &data->session_address;
631
desc_list[0].len = data->session_len;
632
break;
633
}
634
case SEV_CMD_SEND_UPDATE_DATA: {
635
struct sev_data_send_update_data *data = cmd_buf;
636
637
desc_list[0].paddr_ptr = &data->hdr_address;
638
desc_list[0].len = data->hdr_len;
639
desc_list[1].paddr_ptr = &data->trans_address;
640
desc_list[1].len = data->trans_len;
641
break;
642
}
643
case SEV_CMD_SEND_UPDATE_VMSA: {
644
struct sev_data_send_update_vmsa *data = cmd_buf;
645
646
desc_list[0].paddr_ptr = &data->hdr_address;
647
desc_list[0].len = data->hdr_len;
648
desc_list[1].paddr_ptr = &data->trans_address;
649
desc_list[1].len = data->trans_len;
650
break;
651
}
652
case SEV_CMD_RECEIVE_UPDATE_DATA: {
653
struct sev_data_receive_update_data *data = cmd_buf;
654
655
desc_list[0].paddr_ptr = &data->guest_address;
656
desc_list[0].len = data->guest_len;
657
desc_list[0].guest_owned = true;
658
break;
659
}
660
case SEV_CMD_RECEIVE_UPDATE_VMSA: {
661
struct sev_data_receive_update_vmsa *data = cmd_buf;
662
663
desc_list[0].paddr_ptr = &data->guest_address;
664
desc_list[0].len = data->guest_len;
665
desc_list[0].guest_owned = true;
666
break;
667
}
668
default:
669
break;
670
}
671
}
672
673
static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
674
{
675
unsigned int npages;
676
677
if (!desc->len)
678
return 0;
679
680
/* Allocate a bounce buffer if this isn't a guest owned page. */
681
if (!desc->guest_owned) {
682
struct page *page;
683
684
page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
685
if (!page) {
686
pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
687
return -ENOMEM;
688
}
689
690
desc->paddr_orig = *desc->paddr_ptr;
691
*desc->paddr_ptr = __psp_pa(page_to_virt(page));
692
}
693
694
npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
695
696
/* Transition the buffer to firmware-owned. */
697
if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
698
pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
699
return -EFAULT;
700
}
701
702
return 0;
703
}
704
705
static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
706
{
707
unsigned int npages;
708
709
if (!desc->len)
710
return 0;
711
712
npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
713
714
/* Transition the buffers back to hypervisor-owned. */
715
if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
716
pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
717
return -EFAULT;
718
}
719
720
/* Copy data from bounce buffer and then free it. */
721
if (!desc->guest_owned) {
722
void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
723
void *dst_buf = __va(__sme_clr(desc->paddr_orig));
724
725
memcpy(dst_buf, bounce_buf, desc->len);
726
__free_pages(virt_to_page(bounce_buf), get_order(desc->len));
727
728
/* Restore the original address in the command buffer. */
729
*desc->paddr_ptr = desc->paddr_orig;
730
}
731
732
return 0;
733
}
734
735
static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
736
{
737
int i;
738
739
snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
740
741
for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
742
struct cmd_buf_desc *desc = &desc_list[i];
743
744
if (!desc->paddr_ptr)
745
break;
746
747
if (snp_map_cmd_buf_desc(desc))
748
goto err_unmap;
749
}
750
751
return 0;
752
753
err_unmap:
754
for (i--; i >= 0; i--)
755
snp_unmap_cmd_buf_desc(&desc_list[i]);
756
757
return -EFAULT;
758
}
759
760
static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
761
{
762
int i, ret = 0;
763
764
for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
765
struct cmd_buf_desc *desc = &desc_list[i];
766
767
if (!desc->paddr_ptr)
768
break;
769
770
if (snp_unmap_cmd_buf_desc(&desc_list[i]))
771
ret = -EFAULT;
772
}
773
774
return ret;
775
}
776
777
static bool sev_cmd_buf_writable(int cmd)
778
{
779
switch (cmd) {
780
case SEV_CMD_PLATFORM_STATUS:
781
case SEV_CMD_GUEST_STATUS:
782
case SEV_CMD_LAUNCH_START:
783
case SEV_CMD_RECEIVE_START:
784
case SEV_CMD_LAUNCH_MEASURE:
785
case SEV_CMD_SEND_START:
786
case SEV_CMD_SEND_UPDATE_DATA:
787
case SEV_CMD_SEND_UPDATE_VMSA:
788
case SEV_CMD_PEK_CSR:
789
case SEV_CMD_PDH_CERT_EXPORT:
790
case SEV_CMD_GET_ID:
791
case SEV_CMD_ATTESTATION_REPORT:
792
return true;
793
default:
794
return false;
795
}
796
}
797
798
/* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
799
static bool snp_legacy_handling_needed(int cmd)
800
{
801
struct sev_device *sev = psp_master->sev_data;
802
803
return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
804
}
805
806
static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
807
{
808
if (!snp_legacy_handling_needed(cmd))
809
return 0;
810
811
if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
812
return -EFAULT;
813
814
/*
815
* Before command execution, the command buffer needs to be put into
816
* the firmware-owned state.
817
*/
818
if (sev_cmd_buf_writable(cmd)) {
819
if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
820
return -EFAULT;
821
}
822
823
return 0;
824
}
825
826
static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
827
{
828
if (!snp_legacy_handling_needed(cmd))
829
return 0;
830
831
/*
832
* After command completion, the command buffer needs to be put back
833
* into the hypervisor-owned state.
834
*/
835
if (sev_cmd_buf_writable(cmd))
836
if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
837
return -EFAULT;
838
839
return 0;
840
}
841
842
static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
843
{
844
struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
845
struct psp_device *psp = psp_master;
846
struct sev_device *sev;
847
unsigned int cmdbuff_hi, cmdbuff_lo;
848
unsigned int phys_lsb, phys_msb;
849
unsigned int reg, ret = 0;
850
void *cmd_buf;
851
int buf_len;
852
853
if (!psp || !psp->sev_data)
854
return -ENODEV;
855
856
if (psp_dead)
857
return -EBUSY;
858
859
sev = psp->sev_data;
860
861
buf_len = sev_cmd_buffer_len(cmd);
862
if (WARN_ON_ONCE(!data != !buf_len))
863
return -EINVAL;
864
865
/*
866
* Copy the incoming data to driver's scratch buffer as __pa() will not
867
* work for some memory, e.g. vmalloc'd addresses, and @data may not be
868
* physically contiguous.
869
*/
870
if (data) {
871
/*
872
* Commands are generally issued one at a time and require the
873
* sev_cmd_mutex, but there could be recursive firmware requests
874
* due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
875
* preparing buffers for another command. This is the only known
876
* case of nesting in the current code, so exactly one
877
* additional command buffer is available for that purpose.
878
*/
879
if (!sev->cmd_buf_active) {
880
cmd_buf = sev->cmd_buf;
881
sev->cmd_buf_active = true;
882
} else if (!sev->cmd_buf_backup_active) {
883
cmd_buf = sev->cmd_buf_backup;
884
sev->cmd_buf_backup_active = true;
885
} else {
886
dev_err(sev->dev,
887
"SEV: too many firmware commands in progress, no command buffers available.\n");
888
return -EBUSY;
889
}
890
891
memcpy(cmd_buf, data, buf_len);
892
893
/*
894
* The behavior of the SEV-legacy commands is altered when the
895
* SNP firmware is in the INIT state.
896
*/
897
ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
898
if (ret) {
899
dev_err(sev->dev,
900
"SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
901
cmd, ret);
902
return ret;
903
}
904
} else {
905
cmd_buf = sev->cmd_buf;
906
}
907
908
/* Get the physical address of the command buffer */
909
phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
910
phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
911
912
dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
913
cmd, phys_msb, phys_lsb, psp_timeout);
914
915
print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data,
916
buf_len, false);
917
918
iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
919
iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
920
921
sev->int_rcvd = 0;
922
923
reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd);
924
925
/*
926
* If invoked during panic handling, local interrupts are disabled so
927
* the PSP command completion interrupt can't be used.
928
* sev_wait_cmd_ioc() already checks for interrupts disabled and
929
* polls for PSP command completion. Ensure we do not request an
930
* interrupt from the PSP if irqs disabled.
931
*/
932
if (!irqs_disabled())
933
reg |= SEV_CMDRESP_IOC;
934
935
iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
936
937
/* wait for command completion */
938
ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
939
if (ret) {
940
if (psp_ret)
941
*psp_ret = 0;
942
943
dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
944
psp_dead = true;
945
946
return ret;
947
}
948
949
psp_timeout = psp_cmd_timeout;
950
951
if (psp_ret)
952
*psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
953
954
if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
955
dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
956
cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
957
958
/*
959
* PSP firmware may report additional error information in the
960
* command buffer registers on error. Print contents of command
961
* buffer registers if they changed.
962
*/
963
cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
964
cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
965
if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
966
dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
967
dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi);
968
dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo);
969
}
970
ret = -EIO;
971
} else {
972
ret = sev_write_init_ex_file_if_required(cmd);
973
}
974
975
/*
976
* Copy potential output from the PSP back to data. Do this even on
977
* failure in case the caller wants to glean something from the error.
978
*/
979
if (data) {
980
int ret_reclaim;
981
/*
982
* Restore the page state after the command completes.
983
*/
984
ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
985
if (ret_reclaim) {
986
dev_err(sev->dev,
987
"SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
988
cmd, ret_reclaim);
989
return ret_reclaim;
990
}
991
992
memcpy(data, cmd_buf, buf_len);
993
994
if (sev->cmd_buf_backup_active)
995
sev->cmd_buf_backup_active = false;
996
else
997
sev->cmd_buf_active = false;
998
999
if (snp_unmap_cmd_buf_desc_list(desc_list))
1000
return -EFAULT;
1001
}
1002
1003
print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
1004
buf_len, false);
1005
1006
return ret;
1007
}
1008
1009
int sev_do_cmd(int cmd, void *data, int *psp_ret)
1010
{
1011
int rc;
1012
1013
mutex_lock(&sev_cmd_mutex);
1014
rc = __sev_do_cmd_locked(cmd, data, psp_ret);
1015
mutex_unlock(&sev_cmd_mutex);
1016
1017
return rc;
1018
}
1019
EXPORT_SYMBOL_GPL(sev_do_cmd);
1020
1021
static int __sev_init_locked(int *error)
1022
{
1023
struct sev_data_init data;
1024
1025
memset(&data, 0, sizeof(data));
1026
if (sev_es_tmr) {
1027
/*
1028
* Do not include the encryption mask on the physical
1029
* address of the TMR (firmware should clear it anyway).
1030
*/
1031
data.tmr_address = __pa(sev_es_tmr);
1032
1033
data.flags |= SEV_INIT_FLAGS_SEV_ES;
1034
data.tmr_len = sev_es_tmr_size;
1035
}
1036
1037
return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1038
}
1039
1040
static int __sev_init_ex_locked(int *error)
1041
{
1042
struct sev_data_init_ex data;
1043
1044
memset(&data, 0, sizeof(data));
1045
data.length = sizeof(data);
1046
data.nv_address = __psp_pa(sev_init_ex_buffer);
1047
data.nv_len = NV_LENGTH;
1048
1049
if (sev_es_tmr) {
1050
/*
1051
* Do not include the encryption mask on the physical
1052
* address of the TMR (firmware should clear it anyway).
1053
*/
1054
data.tmr_address = __pa(sev_es_tmr);
1055
1056
data.flags |= SEV_INIT_FLAGS_SEV_ES;
1057
data.tmr_len = sev_es_tmr_size;
1058
}
1059
1060
return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1061
}
1062
1063
static inline int __sev_do_init_locked(int *psp_ret)
1064
{
1065
if (sev_init_ex_buffer)
1066
return __sev_init_ex_locked(psp_ret);
1067
else
1068
return __sev_init_locked(psp_ret);
1069
}
1070
1071
static void snp_set_hsave_pa(void *arg)
1072
{
1073
wrmsrq(MSR_VM_HSAVE_PA, 0);
1074
}
1075
1076
static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1077
{
1078
struct sev_data_range_list *range_list = arg;
1079
struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1080
size_t size;
1081
1082
/*
1083
* Ensure the list of HV_FIXED pages that will be passed to firmware
1084
* do not exceed the page-sized argument buffer.
1085
*/
1086
if ((range_list->num_elements * sizeof(struct sev_data_range) +
1087
sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1088
return -E2BIG;
1089
1090
switch (rs->desc) {
1091
case E820_TYPE_RESERVED:
1092
case E820_TYPE_PMEM:
1093
case E820_TYPE_ACPI:
1094
range->base = rs->start & PAGE_MASK;
1095
size = PAGE_ALIGN((rs->end + 1) - rs->start);
1096
range->page_count = size >> PAGE_SHIFT;
1097
range_list->num_elements++;
1098
break;
1099
default:
1100
break;
1101
}
1102
1103
return 0;
1104
}
1105
1106
static int __sev_snp_init_locked(int *error)
1107
{
1108
struct psp_device *psp = psp_master;
1109
struct sev_data_snp_init_ex data;
1110
struct sev_device *sev;
1111
void *arg = &data;
1112
int cmd, rc = 0;
1113
1114
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1115
return -ENODEV;
1116
1117
sev = psp->sev_data;
1118
1119
if (sev->snp_initialized)
1120
return 0;
1121
1122
if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1123
dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1124
SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1125
return -EOPNOTSUPP;
1126
}
1127
1128
/* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1129
on_each_cpu(snp_set_hsave_pa, NULL, 1);
1130
1131
/*
1132
* Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1133
* of system physical address ranges to convert into HV-fixed page
1134
* states during the RMP initialization. For instance, the memory that
1135
* UEFI reserves should be included in the that list. This allows system
1136
* components that occasionally write to memory (e.g. logging to UEFI
1137
* reserved regions) to not fail due to RMP initialization and SNP
1138
* enablement.
1139
*
1140
*/
1141
if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1142
/*
1143
* Firmware checks that the pages containing the ranges enumerated
1144
* in the RANGES structure are either in the default page state or in the
1145
* firmware page state.
1146
*/
1147
snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1148
if (!snp_range_list) {
1149
dev_err(sev->dev,
1150
"SEV: SNP_INIT_EX range list memory allocation failed\n");
1151
return -ENOMEM;
1152
}
1153
1154
/*
1155
* Retrieve all reserved memory regions from the e820 memory map
1156
* to be setup as HV-fixed pages.
1157
*/
1158
rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1159
snp_range_list, snp_filter_reserved_mem_regions);
1160
if (rc) {
1161
dev_err(sev->dev,
1162
"SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1163
return rc;
1164
}
1165
1166
memset(&data, 0, sizeof(data));
1167
data.init_rmp = 1;
1168
data.list_paddr_en = 1;
1169
data.list_paddr = __psp_pa(snp_range_list);
1170
cmd = SEV_CMD_SNP_INIT_EX;
1171
} else {
1172
cmd = SEV_CMD_SNP_INIT;
1173
arg = NULL;
1174
}
1175
1176
/*
1177
* The following sequence must be issued before launching the first SNP
1178
* guest to ensure all dirty cache lines are flushed, including from
1179
* updates to the RMP table itself via the RMPUPDATE instruction:
1180
*
1181
* - WBINVD on all running CPUs
1182
* - SEV_CMD_SNP_INIT[_EX] firmware command
1183
* - WBINVD on all running CPUs
1184
* - SEV_CMD_SNP_DF_FLUSH firmware command
1185
*/
1186
wbinvd_on_all_cpus();
1187
1188
rc = __sev_do_cmd_locked(cmd, arg, error);
1189
if (rc) {
1190
dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n",
1191
cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT",
1192
rc, *error);
1193
return rc;
1194
}
1195
1196
/* Prepare for first SNP guest launch after INIT. */
1197
wbinvd_on_all_cpus();
1198
rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1199
if (rc) {
1200
dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n",
1201
rc, *error);
1202
return rc;
1203
}
1204
1205
sev->snp_initialized = true;
1206
dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1207
1208
dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major,
1209
sev->api_minor, sev->build);
1210
1211
atomic_notifier_chain_register(&panic_notifier_list,
1212
&snp_panic_notifier);
1213
1214
sev_es_tmr_size = SNP_TMR_SIZE;
1215
1216
return 0;
1217
}
1218
1219
static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1220
{
1221
if (sev_es_tmr)
1222
return;
1223
1224
/* Obtain the TMR memory area for SEV-ES use */
1225
sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1226
if (sev_es_tmr) {
1227
/* Must flush the cache before giving it to the firmware */
1228
if (!sev->snp_initialized)
1229
clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1230
} else {
1231
dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1232
}
1233
}
1234
1235
/*
1236
* If an init_ex_path is provided allocate a buffer for the file and
1237
* read in the contents. Additionally, if SNP is initialized, convert
1238
* the buffer pages to firmware pages.
1239
*/
1240
static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1241
{
1242
struct page *page;
1243
int rc;
1244
1245
if (!init_ex_path)
1246
return 0;
1247
1248
if (sev_init_ex_buffer)
1249
return 0;
1250
1251
page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1252
if (!page) {
1253
dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1254
return -ENOMEM;
1255
}
1256
1257
sev_init_ex_buffer = page_address(page);
1258
1259
rc = sev_read_init_ex_file();
1260
if (rc)
1261
return rc;
1262
1263
/* If SEV-SNP is initialized, transition to firmware page. */
1264
if (sev->snp_initialized) {
1265
unsigned long npages;
1266
1267
npages = 1UL << get_order(NV_LENGTH);
1268
if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1269
dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1270
return -ENOMEM;
1271
}
1272
}
1273
1274
return 0;
1275
}
1276
1277
static int __sev_platform_init_locked(int *error)
1278
{
1279
int rc, psp_ret, dfflush_error;
1280
struct sev_device *sev;
1281
1282
psp_ret = dfflush_error = SEV_RET_NO_FW_CALL;
1283
1284
if (!psp_master || !psp_master->sev_data)
1285
return -ENODEV;
1286
1287
sev = psp_master->sev_data;
1288
1289
if (sev->state == SEV_STATE_INIT)
1290
return 0;
1291
1292
__sev_platform_init_handle_tmr(sev);
1293
1294
rc = __sev_platform_init_handle_init_ex_path(sev);
1295
if (rc)
1296
return rc;
1297
1298
rc = __sev_do_init_locked(&psp_ret);
1299
if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1300
/*
1301
* Initialization command returned an integrity check failure
1302
* status code, meaning that firmware load and validation of SEV
1303
* related persistent data has failed. Retrying the
1304
* initialization function should succeed by replacing the state
1305
* with a reset state.
1306
*/
1307
dev_err(sev->dev,
1308
"SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1309
rc = __sev_do_init_locked(&psp_ret);
1310
}
1311
1312
if (error)
1313
*error = psp_ret;
1314
1315
if (rc) {
1316
dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n",
1317
sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc);
1318
return rc;
1319
}
1320
1321
sev->state = SEV_STATE_INIT;
1322
1323
/* Prepare for first SEV guest launch after INIT */
1324
wbinvd_on_all_cpus();
1325
rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error);
1326
if (rc) {
1327
dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n",
1328
dfflush_error, rc);
1329
return rc;
1330
}
1331
1332
dev_dbg(sev->dev, "SEV firmware initialized\n");
1333
1334
dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1335
sev->api_minor, sev->build);
1336
1337
return 0;
1338
}
1339
1340
static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1341
{
1342
struct sev_device *sev;
1343
int rc;
1344
1345
if (!psp_master || !psp_master->sev_data)
1346
return -ENODEV;
1347
1348
sev = psp_master->sev_data;
1349
1350
if (sev->state == SEV_STATE_INIT)
1351
return 0;
1352
1353
rc = __sev_snp_init_locked(&args->error);
1354
if (rc && rc != -ENODEV)
1355
return rc;
1356
1357
/* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1358
if (args->probe && !psp_init_on_probe)
1359
return 0;
1360
1361
return __sev_platform_init_locked(&args->error);
1362
}
1363
1364
int sev_platform_init(struct sev_platform_init_args *args)
1365
{
1366
int rc;
1367
1368
mutex_lock(&sev_cmd_mutex);
1369
rc = _sev_platform_init_locked(args);
1370
mutex_unlock(&sev_cmd_mutex);
1371
1372
return rc;
1373
}
1374
EXPORT_SYMBOL_GPL(sev_platform_init);
1375
1376
static int __sev_platform_shutdown_locked(int *error)
1377
{
1378
struct psp_device *psp = psp_master;
1379
struct sev_device *sev;
1380
int ret;
1381
1382
if (!psp || !psp->sev_data)
1383
return 0;
1384
1385
sev = psp->sev_data;
1386
1387
if (sev->state == SEV_STATE_UNINIT)
1388
return 0;
1389
1390
ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1391
if (ret) {
1392
dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n",
1393
*error, ret);
1394
return ret;
1395
}
1396
1397
sev->state = SEV_STATE_UNINIT;
1398
dev_dbg(sev->dev, "SEV firmware shutdown\n");
1399
1400
return ret;
1401
}
1402
1403
static int sev_get_platform_state(int *state, int *error)
1404
{
1405
struct sev_user_data_status data;
1406
int rc;
1407
1408
rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1409
if (rc)
1410
return rc;
1411
1412
*state = data.state;
1413
return rc;
1414
}
1415
1416
static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1417
{
1418
struct sev_platform_init_args init_args = {0};
1419
int rc;
1420
1421
rc = _sev_platform_init_locked(&init_args);
1422
if (rc) {
1423
argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1424
return rc;
1425
}
1426
1427
*shutdown_required = true;
1428
1429
return 0;
1430
}
1431
1432
static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1433
{
1434
int error, rc;
1435
1436
rc = __sev_snp_init_locked(&error);
1437
if (rc) {
1438
argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1439
return rc;
1440
}
1441
1442
*shutdown_required = true;
1443
1444
return 0;
1445
}
1446
1447
static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1448
{
1449
int state, rc;
1450
1451
if (!writable)
1452
return -EPERM;
1453
1454
/*
1455
* The SEV spec requires that FACTORY_RESET must be issued in
1456
* UNINIT state. Before we go further lets check if any guest is
1457
* active.
1458
*
1459
* If FW is in WORKING state then deny the request otherwise issue
1460
* SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1461
*
1462
*/
1463
rc = sev_get_platform_state(&state, &argp->error);
1464
if (rc)
1465
return rc;
1466
1467
if (state == SEV_STATE_WORKING)
1468
return -EBUSY;
1469
1470
if (state == SEV_STATE_INIT) {
1471
rc = __sev_platform_shutdown_locked(&argp->error);
1472
if (rc)
1473
return rc;
1474
}
1475
1476
return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1477
}
1478
1479
static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1480
{
1481
struct sev_user_data_status data;
1482
int ret;
1483
1484
memset(&data, 0, sizeof(data));
1485
1486
ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1487
if (ret)
1488
return ret;
1489
1490
if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1491
ret = -EFAULT;
1492
1493
return ret;
1494
}
1495
1496
static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1497
{
1498
struct sev_device *sev = psp_master->sev_data;
1499
bool shutdown_required = false;
1500
int rc;
1501
1502
if (!writable)
1503
return -EPERM;
1504
1505
if (sev->state == SEV_STATE_UNINIT) {
1506
rc = sev_move_to_init_state(argp, &shutdown_required);
1507
if (rc)
1508
return rc;
1509
}
1510
1511
rc = __sev_do_cmd_locked(cmd, NULL, &argp->error);
1512
1513
if (shutdown_required)
1514
__sev_firmware_shutdown(sev, false);
1515
1516
return rc;
1517
}
1518
1519
static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1520
{
1521
struct sev_device *sev = psp_master->sev_data;
1522
struct sev_user_data_pek_csr input;
1523
bool shutdown_required = false;
1524
struct sev_data_pek_csr data;
1525
void __user *input_address;
1526
void *blob = NULL;
1527
int ret;
1528
1529
if (!writable)
1530
return -EPERM;
1531
1532
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1533
return -EFAULT;
1534
1535
memset(&data, 0, sizeof(data));
1536
1537
/* userspace wants to query CSR length */
1538
if (!input.address || !input.length)
1539
goto cmd;
1540
1541
/* allocate a physically contiguous buffer to store the CSR blob */
1542
input_address = (void __user *)input.address;
1543
if (input.length > SEV_FW_BLOB_MAX_SIZE)
1544
return -EFAULT;
1545
1546
blob = kzalloc(input.length, GFP_KERNEL);
1547
if (!blob)
1548
return -ENOMEM;
1549
1550
data.address = __psp_pa(blob);
1551
data.len = input.length;
1552
1553
cmd:
1554
if (sev->state == SEV_STATE_UNINIT) {
1555
ret = sev_move_to_init_state(argp, &shutdown_required);
1556
if (ret)
1557
goto e_free_blob;
1558
}
1559
1560
ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1561
1562
/* If we query the CSR length, FW responded with expected data. */
1563
input.length = data.len;
1564
1565
if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1566
ret = -EFAULT;
1567
goto e_free_blob;
1568
}
1569
1570
if (blob) {
1571
if (copy_to_user(input_address, blob, input.length))
1572
ret = -EFAULT;
1573
}
1574
1575
e_free_blob:
1576
if (shutdown_required)
1577
__sev_firmware_shutdown(sev, false);
1578
1579
kfree(blob);
1580
return ret;
1581
}
1582
1583
void *psp_copy_user_blob(u64 uaddr, u32 len)
1584
{
1585
if (!uaddr || !len)
1586
return ERR_PTR(-EINVAL);
1587
1588
/* verify that blob length does not exceed our limit */
1589
if (len > SEV_FW_BLOB_MAX_SIZE)
1590
return ERR_PTR(-EINVAL);
1591
1592
return memdup_user((void __user *)uaddr, len);
1593
}
1594
EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1595
1596
static int sev_get_api_version(void)
1597
{
1598
struct sev_device *sev = psp_master->sev_data;
1599
struct sev_user_data_status status;
1600
int error = 0, ret;
1601
1602
ret = sev_platform_status(&status, &error);
1603
if (ret) {
1604
dev_err(sev->dev,
1605
"SEV: failed to get status. Error: %#x\n", error);
1606
return 1;
1607
}
1608
1609
sev->api_major = status.api_major;
1610
sev->api_minor = status.api_minor;
1611
sev->build = status.build;
1612
sev->state = status.state;
1613
1614
return 0;
1615
}
1616
1617
static int sev_get_firmware(struct device *dev,
1618
const struct firmware **firmware)
1619
{
1620
char fw_name_specific[SEV_FW_NAME_SIZE];
1621
char fw_name_subset[SEV_FW_NAME_SIZE];
1622
1623
snprintf(fw_name_specific, sizeof(fw_name_specific),
1624
"amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1625
boot_cpu_data.x86, boot_cpu_data.x86_model);
1626
1627
snprintf(fw_name_subset, sizeof(fw_name_subset),
1628
"amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1629
boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1630
1631
/* Check for SEV FW for a particular model.
1632
* Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1633
*
1634
* or
1635
*
1636
* Check for SEV FW common to a subset of models.
1637
* Ex. amd_sev_fam17h_model0xh.sbin for
1638
* Family 17h Model 00h -- Family 17h Model 0Fh
1639
*
1640
* or
1641
*
1642
* Fall-back to using generic name: sev.fw
1643
*/
1644
if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1645
(firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1646
(firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1647
return 0;
1648
1649
return -ENOENT;
1650
}
1651
1652
/* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1653
static int sev_update_firmware(struct device *dev)
1654
{
1655
struct sev_data_download_firmware *data;
1656
const struct firmware *firmware;
1657
int ret, error, order;
1658
struct page *p;
1659
u64 data_size;
1660
1661
if (!sev_version_greater_or_equal(0, 15)) {
1662
dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1663
return -1;
1664
}
1665
1666
if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1667
dev_dbg(dev, "No SEV firmware file present\n");
1668
return -1;
1669
}
1670
1671
/*
1672
* SEV FW expects the physical address given to it to be 32
1673
* byte aligned. Memory allocated has structure placed at the
1674
* beginning followed by the firmware being passed to the SEV
1675
* FW. Allocate enough memory for data structure + alignment
1676
* padding + SEV FW.
1677
*/
1678
data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1679
1680
order = get_order(firmware->size + data_size);
1681
p = alloc_pages(GFP_KERNEL, order);
1682
if (!p) {
1683
ret = -1;
1684
goto fw_err;
1685
}
1686
1687
/*
1688
* Copy firmware data to a kernel allocated contiguous
1689
* memory region.
1690
*/
1691
data = page_address(p);
1692
memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1693
1694
data->address = __psp_pa(page_address(p) + data_size);
1695
data->len = firmware->size;
1696
1697
ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1698
1699
/*
1700
* A quirk for fixing the committed TCB version, when upgrading from
1701
* earlier firmware version than 1.50.
1702
*/
1703
if (!ret && !sev_version_greater_or_equal(1, 50))
1704
ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1705
1706
if (ret)
1707
dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1708
1709
__free_pages(p, order);
1710
1711
fw_err:
1712
release_firmware(firmware);
1713
1714
return ret;
1715
}
1716
1717
static int __sev_snp_shutdown_locked(int *error, bool panic)
1718
{
1719
struct psp_device *psp = psp_master;
1720
struct sev_device *sev;
1721
struct sev_data_snp_shutdown_ex data;
1722
int ret;
1723
1724
if (!psp || !psp->sev_data)
1725
return 0;
1726
1727
sev = psp->sev_data;
1728
1729
if (!sev->snp_initialized)
1730
return 0;
1731
1732
memset(&data, 0, sizeof(data));
1733
data.len = sizeof(data);
1734
data.iommu_snp_shutdown = 1;
1735
1736
/*
1737
* If invoked during panic handling, local interrupts are disabled
1738
* and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1739
* In that case, a wbinvd() is done on remote CPUs via the NMI
1740
* callback, so only a local wbinvd() is needed here.
1741
*/
1742
if (!panic)
1743
wbinvd_on_all_cpus();
1744
else
1745
wbinvd();
1746
1747
ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
1748
/* SHUTDOWN may require DF_FLUSH */
1749
if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1750
int dfflush_error = SEV_RET_NO_FW_CALL;
1751
1752
ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error);
1753
if (ret) {
1754
dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n",
1755
ret, dfflush_error);
1756
return ret;
1757
}
1758
/* reissue the shutdown command */
1759
ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
1760
error);
1761
}
1762
if (ret) {
1763
dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n",
1764
ret, *error);
1765
return ret;
1766
}
1767
1768
/*
1769
* SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1770
* enforcement by the IOMMU and also transitions all pages
1771
* associated with the IOMMU to the Reclaim state.
1772
* Firmware was transitioning the IOMMU pages to Hypervisor state
1773
* before version 1.53. But, accounting for the number of assigned
1774
* 4kB pages in a 2M page was done incorrectly by not transitioning
1775
* to the Reclaim state. This resulted in RMP #PF when later accessing
1776
* the 2M page containing those pages during kexec boot. Hence, the
1777
* firmware now transitions these pages to Reclaim state and hypervisor
1778
* needs to transition these pages to shared state. SNP Firmware
1779
* version 1.53 and above are needed for kexec boot.
1780
*/
1781
ret = amd_iommu_snp_disable();
1782
if (ret) {
1783
dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1784
return ret;
1785
}
1786
1787
sev->snp_initialized = false;
1788
dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1789
1790
/*
1791
* __sev_snp_shutdown_locked() deadlocks when it tries to unregister
1792
* itself during panic as the panic notifier is called with RCU read
1793
* lock held and notifier unregistration does RCU synchronization.
1794
*/
1795
if (!panic)
1796
atomic_notifier_chain_unregister(&panic_notifier_list,
1797
&snp_panic_notifier);
1798
1799
/* Reset TMR size back to default */
1800
sev_es_tmr_size = SEV_TMR_SIZE;
1801
1802
return ret;
1803
}
1804
1805
static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1806
{
1807
struct sev_device *sev = psp_master->sev_data;
1808
struct sev_user_data_pek_cert_import input;
1809
struct sev_data_pek_cert_import data;
1810
bool shutdown_required = false;
1811
void *pek_blob, *oca_blob;
1812
int ret;
1813
1814
if (!writable)
1815
return -EPERM;
1816
1817
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1818
return -EFAULT;
1819
1820
/* copy PEK certificate blobs from userspace */
1821
pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
1822
if (IS_ERR(pek_blob))
1823
return PTR_ERR(pek_blob);
1824
1825
data.reserved = 0;
1826
data.pek_cert_address = __psp_pa(pek_blob);
1827
data.pek_cert_len = input.pek_cert_len;
1828
1829
/* copy PEK certificate blobs from userspace */
1830
oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
1831
if (IS_ERR(oca_blob)) {
1832
ret = PTR_ERR(oca_blob);
1833
goto e_free_pek;
1834
}
1835
1836
data.oca_cert_address = __psp_pa(oca_blob);
1837
data.oca_cert_len = input.oca_cert_len;
1838
1839
/* If platform is not in INIT state then transition it to INIT */
1840
if (sev->state != SEV_STATE_INIT) {
1841
ret = sev_move_to_init_state(argp, &shutdown_required);
1842
if (ret)
1843
goto e_free_oca;
1844
}
1845
1846
ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
1847
1848
e_free_oca:
1849
if (shutdown_required)
1850
__sev_firmware_shutdown(sev, false);
1851
1852
kfree(oca_blob);
1853
e_free_pek:
1854
kfree(pek_blob);
1855
return ret;
1856
}
1857
1858
static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
1859
{
1860
struct sev_user_data_get_id2 input;
1861
struct sev_data_get_id data;
1862
void __user *input_address;
1863
void *id_blob = NULL;
1864
int ret;
1865
1866
/* SEV GET_ID is available from SEV API v0.16 and up */
1867
if (!sev_version_greater_or_equal(0, 16))
1868
return -ENOTSUPP;
1869
1870
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1871
return -EFAULT;
1872
1873
input_address = (void __user *)input.address;
1874
1875
if (input.address && input.length) {
1876
/*
1877
* The length of the ID shouldn't be assumed by software since
1878
* it may change in the future. The allocation size is limited
1879
* to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
1880
* If the allocation fails, simply return ENOMEM rather than
1881
* warning in the kernel log.
1882
*/
1883
id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
1884
if (!id_blob)
1885
return -ENOMEM;
1886
1887
data.address = __psp_pa(id_blob);
1888
data.len = input.length;
1889
} else {
1890
data.address = 0;
1891
data.len = 0;
1892
}
1893
1894
ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
1895
1896
/*
1897
* Firmware will return the length of the ID value (either the minimum
1898
* required length or the actual length written), return it to the user.
1899
*/
1900
input.length = data.len;
1901
1902
if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1903
ret = -EFAULT;
1904
goto e_free;
1905
}
1906
1907
if (id_blob) {
1908
if (copy_to_user(input_address, id_blob, data.len)) {
1909
ret = -EFAULT;
1910
goto e_free;
1911
}
1912
}
1913
1914
e_free:
1915
kfree(id_blob);
1916
1917
return ret;
1918
}
1919
1920
static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
1921
{
1922
struct sev_data_get_id *data;
1923
u64 data_size, user_size;
1924
void *id_blob, *mem;
1925
int ret;
1926
1927
/* SEV GET_ID available from SEV API v0.16 and up */
1928
if (!sev_version_greater_or_equal(0, 16))
1929
return -ENOTSUPP;
1930
1931
/* SEV FW expects the buffer it fills with the ID to be
1932
* 8-byte aligned. Memory allocated should be enough to
1933
* hold data structure + alignment padding + memory
1934
* where SEV FW writes the ID.
1935
*/
1936
data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
1937
user_size = sizeof(struct sev_user_data_get_id);
1938
1939
mem = kzalloc(data_size + user_size, GFP_KERNEL);
1940
if (!mem)
1941
return -ENOMEM;
1942
1943
data = mem;
1944
id_blob = mem + data_size;
1945
1946
data->address = __psp_pa(id_blob);
1947
data->len = user_size;
1948
1949
ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
1950
if (!ret) {
1951
if (copy_to_user((void __user *)argp->data, id_blob, data->len))
1952
ret = -EFAULT;
1953
}
1954
1955
kfree(mem);
1956
1957
return ret;
1958
}
1959
1960
static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
1961
{
1962
struct sev_device *sev = psp_master->sev_data;
1963
struct sev_user_data_pdh_cert_export input;
1964
void *pdh_blob = NULL, *cert_blob = NULL;
1965
struct sev_data_pdh_cert_export data;
1966
void __user *input_cert_chain_address;
1967
void __user *input_pdh_cert_address;
1968
bool shutdown_required = false;
1969
int ret;
1970
1971
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1972
return -EFAULT;
1973
1974
memset(&data, 0, sizeof(data));
1975
1976
input_pdh_cert_address = (void __user *)input.pdh_cert_address;
1977
input_cert_chain_address = (void __user *)input.cert_chain_address;
1978
1979
/* Userspace wants to query the certificate length. */
1980
if (!input.pdh_cert_address ||
1981
!input.pdh_cert_len ||
1982
!input.cert_chain_address)
1983
goto cmd;
1984
1985
/* Allocate a physically contiguous buffer to store the PDH blob. */
1986
if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
1987
return -EFAULT;
1988
1989
/* Allocate a physically contiguous buffer to store the cert chain blob. */
1990
if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
1991
return -EFAULT;
1992
1993
pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
1994
if (!pdh_blob)
1995
return -ENOMEM;
1996
1997
data.pdh_cert_address = __psp_pa(pdh_blob);
1998
data.pdh_cert_len = input.pdh_cert_len;
1999
2000
cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
2001
if (!cert_blob) {
2002
ret = -ENOMEM;
2003
goto e_free_pdh;
2004
}
2005
2006
data.cert_chain_address = __psp_pa(cert_blob);
2007
data.cert_chain_len = input.cert_chain_len;
2008
2009
cmd:
2010
/* If platform is not in INIT state then transition it to INIT. */
2011
if (sev->state != SEV_STATE_INIT) {
2012
if (!writable) {
2013
ret = -EPERM;
2014
goto e_free_cert;
2015
}
2016
ret = sev_move_to_init_state(argp, &shutdown_required);
2017
if (ret)
2018
goto e_free_cert;
2019
}
2020
2021
ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
2022
2023
/* If we query the length, FW responded with expected data. */
2024
input.cert_chain_len = data.cert_chain_len;
2025
input.pdh_cert_len = data.pdh_cert_len;
2026
2027
if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2028
ret = -EFAULT;
2029
goto e_free_cert;
2030
}
2031
2032
if (pdh_blob) {
2033
if (copy_to_user(input_pdh_cert_address,
2034
pdh_blob, input.pdh_cert_len)) {
2035
ret = -EFAULT;
2036
goto e_free_cert;
2037
}
2038
}
2039
2040
if (cert_blob) {
2041
if (copy_to_user(input_cert_chain_address,
2042
cert_blob, input.cert_chain_len))
2043
ret = -EFAULT;
2044
}
2045
2046
e_free_cert:
2047
if (shutdown_required)
2048
__sev_firmware_shutdown(sev, false);
2049
2050
kfree(cert_blob);
2051
e_free_pdh:
2052
kfree(pdh_blob);
2053
return ret;
2054
}
2055
2056
static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
2057
{
2058
struct sev_device *sev = psp_master->sev_data;
2059
bool shutdown_required = false;
2060
struct sev_data_snp_addr buf;
2061
struct page *status_page;
2062
int ret, error;
2063
void *data;
2064
2065
if (!argp->data)
2066
return -EINVAL;
2067
2068
status_page = alloc_page(GFP_KERNEL_ACCOUNT);
2069
if (!status_page)
2070
return -ENOMEM;
2071
2072
data = page_address(status_page);
2073
2074
if (!sev->snp_initialized) {
2075
ret = snp_move_to_init_state(argp, &shutdown_required);
2076
if (ret)
2077
goto cleanup;
2078
}
2079
2080
/*
2081
* Firmware expects status page to be in firmware-owned state, otherwise
2082
* it will report firmware error code INVALID_PAGE_STATE (0x1A).
2083
*/
2084
if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
2085
ret = -EFAULT;
2086
goto cleanup;
2087
}
2088
2089
buf.address = __psp_pa(data);
2090
ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
2091
2092
/*
2093
* Status page will be transitioned to Reclaim state upon success, or
2094
* left in Firmware state in failure. Use snp_reclaim_pages() to
2095
* transition either case back to Hypervisor-owned state.
2096
*/
2097
if (snp_reclaim_pages(__pa(data), 1, true))
2098
return -EFAULT;
2099
2100
if (ret)
2101
goto cleanup;
2102
2103
if (copy_to_user((void __user *)argp->data, data,
2104
sizeof(struct sev_user_data_snp_status)))
2105
ret = -EFAULT;
2106
2107
cleanup:
2108
if (shutdown_required)
2109
__sev_snp_shutdown_locked(&error, false);
2110
2111
__free_pages(status_page, 0);
2112
return ret;
2113
}
2114
2115
static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2116
{
2117
struct sev_device *sev = psp_master->sev_data;
2118
struct sev_data_snp_commit buf;
2119
bool shutdown_required = false;
2120
int ret, error;
2121
2122
if (!sev->snp_initialized) {
2123
ret = snp_move_to_init_state(argp, &shutdown_required);
2124
if (ret)
2125
return ret;
2126
}
2127
2128
buf.len = sizeof(buf);
2129
2130
ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2131
2132
if (shutdown_required)
2133
__sev_snp_shutdown_locked(&error, false);
2134
2135
return ret;
2136
}
2137
2138
static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2139
{
2140
struct sev_device *sev = psp_master->sev_data;
2141
struct sev_user_data_snp_config config;
2142
bool shutdown_required = false;
2143
int ret, error;
2144
2145
if (!argp->data)
2146
return -EINVAL;
2147
2148
if (!writable)
2149
return -EPERM;
2150
2151
if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2152
return -EFAULT;
2153
2154
if (!sev->snp_initialized) {
2155
ret = snp_move_to_init_state(argp, &shutdown_required);
2156
if (ret)
2157
return ret;
2158
}
2159
2160
ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2161
2162
if (shutdown_required)
2163
__sev_snp_shutdown_locked(&error, false);
2164
2165
return ret;
2166
}
2167
2168
static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable)
2169
{
2170
struct sev_device *sev = psp_master->sev_data;
2171
struct sev_user_data_snp_vlek_load input;
2172
bool shutdown_required = false;
2173
int ret, error;
2174
void *blob;
2175
2176
if (!argp->data)
2177
return -EINVAL;
2178
2179
if (!writable)
2180
return -EPERM;
2181
2182
if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input)))
2183
return -EFAULT;
2184
2185
if (input.len != sizeof(input) || input.vlek_wrapped_version != 0)
2186
return -EINVAL;
2187
2188
blob = psp_copy_user_blob(input.vlek_wrapped_address,
2189
sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick));
2190
if (IS_ERR(blob))
2191
return PTR_ERR(blob);
2192
2193
input.vlek_wrapped_address = __psp_pa(blob);
2194
2195
if (!sev->snp_initialized) {
2196
ret = snp_move_to_init_state(argp, &shutdown_required);
2197
if (ret)
2198
goto cleanup;
2199
}
2200
2201
ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error);
2202
2203
if (shutdown_required)
2204
__sev_snp_shutdown_locked(&error, false);
2205
2206
cleanup:
2207
kfree(blob);
2208
2209
return ret;
2210
}
2211
2212
static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2213
{
2214
void __user *argp = (void __user *)arg;
2215
struct sev_issue_cmd input;
2216
int ret = -EFAULT;
2217
bool writable = file->f_mode & FMODE_WRITE;
2218
2219
if (!psp_master || !psp_master->sev_data)
2220
return -ENODEV;
2221
2222
if (ioctl != SEV_ISSUE_CMD)
2223
return -EINVAL;
2224
2225
if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2226
return -EFAULT;
2227
2228
if (input.cmd > SEV_MAX)
2229
return -EINVAL;
2230
2231
mutex_lock(&sev_cmd_mutex);
2232
2233
switch (input.cmd) {
2234
2235
case SEV_FACTORY_RESET:
2236
ret = sev_ioctl_do_reset(&input, writable);
2237
break;
2238
case SEV_PLATFORM_STATUS:
2239
ret = sev_ioctl_do_platform_status(&input);
2240
break;
2241
case SEV_PEK_GEN:
2242
ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2243
break;
2244
case SEV_PDH_GEN:
2245
ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2246
break;
2247
case SEV_PEK_CSR:
2248
ret = sev_ioctl_do_pek_csr(&input, writable);
2249
break;
2250
case SEV_PEK_CERT_IMPORT:
2251
ret = sev_ioctl_do_pek_import(&input, writable);
2252
break;
2253
case SEV_PDH_CERT_EXPORT:
2254
ret = sev_ioctl_do_pdh_export(&input, writable);
2255
break;
2256
case SEV_GET_ID:
2257
pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2258
ret = sev_ioctl_do_get_id(&input);
2259
break;
2260
case SEV_GET_ID2:
2261
ret = sev_ioctl_do_get_id2(&input);
2262
break;
2263
case SNP_PLATFORM_STATUS:
2264
ret = sev_ioctl_do_snp_platform_status(&input);
2265
break;
2266
case SNP_COMMIT:
2267
ret = sev_ioctl_do_snp_commit(&input);
2268
break;
2269
case SNP_SET_CONFIG:
2270
ret = sev_ioctl_do_snp_set_config(&input, writable);
2271
break;
2272
case SNP_VLEK_LOAD:
2273
ret = sev_ioctl_do_snp_vlek_load(&input, writable);
2274
break;
2275
default:
2276
ret = -EINVAL;
2277
goto out;
2278
}
2279
2280
if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2281
ret = -EFAULT;
2282
out:
2283
mutex_unlock(&sev_cmd_mutex);
2284
2285
return ret;
2286
}
2287
2288
static const struct file_operations sev_fops = {
2289
.owner = THIS_MODULE,
2290
.unlocked_ioctl = sev_ioctl,
2291
};
2292
2293
int sev_platform_status(struct sev_user_data_status *data, int *error)
2294
{
2295
return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2296
}
2297
EXPORT_SYMBOL_GPL(sev_platform_status);
2298
2299
int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2300
{
2301
return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2302
}
2303
EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2304
2305
int sev_guest_activate(struct sev_data_activate *data, int *error)
2306
{
2307
return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2308
}
2309
EXPORT_SYMBOL_GPL(sev_guest_activate);
2310
2311
int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2312
{
2313
return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2314
}
2315
EXPORT_SYMBOL_GPL(sev_guest_decommission);
2316
2317
int sev_guest_df_flush(int *error)
2318
{
2319
return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2320
}
2321
EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2322
2323
static void sev_exit(struct kref *ref)
2324
{
2325
misc_deregister(&misc_dev->misc);
2326
kfree(misc_dev);
2327
misc_dev = NULL;
2328
}
2329
2330
static int sev_misc_init(struct sev_device *sev)
2331
{
2332
struct device *dev = sev->dev;
2333
int ret;
2334
2335
/*
2336
* SEV feature support can be detected on multiple devices but the SEV
2337
* FW commands must be issued on the master. During probe, we do not
2338
* know the master hence we create /dev/sev on the first device probe.
2339
* sev_do_cmd() finds the right master device to which to issue the
2340
* command to the firmware.
2341
*/
2342
if (!misc_dev) {
2343
struct miscdevice *misc;
2344
2345
misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2346
if (!misc_dev)
2347
return -ENOMEM;
2348
2349
misc = &misc_dev->misc;
2350
misc->minor = MISC_DYNAMIC_MINOR;
2351
misc->name = DEVICE_NAME;
2352
misc->fops = &sev_fops;
2353
2354
ret = misc_register(misc);
2355
if (ret)
2356
return ret;
2357
2358
kref_init(&misc_dev->refcount);
2359
} else {
2360
kref_get(&misc_dev->refcount);
2361
}
2362
2363
init_waitqueue_head(&sev->int_queue);
2364
sev->misc = misc_dev;
2365
dev_dbg(dev, "registered SEV device\n");
2366
2367
return 0;
2368
}
2369
2370
int sev_dev_init(struct psp_device *psp)
2371
{
2372
struct device *dev = psp->dev;
2373
struct sev_device *sev;
2374
int ret = -ENOMEM;
2375
2376
if (!boot_cpu_has(X86_FEATURE_SEV)) {
2377
dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2378
return 0;
2379
}
2380
2381
sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2382
if (!sev)
2383
goto e_err;
2384
2385
sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2386
if (!sev->cmd_buf)
2387
goto e_sev;
2388
2389
sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2390
2391
psp->sev_data = sev;
2392
2393
sev->dev = dev;
2394
sev->psp = psp;
2395
2396
sev->io_regs = psp->io_regs;
2397
2398
sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2399
if (!sev->vdata) {
2400
ret = -ENODEV;
2401
dev_err(dev, "sev: missing driver data\n");
2402
goto e_buf;
2403
}
2404
2405
psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2406
2407
ret = sev_misc_init(sev);
2408
if (ret)
2409
goto e_irq;
2410
2411
dev_notice(dev, "sev enabled\n");
2412
2413
return 0;
2414
2415
e_irq:
2416
psp_clear_sev_irq_handler(psp);
2417
e_buf:
2418
devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2419
e_sev:
2420
devm_kfree(dev, sev);
2421
e_err:
2422
psp->sev_data = NULL;
2423
2424
dev_notice(dev, "sev initialization failed\n");
2425
2426
return ret;
2427
}
2428
2429
static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2430
{
2431
int error;
2432
2433
__sev_platform_shutdown_locked(NULL);
2434
2435
if (sev_es_tmr) {
2436
/*
2437
* The TMR area was encrypted, flush it from the cache.
2438
*
2439
* If invoked during panic handling, local interrupts are
2440
* disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2441
* can't be used. In that case, wbinvd() is done on remote CPUs
2442
* via the NMI callback, and done for this CPU later during
2443
* SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2444
*/
2445
if (!panic)
2446
wbinvd_on_all_cpus();
2447
2448
__snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2449
get_order(sev_es_tmr_size),
2450
true);
2451
sev_es_tmr = NULL;
2452
}
2453
2454
if (sev_init_ex_buffer) {
2455
__snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2456
get_order(NV_LENGTH),
2457
true);
2458
sev_init_ex_buffer = NULL;
2459
}
2460
2461
if (snp_range_list) {
2462
kfree(snp_range_list);
2463
snp_range_list = NULL;
2464
}
2465
2466
__sev_snp_shutdown_locked(&error, panic);
2467
}
2468
2469
static void sev_firmware_shutdown(struct sev_device *sev)
2470
{
2471
mutex_lock(&sev_cmd_mutex);
2472
__sev_firmware_shutdown(sev, false);
2473
mutex_unlock(&sev_cmd_mutex);
2474
}
2475
2476
void sev_platform_shutdown(void)
2477
{
2478
if (!psp_master || !psp_master->sev_data)
2479
return;
2480
2481
sev_firmware_shutdown(psp_master->sev_data);
2482
}
2483
EXPORT_SYMBOL_GPL(sev_platform_shutdown);
2484
2485
void sev_dev_destroy(struct psp_device *psp)
2486
{
2487
struct sev_device *sev = psp->sev_data;
2488
2489
if (!sev)
2490
return;
2491
2492
sev_firmware_shutdown(sev);
2493
2494
if (sev->misc)
2495
kref_put(&misc_dev->refcount, sev_exit);
2496
2497
psp_clear_sev_irq_handler(psp);
2498
}
2499
2500
static int snp_shutdown_on_panic(struct notifier_block *nb,
2501
unsigned long reason, void *arg)
2502
{
2503
struct sev_device *sev = psp_master->sev_data;
2504
2505
/*
2506
* If sev_cmd_mutex is already acquired, then it's likely
2507
* another PSP command is in flight and issuing a shutdown
2508
* would fail in unexpected ways. Rather than create even
2509
* more confusion during a panic, just bail out here.
2510
*/
2511
if (mutex_is_locked(&sev_cmd_mutex))
2512
return NOTIFY_DONE;
2513
2514
__sev_firmware_shutdown(sev, true);
2515
2516
return NOTIFY_DONE;
2517
}
2518
2519
int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2520
void *data, int *error)
2521
{
2522
if (!filep || filep->f_op != &sev_fops)
2523
return -EBADF;
2524
2525
return sev_do_cmd(cmd, data, error);
2526
}
2527
EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2528
2529
void sev_pci_init(void)
2530
{
2531
struct sev_device *sev = psp_master->sev_data;
2532
u8 api_major, api_minor, build;
2533
2534
if (!sev)
2535
return;
2536
2537
psp_timeout = psp_probe_timeout;
2538
2539
if (sev_get_api_version())
2540
goto err;
2541
2542
api_major = sev->api_major;
2543
api_minor = sev->api_minor;
2544
build = sev->build;
2545
2546
if (sev_update_firmware(sev->dev) == 0)
2547
sev_get_api_version();
2548
2549
if (api_major != sev->api_major || api_minor != sev->api_minor ||
2550
build != sev->build)
2551
dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n",
2552
api_major, api_minor, build,
2553
sev->api_major, sev->api_minor, sev->build);
2554
2555
return;
2556
2557
err:
2558
sev_dev_destroy(psp_master);
2559
2560
psp_master->sev_data = NULL;
2561
}
2562
2563
void sev_pci_exit(void)
2564
{
2565
struct sev_device *sev = psp_master->sev_data;
2566
2567
if (!sev)
2568
return;
2569
2570
sev_firmware_shutdown(sev);
2571
}
2572
2573