Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/ccree/cc_aead.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3
4
#include <linux/kernel.h>
5
#include <linux/module.h>
6
#include <crypto/algapi.h>
7
#include <crypto/internal/aead.h>
8
#include <crypto/authenc.h>
9
#include <crypto/gcm.h>
10
#include <linux/rtnetlink.h>
11
#include <crypto/internal/des.h>
12
#include "cc_driver.h"
13
#include "cc_buffer_mgr.h"
14
#include "cc_aead.h"
15
#include "cc_request_mgr.h"
16
#include "cc_hash.h"
17
#include "cc_sram_mgr.h"
18
19
#define template_aead template_u.aead
20
21
#define MAX_AEAD_SETKEY_SEQ 12
22
#define MAX_AEAD_PROCESS_SEQ 23
23
24
#define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
25
#define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
26
27
#define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
28
29
struct cc_aead_handle {
30
u32 sram_workspace_addr;
31
struct list_head aead_list;
32
};
33
34
struct cc_hmac_s {
35
u8 *padded_authkey;
36
u8 *ipad_opad; /* IPAD, OPAD*/
37
dma_addr_t padded_authkey_dma_addr;
38
dma_addr_t ipad_opad_dma_addr;
39
};
40
41
struct cc_xcbc_s {
42
u8 *xcbc_keys; /* K1,K2,K3 */
43
dma_addr_t xcbc_keys_dma_addr;
44
};
45
46
struct cc_aead_ctx {
47
struct cc_drvdata *drvdata;
48
u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
49
u8 *enckey;
50
dma_addr_t enckey_dma_addr;
51
union {
52
struct cc_hmac_s hmac;
53
struct cc_xcbc_s xcbc;
54
} auth_state;
55
unsigned int enc_keylen;
56
unsigned int auth_keylen;
57
unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
58
unsigned int hash_len;
59
enum drv_cipher_mode cipher_mode;
60
enum cc_flow_mode flow_mode;
61
enum drv_hash_mode auth_mode;
62
};
63
64
static void cc_aead_exit(struct crypto_aead *tfm)
65
{
66
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
67
struct device *dev = drvdata_to_dev(ctx->drvdata);
68
69
dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
70
crypto_tfm_alg_name(&tfm->base));
71
72
/* Unmap enckey buffer */
73
if (ctx->enckey) {
74
dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
75
ctx->enckey_dma_addr);
76
dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
77
&ctx->enckey_dma_addr);
78
ctx->enckey_dma_addr = 0;
79
ctx->enckey = NULL;
80
}
81
82
if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
83
struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
84
85
if (xcbc->xcbc_keys) {
86
dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
87
xcbc->xcbc_keys,
88
xcbc->xcbc_keys_dma_addr);
89
}
90
dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
91
&xcbc->xcbc_keys_dma_addr);
92
xcbc->xcbc_keys_dma_addr = 0;
93
xcbc->xcbc_keys = NULL;
94
} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
95
struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
96
97
if (hmac->ipad_opad) {
98
dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
99
hmac->ipad_opad,
100
hmac->ipad_opad_dma_addr);
101
dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
102
&hmac->ipad_opad_dma_addr);
103
hmac->ipad_opad_dma_addr = 0;
104
hmac->ipad_opad = NULL;
105
}
106
if (hmac->padded_authkey) {
107
dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
108
hmac->padded_authkey,
109
hmac->padded_authkey_dma_addr);
110
dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
111
&hmac->padded_authkey_dma_addr);
112
hmac->padded_authkey_dma_addr = 0;
113
hmac->padded_authkey = NULL;
114
}
115
}
116
}
117
118
static unsigned int cc_get_aead_hash_len(struct crypto_aead *tfm)
119
{
120
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
121
122
return cc_get_default_hash_len(ctx->drvdata);
123
}
124
125
static int cc_aead_init(struct crypto_aead *tfm)
126
{
127
struct aead_alg *alg = crypto_aead_alg(tfm);
128
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
129
struct cc_crypto_alg *cc_alg =
130
container_of(alg, struct cc_crypto_alg, aead_alg);
131
struct device *dev = drvdata_to_dev(cc_alg->drvdata);
132
133
dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
134
crypto_tfm_alg_name(&tfm->base));
135
136
/* Initialize modes in instance */
137
ctx->cipher_mode = cc_alg->cipher_mode;
138
ctx->flow_mode = cc_alg->flow_mode;
139
ctx->auth_mode = cc_alg->auth_mode;
140
ctx->drvdata = cc_alg->drvdata;
141
crypto_aead_set_reqsize_dma(tfm, sizeof(struct aead_req_ctx));
142
143
/* Allocate key buffer, cache line aligned */
144
ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
145
&ctx->enckey_dma_addr, GFP_KERNEL);
146
if (!ctx->enckey) {
147
dev_err(dev, "Failed allocating key buffer\n");
148
goto init_failed;
149
}
150
dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
151
ctx->enckey);
152
153
/* Set default authlen value */
154
155
if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
156
struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
157
const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
158
159
/* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
160
/* (and temporary for user key - up to 256b) */
161
xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
162
&xcbc->xcbc_keys_dma_addr,
163
GFP_KERNEL);
164
if (!xcbc->xcbc_keys) {
165
dev_err(dev, "Failed allocating buffer for XCBC keys\n");
166
goto init_failed;
167
}
168
} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
169
struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
170
const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
171
dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
172
173
/* Allocate dma-coherent buffer for IPAD + OPAD */
174
hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
175
&hmac->ipad_opad_dma_addr,
176
GFP_KERNEL);
177
178
if (!hmac->ipad_opad) {
179
dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
180
goto init_failed;
181
}
182
183
dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
184
hmac->ipad_opad);
185
186
hmac->padded_authkey = dma_alloc_coherent(dev,
187
MAX_HMAC_BLOCK_SIZE,
188
pkey_dma,
189
GFP_KERNEL);
190
191
if (!hmac->padded_authkey) {
192
dev_err(dev, "failed to allocate padded_authkey\n");
193
goto init_failed;
194
}
195
} else {
196
ctx->auth_state.hmac.ipad_opad = NULL;
197
ctx->auth_state.hmac.padded_authkey = NULL;
198
}
199
ctx->hash_len = cc_get_aead_hash_len(tfm);
200
201
return 0;
202
203
init_failed:
204
cc_aead_exit(tfm);
205
return -ENOMEM;
206
}
207
208
static void cc_aead_complete(struct device *dev, void *cc_req, int err)
209
{
210
struct aead_request *areq = (struct aead_request *)cc_req;
211
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(areq);
212
struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
213
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
214
215
/* BACKLOG notification */
216
if (err == -EINPROGRESS)
217
goto done;
218
219
cc_unmap_aead_request(dev, areq);
220
221
/* Restore ordinary iv pointer */
222
areq->iv = areq_ctx->backup_iv;
223
224
if (err)
225
goto done;
226
227
if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
228
if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
229
ctx->authsize) != 0) {
230
dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
231
ctx->authsize, ctx->cipher_mode);
232
/* In case of payload authentication failure, MUST NOT
233
* revealed the decrypted message --> zero its memory.
234
*/
235
sg_zero_buffer(areq->dst, sg_nents(areq->dst),
236
areq->cryptlen, areq->assoclen);
237
err = -EBADMSG;
238
}
239
/*ENCRYPT*/
240
} else if (areq_ctx->is_icv_fragmented) {
241
u32 skip = areq->cryptlen + areq_ctx->dst_offset;
242
243
cc_copy_sg_portion(dev, areq_ctx->mac_buf, areq_ctx->dst_sgl,
244
skip, (skip + ctx->authsize),
245
CC_SG_FROM_BUF);
246
}
247
done:
248
aead_request_complete(areq, err);
249
}
250
251
static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
252
struct cc_aead_ctx *ctx)
253
{
254
/* Load the AES key */
255
hw_desc_init(&desc[0]);
256
/* We are using for the source/user key the same buffer
257
* as for the output keys, * because after this key loading it
258
* is not needed anymore
259
*/
260
set_din_type(&desc[0], DMA_DLLI,
261
ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
262
NS_BIT);
263
set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
264
set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
265
set_key_size_aes(&desc[0], ctx->auth_keylen);
266
set_flow_mode(&desc[0], S_DIN_to_AES);
267
set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
268
269
hw_desc_init(&desc[1]);
270
set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
271
set_flow_mode(&desc[1], DIN_AES_DOUT);
272
set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
273
AES_KEYSIZE_128, NS_BIT, 0);
274
275
hw_desc_init(&desc[2]);
276
set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
277
set_flow_mode(&desc[2], DIN_AES_DOUT);
278
set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
279
+ AES_KEYSIZE_128),
280
AES_KEYSIZE_128, NS_BIT, 0);
281
282
hw_desc_init(&desc[3]);
283
set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
284
set_flow_mode(&desc[3], DIN_AES_DOUT);
285
set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
286
+ 2 * AES_KEYSIZE_128),
287
AES_KEYSIZE_128, NS_BIT, 0);
288
289
return 4;
290
}
291
292
static unsigned int hmac_setkey(struct cc_hw_desc *desc,
293
struct cc_aead_ctx *ctx)
294
{
295
unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
296
unsigned int digest_ofs = 0;
297
unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
298
DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
299
unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
300
CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
301
struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
302
303
unsigned int idx = 0;
304
int i;
305
306
/* calc derived HMAC key */
307
for (i = 0; i < 2; i++) {
308
/* Load hash initial state */
309
hw_desc_init(&desc[idx]);
310
set_cipher_mode(&desc[idx], hash_mode);
311
set_din_sram(&desc[idx],
312
cc_larval_digest_addr(ctx->drvdata,
313
ctx->auth_mode),
314
digest_size);
315
set_flow_mode(&desc[idx], S_DIN_to_HASH);
316
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
317
idx++;
318
319
/* Load the hash current length*/
320
hw_desc_init(&desc[idx]);
321
set_cipher_mode(&desc[idx], hash_mode);
322
set_din_const(&desc[idx], 0, ctx->hash_len);
323
set_flow_mode(&desc[idx], S_DIN_to_HASH);
324
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
325
idx++;
326
327
/* Prepare ipad key */
328
hw_desc_init(&desc[idx]);
329
set_xor_val(&desc[idx], hmac_pad_const[i]);
330
set_cipher_mode(&desc[idx], hash_mode);
331
set_flow_mode(&desc[idx], S_DIN_to_HASH);
332
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
333
idx++;
334
335
/* Perform HASH update */
336
hw_desc_init(&desc[idx]);
337
set_din_type(&desc[idx], DMA_DLLI,
338
hmac->padded_authkey_dma_addr,
339
SHA256_BLOCK_SIZE, NS_BIT);
340
set_cipher_mode(&desc[idx], hash_mode);
341
set_xor_active(&desc[idx]);
342
set_flow_mode(&desc[idx], DIN_HASH);
343
idx++;
344
345
/* Get the digset */
346
hw_desc_init(&desc[idx]);
347
set_cipher_mode(&desc[idx], hash_mode);
348
set_dout_dlli(&desc[idx],
349
(hmac->ipad_opad_dma_addr + digest_ofs),
350
digest_size, NS_BIT, 0);
351
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
352
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
353
set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
354
idx++;
355
356
digest_ofs += digest_size;
357
}
358
359
return idx;
360
}
361
362
static int validate_keys_sizes(struct cc_aead_ctx *ctx)
363
{
364
struct device *dev = drvdata_to_dev(ctx->drvdata);
365
366
dev_dbg(dev, "enc_keylen=%u authkeylen=%u\n",
367
ctx->enc_keylen, ctx->auth_keylen);
368
369
switch (ctx->auth_mode) {
370
case DRV_HASH_SHA1:
371
case DRV_HASH_SHA256:
372
break;
373
case DRV_HASH_XCBC_MAC:
374
if (ctx->auth_keylen != AES_KEYSIZE_128 &&
375
ctx->auth_keylen != AES_KEYSIZE_192 &&
376
ctx->auth_keylen != AES_KEYSIZE_256)
377
return -ENOTSUPP;
378
break;
379
case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
380
if (ctx->auth_keylen > 0)
381
return -EINVAL;
382
break;
383
default:
384
dev_dbg(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
385
return -EINVAL;
386
}
387
/* Check cipher key size */
388
if (ctx->flow_mode == S_DIN_to_DES) {
389
if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
390
dev_dbg(dev, "Invalid cipher(3DES) key size: %u\n",
391
ctx->enc_keylen);
392
return -EINVAL;
393
}
394
} else { /* Default assumed to be AES ciphers */
395
if (ctx->enc_keylen != AES_KEYSIZE_128 &&
396
ctx->enc_keylen != AES_KEYSIZE_192 &&
397
ctx->enc_keylen != AES_KEYSIZE_256) {
398
dev_dbg(dev, "Invalid cipher(AES) key size: %u\n",
399
ctx->enc_keylen);
400
return -EINVAL;
401
}
402
}
403
404
return 0; /* All tests of keys sizes passed */
405
}
406
407
/* This function prepers the user key so it can pass to the hmac processing
408
* (copy to intenral buffer or hash in case of key longer than block
409
*/
410
static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *authkey,
411
unsigned int keylen)
412
{
413
dma_addr_t key_dma_addr = 0;
414
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
415
struct device *dev = drvdata_to_dev(ctx->drvdata);
416
u32 larval_addr;
417
struct cc_crypto_req cc_req = {};
418
unsigned int blocksize;
419
unsigned int digestsize;
420
unsigned int hashmode;
421
unsigned int idx = 0;
422
int rc = 0;
423
u8 *key = NULL;
424
struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
425
dma_addr_t padded_authkey_dma_addr =
426
ctx->auth_state.hmac.padded_authkey_dma_addr;
427
428
switch (ctx->auth_mode) { /* auth_key required and >0 */
429
case DRV_HASH_SHA1:
430
blocksize = SHA1_BLOCK_SIZE;
431
digestsize = SHA1_DIGEST_SIZE;
432
hashmode = DRV_HASH_HW_SHA1;
433
break;
434
case DRV_HASH_SHA256:
435
default:
436
blocksize = SHA256_BLOCK_SIZE;
437
digestsize = SHA256_DIGEST_SIZE;
438
hashmode = DRV_HASH_HW_SHA256;
439
}
440
441
if (keylen != 0) {
442
443
key = kmemdup(authkey, keylen, GFP_KERNEL);
444
if (!key)
445
return -ENOMEM;
446
447
key_dma_addr = dma_map_single(dev, key, keylen, DMA_TO_DEVICE);
448
if (dma_mapping_error(dev, key_dma_addr)) {
449
dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
450
key, keylen);
451
kfree_sensitive(key);
452
return -ENOMEM;
453
}
454
if (keylen > blocksize) {
455
/* Load hash initial state */
456
hw_desc_init(&desc[idx]);
457
set_cipher_mode(&desc[idx], hashmode);
458
larval_addr = cc_larval_digest_addr(ctx->drvdata,
459
ctx->auth_mode);
460
set_din_sram(&desc[idx], larval_addr, digestsize);
461
set_flow_mode(&desc[idx], S_DIN_to_HASH);
462
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
463
idx++;
464
465
/* Load the hash current length*/
466
hw_desc_init(&desc[idx]);
467
set_cipher_mode(&desc[idx], hashmode);
468
set_din_const(&desc[idx], 0, ctx->hash_len);
469
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
470
set_flow_mode(&desc[idx], S_DIN_to_HASH);
471
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
472
idx++;
473
474
hw_desc_init(&desc[idx]);
475
set_din_type(&desc[idx], DMA_DLLI,
476
key_dma_addr, keylen, NS_BIT);
477
set_flow_mode(&desc[idx], DIN_HASH);
478
idx++;
479
480
/* Get hashed key */
481
hw_desc_init(&desc[idx]);
482
set_cipher_mode(&desc[idx], hashmode);
483
set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
484
digestsize, NS_BIT, 0);
485
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
486
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
487
set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
488
set_cipher_config0(&desc[idx],
489
HASH_DIGEST_RESULT_LITTLE_ENDIAN);
490
idx++;
491
492
hw_desc_init(&desc[idx]);
493
set_din_const(&desc[idx], 0, (blocksize - digestsize));
494
set_flow_mode(&desc[idx], BYPASS);
495
set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
496
digestsize), (blocksize - digestsize),
497
NS_BIT, 0);
498
idx++;
499
} else {
500
hw_desc_init(&desc[idx]);
501
set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
502
keylen, NS_BIT);
503
set_flow_mode(&desc[idx], BYPASS);
504
set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
505
keylen, NS_BIT, 0);
506
idx++;
507
508
if ((blocksize - keylen) != 0) {
509
hw_desc_init(&desc[idx]);
510
set_din_const(&desc[idx], 0,
511
(blocksize - keylen));
512
set_flow_mode(&desc[idx], BYPASS);
513
set_dout_dlli(&desc[idx],
514
(padded_authkey_dma_addr +
515
keylen),
516
(blocksize - keylen), NS_BIT, 0);
517
idx++;
518
}
519
}
520
} else {
521
hw_desc_init(&desc[idx]);
522
set_din_const(&desc[idx], 0, (blocksize - keylen));
523
set_flow_mode(&desc[idx], BYPASS);
524
set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
525
blocksize, NS_BIT, 0);
526
idx++;
527
}
528
529
rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
530
if (rc)
531
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
532
533
if (key_dma_addr)
534
dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
535
536
kfree_sensitive(key);
537
538
return rc;
539
}
540
541
static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
542
unsigned int keylen)
543
{
544
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
545
struct cc_crypto_req cc_req = {};
546
struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
547
unsigned int seq_len = 0;
548
struct device *dev = drvdata_to_dev(ctx->drvdata);
549
const u8 *enckey, *authkey;
550
int rc;
551
552
dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
553
ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
554
555
/* STAT_PHASE_0: Init and sanity checks */
556
557
if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
558
struct crypto_authenc_keys keys;
559
560
rc = crypto_authenc_extractkeys(&keys, key, keylen);
561
if (rc)
562
return rc;
563
enckey = keys.enckey;
564
authkey = keys.authkey;
565
ctx->enc_keylen = keys.enckeylen;
566
ctx->auth_keylen = keys.authkeylen;
567
568
if (ctx->cipher_mode == DRV_CIPHER_CTR) {
569
/* the nonce is stored in bytes at end of key */
570
if (ctx->enc_keylen <
571
(AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
572
return -EINVAL;
573
/* Copy nonce from last 4 bytes in CTR key to
574
* first 4 bytes in CTR IV
575
*/
576
memcpy(ctx->ctr_nonce, enckey + ctx->enc_keylen -
577
CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_NONCE_SIZE);
578
/* Set CTR key size */
579
ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
580
}
581
} else { /* non-authenc - has just one key */
582
enckey = key;
583
authkey = NULL;
584
ctx->enc_keylen = keylen;
585
ctx->auth_keylen = 0;
586
}
587
588
rc = validate_keys_sizes(ctx);
589
if (rc)
590
return rc;
591
592
/* STAT_PHASE_1: Copy key to ctx */
593
594
/* Get key material */
595
memcpy(ctx->enckey, enckey, ctx->enc_keylen);
596
if (ctx->enc_keylen == 24)
597
memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
598
if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
599
memcpy(ctx->auth_state.xcbc.xcbc_keys, authkey,
600
ctx->auth_keylen);
601
} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
602
rc = cc_get_plain_hmac_key(tfm, authkey, ctx->auth_keylen);
603
if (rc)
604
return rc;
605
}
606
607
/* STAT_PHASE_2: Create sequence */
608
609
switch (ctx->auth_mode) {
610
case DRV_HASH_SHA1:
611
case DRV_HASH_SHA256:
612
seq_len = hmac_setkey(desc, ctx);
613
break;
614
case DRV_HASH_XCBC_MAC:
615
seq_len = xcbc_setkey(desc, ctx);
616
break;
617
case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
618
break; /* No auth. key setup */
619
default:
620
dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
621
return -ENOTSUPP;
622
}
623
624
/* STAT_PHASE_3: Submit sequence to HW */
625
626
if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
627
rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
628
if (rc) {
629
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
630
return rc;
631
}
632
}
633
634
/* Update STAT_PHASE_3 */
635
return rc;
636
}
637
638
static int cc_des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
639
unsigned int keylen)
640
{
641
struct crypto_authenc_keys keys;
642
int err;
643
644
err = crypto_authenc_extractkeys(&keys, key, keylen);
645
if (unlikely(err))
646
return err;
647
648
err = verify_aead_des3_key(aead, keys.enckey, keys.enckeylen) ?:
649
cc_aead_setkey(aead, key, keylen);
650
651
memzero_explicit(&keys, sizeof(keys));
652
return err;
653
}
654
655
static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
656
unsigned int keylen)
657
{
658
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
659
660
if (keylen < 3)
661
return -EINVAL;
662
663
keylen -= 3;
664
memcpy(ctx->ctr_nonce, key + keylen, 3);
665
666
return cc_aead_setkey(tfm, key, keylen);
667
}
668
669
static int cc_aead_setauthsize(struct crypto_aead *authenc,
670
unsigned int authsize)
671
{
672
struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
673
struct device *dev = drvdata_to_dev(ctx->drvdata);
674
675
/* Unsupported auth. sizes */
676
if (authsize == 0 ||
677
authsize > crypto_aead_maxauthsize(authenc)) {
678
return -ENOTSUPP;
679
}
680
681
ctx->authsize = authsize;
682
dev_dbg(dev, "authlen=%d\n", ctx->authsize);
683
684
return 0;
685
}
686
687
static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
688
unsigned int authsize)
689
{
690
switch (authsize) {
691
case 8:
692
case 12:
693
case 16:
694
break;
695
default:
696
return -EINVAL;
697
}
698
699
return cc_aead_setauthsize(authenc, authsize);
700
}
701
702
static int cc_ccm_setauthsize(struct crypto_aead *authenc,
703
unsigned int authsize)
704
{
705
switch (authsize) {
706
case 4:
707
case 6:
708
case 8:
709
case 10:
710
case 12:
711
case 14:
712
case 16:
713
break;
714
default:
715
return -EINVAL;
716
}
717
718
return cc_aead_setauthsize(authenc, authsize);
719
}
720
721
static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
722
struct cc_hw_desc desc[], unsigned int *seq_size)
723
{
724
struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
725
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
726
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(areq);
727
enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
728
unsigned int idx = *seq_size;
729
struct device *dev = drvdata_to_dev(ctx->drvdata);
730
731
switch (assoc_dma_type) {
732
case CC_DMA_BUF_DLLI:
733
dev_dbg(dev, "ASSOC buffer type DLLI\n");
734
hw_desc_init(&desc[idx]);
735
set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
736
areq_ctx->assoclen, NS_BIT);
737
set_flow_mode(&desc[idx], flow_mode);
738
if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
739
areq_ctx->cryptlen > 0)
740
set_din_not_last_indication(&desc[idx]);
741
break;
742
case CC_DMA_BUF_MLLI:
743
dev_dbg(dev, "ASSOC buffer type MLLI\n");
744
hw_desc_init(&desc[idx]);
745
set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
746
areq_ctx->assoc.mlli_nents, NS_BIT);
747
set_flow_mode(&desc[idx], flow_mode);
748
if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
749
areq_ctx->cryptlen > 0)
750
set_din_not_last_indication(&desc[idx]);
751
break;
752
case CC_DMA_BUF_NULL:
753
default:
754
dev_err(dev, "Invalid ASSOC buffer type\n");
755
}
756
757
*seq_size = (++idx);
758
}
759
760
static void cc_proc_authen_desc(struct aead_request *areq,
761
unsigned int flow_mode,
762
struct cc_hw_desc desc[],
763
unsigned int *seq_size, int direct)
764
{
765
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(areq);
766
enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
767
unsigned int idx = *seq_size;
768
struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
769
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
770
struct device *dev = drvdata_to_dev(ctx->drvdata);
771
772
switch (data_dma_type) {
773
case CC_DMA_BUF_DLLI:
774
{
775
struct scatterlist *cipher =
776
(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
777
areq_ctx->dst_sgl : areq_ctx->src_sgl;
778
779
unsigned int offset =
780
(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
781
areq_ctx->dst_offset : areq_ctx->src_offset;
782
dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
783
hw_desc_init(&desc[idx]);
784
set_din_type(&desc[idx], DMA_DLLI,
785
(sg_dma_address(cipher) + offset),
786
areq_ctx->cryptlen, NS_BIT);
787
set_flow_mode(&desc[idx], flow_mode);
788
break;
789
}
790
case CC_DMA_BUF_MLLI:
791
{
792
/* DOUBLE-PASS flow (as default)
793
* assoc. + iv + data -compact in one table
794
* if assoclen is ZERO only IV perform
795
*/
796
u32 mlli_addr = areq_ctx->assoc.sram_addr;
797
u32 mlli_nents = areq_ctx->assoc.mlli_nents;
798
799
if (areq_ctx->is_single_pass) {
800
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
801
mlli_addr = areq_ctx->dst.sram_addr;
802
mlli_nents = areq_ctx->dst.mlli_nents;
803
} else {
804
mlli_addr = areq_ctx->src.sram_addr;
805
mlli_nents = areq_ctx->src.mlli_nents;
806
}
807
}
808
809
dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
810
hw_desc_init(&desc[idx]);
811
set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
812
NS_BIT);
813
set_flow_mode(&desc[idx], flow_mode);
814
break;
815
}
816
case CC_DMA_BUF_NULL:
817
default:
818
dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
819
}
820
821
*seq_size = (++idx);
822
}
823
824
static void cc_proc_cipher_desc(struct aead_request *areq,
825
unsigned int flow_mode,
826
struct cc_hw_desc desc[],
827
unsigned int *seq_size)
828
{
829
unsigned int idx = *seq_size;
830
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(areq);
831
enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
832
struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
833
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
834
struct device *dev = drvdata_to_dev(ctx->drvdata);
835
836
if (areq_ctx->cryptlen == 0)
837
return; /*null processing*/
838
839
switch (data_dma_type) {
840
case CC_DMA_BUF_DLLI:
841
dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
842
hw_desc_init(&desc[idx]);
843
set_din_type(&desc[idx], DMA_DLLI,
844
(sg_dma_address(areq_ctx->src_sgl) +
845
areq_ctx->src_offset), areq_ctx->cryptlen,
846
NS_BIT);
847
set_dout_dlli(&desc[idx],
848
(sg_dma_address(areq_ctx->dst_sgl) +
849
areq_ctx->dst_offset),
850
areq_ctx->cryptlen, NS_BIT, 0);
851
set_flow_mode(&desc[idx], flow_mode);
852
break;
853
case CC_DMA_BUF_MLLI:
854
dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
855
hw_desc_init(&desc[idx]);
856
set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
857
areq_ctx->src.mlli_nents, NS_BIT);
858
set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
859
areq_ctx->dst.mlli_nents, NS_BIT, 0);
860
set_flow_mode(&desc[idx], flow_mode);
861
break;
862
case CC_DMA_BUF_NULL:
863
default:
864
dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
865
}
866
867
*seq_size = (++idx);
868
}
869
870
static void cc_proc_digest_desc(struct aead_request *req,
871
struct cc_hw_desc desc[],
872
unsigned int *seq_size)
873
{
874
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
875
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
876
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
877
unsigned int idx = *seq_size;
878
unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
879
DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
880
int direct = req_ctx->gen_ctx.op_type;
881
882
/* Get final ICV result */
883
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
884
hw_desc_init(&desc[idx]);
885
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
886
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
887
set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
888
NS_BIT, 1);
889
set_queue_last_ind(ctx->drvdata, &desc[idx]);
890
if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
891
set_aes_not_hash_mode(&desc[idx]);
892
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
893
} else {
894
set_cipher_config0(&desc[idx],
895
HASH_DIGEST_RESULT_LITTLE_ENDIAN);
896
set_cipher_mode(&desc[idx], hash_mode);
897
}
898
} else { /*Decrypt*/
899
/* Get ICV out from hardware */
900
hw_desc_init(&desc[idx]);
901
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
902
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
903
set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
904
ctx->authsize, NS_BIT, 1);
905
set_queue_last_ind(ctx->drvdata, &desc[idx]);
906
set_cipher_config0(&desc[idx],
907
HASH_DIGEST_RESULT_LITTLE_ENDIAN);
908
set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
909
if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
910
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
911
set_aes_not_hash_mode(&desc[idx]);
912
} else {
913
set_cipher_mode(&desc[idx], hash_mode);
914
}
915
}
916
917
*seq_size = (++idx);
918
}
919
920
static void cc_set_cipher_desc(struct aead_request *req,
921
struct cc_hw_desc desc[],
922
unsigned int *seq_size)
923
{
924
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
925
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
926
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
927
unsigned int hw_iv_size = req_ctx->hw_iv_size;
928
unsigned int idx = *seq_size;
929
int direct = req_ctx->gen_ctx.op_type;
930
931
/* Setup cipher state */
932
hw_desc_init(&desc[idx]);
933
set_cipher_config0(&desc[idx], direct);
934
set_flow_mode(&desc[idx], ctx->flow_mode);
935
set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
936
hw_iv_size, NS_BIT);
937
if (ctx->cipher_mode == DRV_CIPHER_CTR)
938
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
939
else
940
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
941
set_cipher_mode(&desc[idx], ctx->cipher_mode);
942
idx++;
943
944
/* Setup enc. key */
945
hw_desc_init(&desc[idx]);
946
set_cipher_config0(&desc[idx], direct);
947
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
948
set_flow_mode(&desc[idx], ctx->flow_mode);
949
if (ctx->flow_mode == S_DIN_to_AES) {
950
set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
951
((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
952
ctx->enc_keylen), NS_BIT);
953
set_key_size_aes(&desc[idx], ctx->enc_keylen);
954
} else {
955
set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
956
ctx->enc_keylen, NS_BIT);
957
set_key_size_des(&desc[idx], ctx->enc_keylen);
958
}
959
set_cipher_mode(&desc[idx], ctx->cipher_mode);
960
idx++;
961
962
*seq_size = idx;
963
}
964
965
static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
966
unsigned int *seq_size, unsigned int data_flow_mode)
967
{
968
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
969
int direct = req_ctx->gen_ctx.op_type;
970
unsigned int idx = *seq_size;
971
972
if (req_ctx->cryptlen == 0)
973
return; /*null processing*/
974
975
cc_set_cipher_desc(req, desc, &idx);
976
cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
977
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
978
/* We must wait for DMA to write all cipher */
979
hw_desc_init(&desc[idx]);
980
set_din_no_dma(&desc[idx], 0, 0xfffff0);
981
set_dout_no_dma(&desc[idx], 0, 0, 1);
982
idx++;
983
}
984
985
*seq_size = idx;
986
}
987
988
static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
989
unsigned int *seq_size)
990
{
991
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
992
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
993
unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
994
DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
995
unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
996
CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
997
unsigned int idx = *seq_size;
998
999
/* Loading hash ipad xor key state */
1000
hw_desc_init(&desc[idx]);
1001
set_cipher_mode(&desc[idx], hash_mode);
1002
set_din_type(&desc[idx], DMA_DLLI,
1003
ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
1004
NS_BIT);
1005
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1006
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1007
idx++;
1008
1009
/* Load init. digest len (64 bytes) */
1010
hw_desc_init(&desc[idx]);
1011
set_cipher_mode(&desc[idx], hash_mode);
1012
set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1013
ctx->hash_len);
1014
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1015
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1016
idx++;
1017
1018
*seq_size = idx;
1019
}
1020
1021
static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1022
unsigned int *seq_size)
1023
{
1024
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1025
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1026
unsigned int idx = *seq_size;
1027
1028
/* Loading MAC state */
1029
hw_desc_init(&desc[idx]);
1030
set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1031
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1032
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1033
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1034
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1035
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1036
set_aes_not_hash_mode(&desc[idx]);
1037
idx++;
1038
1039
/* Setup XCBC MAC K1 */
1040
hw_desc_init(&desc[idx]);
1041
set_din_type(&desc[idx], DMA_DLLI,
1042
ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1043
AES_KEYSIZE_128, NS_BIT);
1044
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1045
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1046
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1047
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1048
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1049
set_aes_not_hash_mode(&desc[idx]);
1050
idx++;
1051
1052
/* Setup XCBC MAC K2 */
1053
hw_desc_init(&desc[idx]);
1054
set_din_type(&desc[idx], DMA_DLLI,
1055
(ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1056
AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1057
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1058
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1059
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1060
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1061
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1062
set_aes_not_hash_mode(&desc[idx]);
1063
idx++;
1064
1065
/* Setup XCBC MAC K3 */
1066
hw_desc_init(&desc[idx]);
1067
set_din_type(&desc[idx], DMA_DLLI,
1068
(ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1069
2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1070
set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1071
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1072
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1073
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1074
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1075
set_aes_not_hash_mode(&desc[idx]);
1076
idx++;
1077
1078
*seq_size = idx;
1079
}
1080
1081
static void cc_proc_header_desc(struct aead_request *req,
1082
struct cc_hw_desc desc[],
1083
unsigned int *seq_size)
1084
{
1085
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1086
unsigned int idx = *seq_size;
1087
1088
/* Hash associated data */
1089
if (areq_ctx->assoclen > 0)
1090
cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1091
1092
/* Hash IV */
1093
*seq_size = idx;
1094
}
1095
1096
static void cc_proc_scheme_desc(struct aead_request *req,
1097
struct cc_hw_desc desc[],
1098
unsigned int *seq_size)
1099
{
1100
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1101
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1102
struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1103
unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1104
DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1105
unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1106
CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1107
unsigned int idx = *seq_size;
1108
1109
hw_desc_init(&desc[idx]);
1110
set_cipher_mode(&desc[idx], hash_mode);
1111
set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1112
ctx->hash_len);
1113
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1114
set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1115
set_cipher_do(&desc[idx], DO_PAD);
1116
idx++;
1117
1118
/* Get final ICV result */
1119
hw_desc_init(&desc[idx]);
1120
set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1121
digest_size);
1122
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1123
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1124
set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1125
set_cipher_mode(&desc[idx], hash_mode);
1126
idx++;
1127
1128
/* Loading hash opad xor key state */
1129
hw_desc_init(&desc[idx]);
1130
set_cipher_mode(&desc[idx], hash_mode);
1131
set_din_type(&desc[idx], DMA_DLLI,
1132
(ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1133
digest_size, NS_BIT);
1134
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1135
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1136
idx++;
1137
1138
/* Load init. digest len (64 bytes) */
1139
hw_desc_init(&desc[idx]);
1140
set_cipher_mode(&desc[idx], hash_mode);
1141
set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1142
ctx->hash_len);
1143
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1144
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1145
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1146
idx++;
1147
1148
/* Perform HASH update */
1149
hw_desc_init(&desc[idx]);
1150
set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1151
digest_size);
1152
set_flow_mode(&desc[idx], DIN_HASH);
1153
idx++;
1154
1155
*seq_size = idx;
1156
}
1157
1158
static void cc_mlli_to_sram(struct aead_request *req,
1159
struct cc_hw_desc desc[], unsigned int *seq_size)
1160
{
1161
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1162
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1163
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1164
struct device *dev = drvdata_to_dev(ctx->drvdata);
1165
1166
if ((req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1167
req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1168
!req_ctx->is_single_pass) && req_ctx->mlli_params.mlli_len) {
1169
dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1170
ctx->drvdata->mlli_sram_addr,
1171
req_ctx->mlli_params.mlli_len);
1172
/* Copy MLLI table host-to-sram */
1173
hw_desc_init(&desc[*seq_size]);
1174
set_din_type(&desc[*seq_size], DMA_DLLI,
1175
req_ctx->mlli_params.mlli_dma_addr,
1176
req_ctx->mlli_params.mlli_len, NS_BIT);
1177
set_dout_sram(&desc[*seq_size],
1178
ctx->drvdata->mlli_sram_addr,
1179
req_ctx->mlli_params.mlli_len);
1180
set_flow_mode(&desc[*seq_size], BYPASS);
1181
(*seq_size)++;
1182
}
1183
}
1184
1185
static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1186
enum cc_flow_mode setup_flow_mode,
1187
bool is_single_pass)
1188
{
1189
enum cc_flow_mode data_flow_mode;
1190
1191
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1192
if (setup_flow_mode == S_DIN_to_AES)
1193
data_flow_mode = is_single_pass ?
1194
AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1195
else
1196
data_flow_mode = is_single_pass ?
1197
DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1198
} else { /* Decrypt */
1199
if (setup_flow_mode == S_DIN_to_AES)
1200
data_flow_mode = is_single_pass ?
1201
AES_and_HASH : DIN_AES_DOUT;
1202
else
1203
data_flow_mode = is_single_pass ?
1204
DES_and_HASH : DIN_DES_DOUT;
1205
}
1206
1207
return data_flow_mode;
1208
}
1209
1210
static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1211
unsigned int *seq_size)
1212
{
1213
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1214
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1215
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1216
int direct = req_ctx->gen_ctx.op_type;
1217
unsigned int data_flow_mode =
1218
cc_get_data_flow(direct, ctx->flow_mode,
1219
req_ctx->is_single_pass);
1220
1221
if (req_ctx->is_single_pass) {
1222
/*
1223
* Single-pass flow
1224
*/
1225
cc_set_hmac_desc(req, desc, seq_size);
1226
cc_set_cipher_desc(req, desc, seq_size);
1227
cc_proc_header_desc(req, desc, seq_size);
1228
cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1229
cc_proc_scheme_desc(req, desc, seq_size);
1230
cc_proc_digest_desc(req, desc, seq_size);
1231
return;
1232
}
1233
1234
/*
1235
* Double-pass flow
1236
* Fallback for unsupported single-pass modes,
1237
* i.e. using assoc. data of non-word-multiple
1238
*/
1239
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1240
/* encrypt first.. */
1241
cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1242
/* authenc after..*/
1243
cc_set_hmac_desc(req, desc, seq_size);
1244
cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1245
cc_proc_scheme_desc(req, desc, seq_size);
1246
cc_proc_digest_desc(req, desc, seq_size);
1247
1248
} else { /*DECRYPT*/
1249
/* authenc first..*/
1250
cc_set_hmac_desc(req, desc, seq_size);
1251
cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1252
cc_proc_scheme_desc(req, desc, seq_size);
1253
/* decrypt after.. */
1254
cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1255
/* read the digest result with setting the completion bit
1256
* must be after the cipher operation
1257
*/
1258
cc_proc_digest_desc(req, desc, seq_size);
1259
}
1260
}
1261
1262
static void
1263
cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1264
unsigned int *seq_size)
1265
{
1266
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1267
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1268
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1269
int direct = req_ctx->gen_ctx.op_type;
1270
unsigned int data_flow_mode =
1271
cc_get_data_flow(direct, ctx->flow_mode,
1272
req_ctx->is_single_pass);
1273
1274
if (req_ctx->is_single_pass) {
1275
/*
1276
* Single-pass flow
1277
*/
1278
cc_set_xcbc_desc(req, desc, seq_size);
1279
cc_set_cipher_desc(req, desc, seq_size);
1280
cc_proc_header_desc(req, desc, seq_size);
1281
cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1282
cc_proc_digest_desc(req, desc, seq_size);
1283
return;
1284
}
1285
1286
/*
1287
* Double-pass flow
1288
* Fallback for unsupported single-pass modes,
1289
* i.e. using assoc. data of non-word-multiple
1290
*/
1291
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1292
/* encrypt first.. */
1293
cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1294
/* authenc after.. */
1295
cc_set_xcbc_desc(req, desc, seq_size);
1296
cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1297
cc_proc_digest_desc(req, desc, seq_size);
1298
} else { /*DECRYPT*/
1299
/* authenc first.. */
1300
cc_set_xcbc_desc(req, desc, seq_size);
1301
cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1302
/* decrypt after..*/
1303
cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1304
/* read the digest result with setting the completion bit
1305
* must be after the cipher operation
1306
*/
1307
cc_proc_digest_desc(req, desc, seq_size);
1308
}
1309
}
1310
1311
static int validate_data_size(struct cc_aead_ctx *ctx,
1312
enum drv_crypto_direction direct,
1313
struct aead_request *req)
1314
{
1315
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1316
struct device *dev = drvdata_to_dev(ctx->drvdata);
1317
unsigned int assoclen = areq_ctx->assoclen;
1318
unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1319
(req->cryptlen - ctx->authsize) : req->cryptlen;
1320
1321
if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1322
req->cryptlen < ctx->authsize)
1323
goto data_size_err;
1324
1325
areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1326
1327
switch (ctx->flow_mode) {
1328
case S_DIN_to_AES:
1329
if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1330
!IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1331
goto data_size_err;
1332
if (ctx->cipher_mode == DRV_CIPHER_CCM)
1333
break;
1334
if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1335
if (areq_ctx->plaintext_authenticate_only)
1336
areq_ctx->is_single_pass = false;
1337
break;
1338
}
1339
1340
if (!IS_ALIGNED(assoclen, sizeof(u32)))
1341
areq_ctx->is_single_pass = false;
1342
1343
if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1344
!IS_ALIGNED(cipherlen, sizeof(u32)))
1345
areq_ctx->is_single_pass = false;
1346
1347
break;
1348
case S_DIN_to_DES:
1349
if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1350
goto data_size_err;
1351
if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1352
areq_ctx->is_single_pass = false;
1353
break;
1354
default:
1355
dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1356
goto data_size_err;
1357
}
1358
1359
return 0;
1360
1361
data_size_err:
1362
return -EINVAL;
1363
}
1364
1365
static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1366
{
1367
unsigned int len = 0;
1368
1369
if (header_size == 0)
1370
return 0;
1371
1372
if (header_size < ((1UL << 16) - (1UL << 8))) {
1373
len = 2;
1374
1375
pa0_buff[0] = (header_size >> 8) & 0xFF;
1376
pa0_buff[1] = header_size & 0xFF;
1377
} else {
1378
len = 6;
1379
1380
pa0_buff[0] = 0xFF;
1381
pa0_buff[1] = 0xFE;
1382
pa0_buff[2] = (header_size >> 24) & 0xFF;
1383
pa0_buff[3] = (header_size >> 16) & 0xFF;
1384
pa0_buff[4] = (header_size >> 8) & 0xFF;
1385
pa0_buff[5] = header_size & 0xFF;
1386
}
1387
1388
return len;
1389
}
1390
1391
static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1392
{
1393
__be32 data;
1394
1395
memset(block, 0, csize);
1396
block += csize;
1397
1398
if (csize >= 4)
1399
csize = 4;
1400
else if (msglen > (1 << (8 * csize)))
1401
return -EOVERFLOW;
1402
1403
data = cpu_to_be32(msglen);
1404
memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1405
1406
return 0;
1407
}
1408
1409
static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1410
unsigned int *seq_size)
1411
{
1412
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1413
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1414
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1415
unsigned int idx = *seq_size;
1416
unsigned int cipher_flow_mode;
1417
dma_addr_t mac_result;
1418
1419
if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1420
cipher_flow_mode = AES_to_HASH_and_DOUT;
1421
mac_result = req_ctx->mac_buf_dma_addr;
1422
} else { /* Encrypt */
1423
cipher_flow_mode = AES_and_HASH;
1424
mac_result = req_ctx->icv_dma_addr;
1425
}
1426
1427
/* load key */
1428
hw_desc_init(&desc[idx]);
1429
set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1430
set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1431
((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
1432
ctx->enc_keylen), NS_BIT);
1433
set_key_size_aes(&desc[idx], ctx->enc_keylen);
1434
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1435
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1436
set_flow_mode(&desc[idx], S_DIN_to_AES);
1437
idx++;
1438
1439
/* load ctr state */
1440
hw_desc_init(&desc[idx]);
1441
set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1442
set_key_size_aes(&desc[idx], ctx->enc_keylen);
1443
set_din_type(&desc[idx], DMA_DLLI,
1444
req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1445
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1446
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1447
set_flow_mode(&desc[idx], S_DIN_to_AES);
1448
idx++;
1449
1450
/* load MAC key */
1451
hw_desc_init(&desc[idx]);
1452
set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1453
set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1454
((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
1455
ctx->enc_keylen), NS_BIT);
1456
set_key_size_aes(&desc[idx], ctx->enc_keylen);
1457
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1458
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1459
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1460
set_aes_not_hash_mode(&desc[idx]);
1461
idx++;
1462
1463
/* load MAC state */
1464
hw_desc_init(&desc[idx]);
1465
set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1466
set_key_size_aes(&desc[idx], ctx->enc_keylen);
1467
set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1468
AES_BLOCK_SIZE, NS_BIT);
1469
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1470
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1471
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1472
set_aes_not_hash_mode(&desc[idx]);
1473
idx++;
1474
1475
/* process assoc data */
1476
if (req_ctx->assoclen > 0) {
1477
cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1478
} else {
1479
hw_desc_init(&desc[idx]);
1480
set_din_type(&desc[idx], DMA_DLLI,
1481
sg_dma_address(&req_ctx->ccm_adata_sg),
1482
AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1483
set_flow_mode(&desc[idx], DIN_HASH);
1484
idx++;
1485
}
1486
1487
/* process the cipher */
1488
if (req_ctx->cryptlen)
1489
cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1490
1491
/* Read temporal MAC */
1492
hw_desc_init(&desc[idx]);
1493
set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1494
set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1495
NS_BIT, 0);
1496
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1497
set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1498
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1499
set_aes_not_hash_mode(&desc[idx]);
1500
idx++;
1501
1502
/* load AES-CTR state (for last MAC calculation)*/
1503
hw_desc_init(&desc[idx]);
1504
set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1505
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1506
set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1507
AES_BLOCK_SIZE, NS_BIT);
1508
set_key_size_aes(&desc[idx], ctx->enc_keylen);
1509
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1510
set_flow_mode(&desc[idx], S_DIN_to_AES);
1511
idx++;
1512
1513
hw_desc_init(&desc[idx]);
1514
set_din_no_dma(&desc[idx], 0, 0xfffff0);
1515
set_dout_no_dma(&desc[idx], 0, 0, 1);
1516
idx++;
1517
1518
/* encrypt the "T" value and store MAC in mac_state */
1519
hw_desc_init(&desc[idx]);
1520
set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1521
ctx->authsize, NS_BIT);
1522
set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1523
set_queue_last_ind(ctx->drvdata, &desc[idx]);
1524
set_flow_mode(&desc[idx], DIN_AES_DOUT);
1525
idx++;
1526
1527
*seq_size = idx;
1528
return 0;
1529
}
1530
1531
static int config_ccm_adata(struct aead_request *req)
1532
{
1533
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1534
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1535
struct device *dev = drvdata_to_dev(ctx->drvdata);
1536
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1537
//unsigned int size_of_a = 0, rem_a_size = 0;
1538
unsigned int lp = req->iv[0];
1539
/* Note: The code assume that req->iv[0] already contains the value
1540
* of L' of RFC3610
1541
*/
1542
unsigned int l = lp + 1; /* This is L' of RFC 3610. */
1543
unsigned int m = ctx->authsize; /* This is M' of RFC 3610. */
1544
u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1545
u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1546
u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1547
unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1548
DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1549
req->cryptlen :
1550
(req->cryptlen - ctx->authsize);
1551
int rc;
1552
1553
memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1554
memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1555
1556
/* taken from crypto/ccm.c */
1557
/* 2 <= L <= 8, so 1 <= L' <= 7. */
1558
if (l < 2 || l > 8) {
1559
dev_dbg(dev, "illegal iv value %X\n", req->iv[0]);
1560
return -EINVAL;
1561
}
1562
memcpy(b0, req->iv, AES_BLOCK_SIZE);
1563
1564
/* format control info per RFC 3610 and
1565
* NIST Special Publication 800-38C
1566
*/
1567
*b0 |= (8 * ((m - 2) / 2));
1568
if (req_ctx->assoclen > 0)
1569
*b0 |= 64; /* Enable bit 6 if Adata exists. */
1570
1571
rc = set_msg_len(b0 + 16 - l, cryptlen, l); /* Write L'. */
1572
if (rc) {
1573
dev_err(dev, "message len overflow detected");
1574
return rc;
1575
}
1576
/* END of "taken from crypto/ccm.c" */
1577
1578
/* l(a) - size of associated data. */
1579
req_ctx->ccm_hdr_size = format_ccm_a0(a0, req_ctx->assoclen);
1580
1581
memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1582
req->iv[15] = 1;
1583
1584
memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1585
ctr_count_0[15] = 0;
1586
1587
return 0;
1588
}
1589
1590
static void cc_proc_rfc4309_ccm(struct aead_request *req)
1591
{
1592
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1593
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1594
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1595
1596
/* L' */
1597
memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1598
/* For RFC 4309, always use 4 bytes for message length
1599
* (at most 2^32-1 bytes).
1600
*/
1601
areq_ctx->ctr_iv[0] = 3;
1602
1603
/* In RFC 4309 there is an 11-bytes nonce+IV part,
1604
* that we build here.
1605
*/
1606
memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1607
CCM_BLOCK_NONCE_SIZE);
1608
memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1609
CCM_BLOCK_IV_SIZE);
1610
req->iv = areq_ctx->ctr_iv;
1611
}
1612
1613
static void cc_set_ghash_desc(struct aead_request *req,
1614
struct cc_hw_desc desc[], unsigned int *seq_size)
1615
{
1616
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1617
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1618
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1619
unsigned int idx = *seq_size;
1620
1621
/* load key to AES*/
1622
hw_desc_init(&desc[idx]);
1623
set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1624
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1625
set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1626
ctx->enc_keylen, NS_BIT);
1627
set_key_size_aes(&desc[idx], ctx->enc_keylen);
1628
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1629
set_flow_mode(&desc[idx], S_DIN_to_AES);
1630
idx++;
1631
1632
/* process one zero block to generate hkey */
1633
hw_desc_init(&desc[idx]);
1634
set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1635
set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1636
NS_BIT, 0);
1637
set_flow_mode(&desc[idx], DIN_AES_DOUT);
1638
idx++;
1639
1640
/* Memory Barrier */
1641
hw_desc_init(&desc[idx]);
1642
set_din_no_dma(&desc[idx], 0, 0xfffff0);
1643
set_dout_no_dma(&desc[idx], 0, 0, 1);
1644
idx++;
1645
1646
/* Load GHASH subkey */
1647
hw_desc_init(&desc[idx]);
1648
set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1649
AES_BLOCK_SIZE, NS_BIT);
1650
set_dout_no_dma(&desc[idx], 0, 0, 1);
1651
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1652
set_aes_not_hash_mode(&desc[idx]);
1653
set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1654
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1655
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1656
idx++;
1657
1658
/* Configure Hash Engine to work with GHASH.
1659
* Since it was not possible to extend HASH submodes to add GHASH,
1660
* The following command is necessary in order to
1661
* select GHASH (according to HW designers)
1662
*/
1663
hw_desc_init(&desc[idx]);
1664
set_din_no_dma(&desc[idx], 0, 0xfffff0);
1665
set_dout_no_dma(&desc[idx], 0, 0, 1);
1666
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1667
set_aes_not_hash_mode(&desc[idx]);
1668
set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1669
set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1670
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1671
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1672
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1673
idx++;
1674
1675
/* Load GHASH initial STATE (which is 0). (for any hash there is an
1676
* initial state)
1677
*/
1678
hw_desc_init(&desc[idx]);
1679
set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1680
set_dout_no_dma(&desc[idx], 0, 0, 1);
1681
set_flow_mode(&desc[idx], S_DIN_to_HASH);
1682
set_aes_not_hash_mode(&desc[idx]);
1683
set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1684
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1685
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1686
idx++;
1687
1688
*seq_size = idx;
1689
}
1690
1691
static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1692
unsigned int *seq_size)
1693
{
1694
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1695
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1696
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1697
unsigned int idx = *seq_size;
1698
1699
/* load key to AES*/
1700
hw_desc_init(&desc[idx]);
1701
set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1702
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1703
set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1704
ctx->enc_keylen, NS_BIT);
1705
set_key_size_aes(&desc[idx], ctx->enc_keylen);
1706
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1707
set_flow_mode(&desc[idx], S_DIN_to_AES);
1708
idx++;
1709
1710
if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1711
/* load AES/CTR initial CTR value inc by 2*/
1712
hw_desc_init(&desc[idx]);
1713
set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1714
set_key_size_aes(&desc[idx], ctx->enc_keylen);
1715
set_din_type(&desc[idx], DMA_DLLI,
1716
req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1717
NS_BIT);
1718
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1719
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1720
set_flow_mode(&desc[idx], S_DIN_to_AES);
1721
idx++;
1722
}
1723
1724
*seq_size = idx;
1725
}
1726
1727
static void cc_proc_gcm_result(struct aead_request *req,
1728
struct cc_hw_desc desc[],
1729
unsigned int *seq_size)
1730
{
1731
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1732
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1733
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1734
dma_addr_t mac_result;
1735
unsigned int idx = *seq_size;
1736
1737
if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1738
mac_result = req_ctx->mac_buf_dma_addr;
1739
} else { /* Encrypt */
1740
mac_result = req_ctx->icv_dma_addr;
1741
}
1742
1743
/* process(ghash) gcm_block_len */
1744
hw_desc_init(&desc[idx]);
1745
set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1746
AES_BLOCK_SIZE, NS_BIT);
1747
set_flow_mode(&desc[idx], DIN_HASH);
1748
idx++;
1749
1750
/* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1751
hw_desc_init(&desc[idx]);
1752
set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1753
set_din_no_dma(&desc[idx], 0, 0xfffff0);
1754
set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1755
NS_BIT, 0);
1756
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1757
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1758
set_aes_not_hash_mode(&desc[idx]);
1759
1760
idx++;
1761
1762
/* load AES/CTR initial CTR value inc by 1*/
1763
hw_desc_init(&desc[idx]);
1764
set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1765
set_key_size_aes(&desc[idx], ctx->enc_keylen);
1766
set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1767
AES_BLOCK_SIZE, NS_BIT);
1768
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1769
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1770
set_flow_mode(&desc[idx], S_DIN_to_AES);
1771
idx++;
1772
1773
/* Memory Barrier */
1774
hw_desc_init(&desc[idx]);
1775
set_din_no_dma(&desc[idx], 0, 0xfffff0);
1776
set_dout_no_dma(&desc[idx], 0, 0, 1);
1777
idx++;
1778
1779
/* process GCTR on stored GHASH and store MAC in mac_state*/
1780
hw_desc_init(&desc[idx]);
1781
set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1782
set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1783
AES_BLOCK_SIZE, NS_BIT);
1784
set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1785
set_queue_last_ind(ctx->drvdata, &desc[idx]);
1786
set_flow_mode(&desc[idx], DIN_AES_DOUT);
1787
idx++;
1788
1789
*seq_size = idx;
1790
}
1791
1792
static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1793
unsigned int *seq_size)
1794
{
1795
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1796
unsigned int cipher_flow_mode;
1797
1798
//in RFC4543 no data to encrypt. just copy data from src to dest.
1799
if (req_ctx->plaintext_authenticate_only) {
1800
cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1801
cc_set_ghash_desc(req, desc, seq_size);
1802
/* process(ghash) assoc data */
1803
cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1804
cc_set_gctr_desc(req, desc, seq_size);
1805
cc_proc_gcm_result(req, desc, seq_size);
1806
return 0;
1807
}
1808
1809
if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1810
cipher_flow_mode = AES_and_HASH;
1811
} else { /* Encrypt */
1812
cipher_flow_mode = AES_to_HASH_and_DOUT;
1813
}
1814
1815
// for gcm and rfc4106.
1816
cc_set_ghash_desc(req, desc, seq_size);
1817
/* process(ghash) assoc data */
1818
if (req_ctx->assoclen > 0)
1819
cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1820
cc_set_gctr_desc(req, desc, seq_size);
1821
/* process(gctr+ghash) */
1822
if (req_ctx->cryptlen)
1823
cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1824
cc_proc_gcm_result(req, desc, seq_size);
1825
1826
return 0;
1827
}
1828
1829
static int config_gcm_context(struct aead_request *req)
1830
{
1831
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1832
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1833
struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1834
struct device *dev = drvdata_to_dev(ctx->drvdata);
1835
1836
unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1837
DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1838
req->cryptlen :
1839
(req->cryptlen - ctx->authsize);
1840
__be32 counter = cpu_to_be32(2);
1841
1842
dev_dbg(dev, "%s() cryptlen = %d, req_ctx->assoclen = %d ctx->authsize = %d\n",
1843
__func__, cryptlen, req_ctx->assoclen, ctx->authsize);
1844
1845
memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1846
1847
memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1848
1849
memcpy(req->iv + 12, &counter, 4);
1850
memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1851
1852
counter = cpu_to_be32(1);
1853
memcpy(req->iv + 12, &counter, 4);
1854
memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1855
1856
if (!req_ctx->plaintext_authenticate_only) {
1857
__be64 temp64;
1858
1859
temp64 = cpu_to_be64(req_ctx->assoclen * 8);
1860
memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1861
temp64 = cpu_to_be64(cryptlen * 8);
1862
memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1863
} else {
1864
/* rfc4543=> all data(AAD,IV,Plain) are considered additional
1865
* data that is nothing is encrypted.
1866
*/
1867
__be64 temp64;
1868
1869
temp64 = cpu_to_be64((req_ctx->assoclen + cryptlen) * 8);
1870
memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1871
temp64 = 0;
1872
memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1873
}
1874
1875
return 0;
1876
}
1877
1878
static void cc_proc_rfc4_gcm(struct aead_request *req)
1879
{
1880
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1881
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1882
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1883
1884
memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1885
ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1886
memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1887
GCM_BLOCK_RFC4_IV_SIZE);
1888
req->iv = areq_ctx->ctr_iv;
1889
}
1890
1891
static int cc_proc_aead(struct aead_request *req,
1892
enum drv_crypto_direction direct)
1893
{
1894
int rc = 0;
1895
int seq_len = 0;
1896
struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1897
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1898
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1899
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1900
struct device *dev = drvdata_to_dev(ctx->drvdata);
1901
struct cc_crypto_req cc_req = {};
1902
1903
dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1904
((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1905
ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1906
sg_virt(req->dst), req->dst->offset, req->cryptlen);
1907
1908
/* STAT_PHASE_0: Init and sanity checks */
1909
1910
/* Check data length according to mode */
1911
if (validate_data_size(ctx, direct, req)) {
1912
dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1913
req->cryptlen, areq_ctx->assoclen);
1914
return -EINVAL;
1915
}
1916
1917
/* Setup request structure */
1918
cc_req.user_cb = cc_aead_complete;
1919
cc_req.user_arg = req;
1920
1921
/* Setup request context */
1922
areq_ctx->gen_ctx.op_type = direct;
1923
areq_ctx->req_authsize = ctx->authsize;
1924
areq_ctx->cipher_mode = ctx->cipher_mode;
1925
1926
/* STAT_PHASE_1: Map buffers */
1927
1928
if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1929
/* Build CTR IV - Copy nonce from last 4 bytes in
1930
* CTR key to first 4 bytes in CTR IV
1931
*/
1932
memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1933
CTR_RFC3686_NONCE_SIZE);
1934
memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE, req->iv,
1935
CTR_RFC3686_IV_SIZE);
1936
/* Initialize counter portion of counter block */
1937
*(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1938
CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1939
1940
/* Replace with counter iv */
1941
req->iv = areq_ctx->ctr_iv;
1942
areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1943
} else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1944
(ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1945
areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1946
if (areq_ctx->ctr_iv != req->iv) {
1947
memcpy(areq_ctx->ctr_iv, req->iv,
1948
crypto_aead_ivsize(tfm));
1949
req->iv = areq_ctx->ctr_iv;
1950
}
1951
} else {
1952
areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1953
}
1954
1955
if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1956
rc = config_ccm_adata(req);
1957
if (rc) {
1958
dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1959
rc);
1960
goto exit;
1961
}
1962
} else {
1963
areq_ctx->ccm_hdr_size = ccm_header_size_null;
1964
}
1965
1966
if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1967
rc = config_gcm_context(req);
1968
if (rc) {
1969
dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1970
rc);
1971
goto exit;
1972
}
1973
}
1974
1975
rc = cc_map_aead_request(ctx->drvdata, req);
1976
if (rc) {
1977
dev_err(dev, "map_request() failed\n");
1978
goto exit;
1979
}
1980
1981
/* STAT_PHASE_2: Create sequence */
1982
1983
/* Load MLLI tables to SRAM if necessary */
1984
cc_mlli_to_sram(req, desc, &seq_len);
1985
1986
switch (ctx->auth_mode) {
1987
case DRV_HASH_SHA1:
1988
case DRV_HASH_SHA256:
1989
cc_hmac_authenc(req, desc, &seq_len);
1990
break;
1991
case DRV_HASH_XCBC_MAC:
1992
cc_xcbc_authenc(req, desc, &seq_len);
1993
break;
1994
case DRV_HASH_NULL:
1995
if (ctx->cipher_mode == DRV_CIPHER_CCM)
1996
cc_ccm(req, desc, &seq_len);
1997
if (ctx->cipher_mode == DRV_CIPHER_GCTR)
1998
cc_gcm(req, desc, &seq_len);
1999
break;
2000
default:
2001
dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2002
cc_unmap_aead_request(dev, req);
2003
rc = -ENOTSUPP;
2004
goto exit;
2005
}
2006
2007
/* STAT_PHASE_3: Lock HW and push sequence */
2008
2009
rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2010
2011
if (rc != -EINPROGRESS && rc != -EBUSY) {
2012
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2013
cc_unmap_aead_request(dev, req);
2014
}
2015
2016
exit:
2017
return rc;
2018
}
2019
2020
static int cc_aead_encrypt(struct aead_request *req)
2021
{
2022
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2023
int rc;
2024
2025
memset(areq_ctx, 0, sizeof(*areq_ctx));
2026
2027
/* No generated IV required */
2028
areq_ctx->backup_iv = req->iv;
2029
areq_ctx->assoclen = req->assoclen;
2030
2031
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2032
if (rc != -EINPROGRESS && rc != -EBUSY)
2033
req->iv = areq_ctx->backup_iv;
2034
2035
return rc;
2036
}
2037
2038
static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2039
{
2040
/* Very similar to cc_aead_encrypt() above. */
2041
2042
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2043
int rc;
2044
2045
rc = crypto_ipsec_check_assoclen(req->assoclen);
2046
if (rc)
2047
goto out;
2048
2049
memset(areq_ctx, 0, sizeof(*areq_ctx));
2050
2051
/* No generated IV required */
2052
areq_ctx->backup_iv = req->iv;
2053
areq_ctx->assoclen = req->assoclen - CCM_BLOCK_IV_SIZE;
2054
2055
cc_proc_rfc4309_ccm(req);
2056
2057
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2058
if (rc != -EINPROGRESS && rc != -EBUSY)
2059
req->iv = areq_ctx->backup_iv;
2060
out:
2061
return rc;
2062
}
2063
2064
static int cc_aead_decrypt(struct aead_request *req)
2065
{
2066
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2067
int rc;
2068
2069
memset(areq_ctx, 0, sizeof(*areq_ctx));
2070
2071
/* No generated IV required */
2072
areq_ctx->backup_iv = req->iv;
2073
areq_ctx->assoclen = req->assoclen;
2074
2075
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2076
if (rc != -EINPROGRESS && rc != -EBUSY)
2077
req->iv = areq_ctx->backup_iv;
2078
2079
return rc;
2080
}
2081
2082
static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2083
{
2084
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2085
int rc;
2086
2087
rc = crypto_ipsec_check_assoclen(req->assoclen);
2088
if (rc)
2089
goto out;
2090
2091
memset(areq_ctx, 0, sizeof(*areq_ctx));
2092
2093
/* No generated IV required */
2094
areq_ctx->backup_iv = req->iv;
2095
areq_ctx->assoclen = req->assoclen - CCM_BLOCK_IV_SIZE;
2096
2097
cc_proc_rfc4309_ccm(req);
2098
2099
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2100
if (rc != -EINPROGRESS && rc != -EBUSY)
2101
req->iv = areq_ctx->backup_iv;
2102
2103
out:
2104
return rc;
2105
}
2106
2107
static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2108
unsigned int keylen)
2109
{
2110
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2111
struct device *dev = drvdata_to_dev(ctx->drvdata);
2112
2113
dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
2114
2115
if (keylen < 4)
2116
return -EINVAL;
2117
2118
keylen -= 4;
2119
memcpy(ctx->ctr_nonce, key + keylen, 4);
2120
2121
return cc_aead_setkey(tfm, key, keylen);
2122
}
2123
2124
static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2125
unsigned int keylen)
2126
{
2127
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2128
struct device *dev = drvdata_to_dev(ctx->drvdata);
2129
2130
dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
2131
2132
if (keylen < 4)
2133
return -EINVAL;
2134
2135
keylen -= 4;
2136
memcpy(ctx->ctr_nonce, key + keylen, 4);
2137
2138
return cc_aead_setkey(tfm, key, keylen);
2139
}
2140
2141
static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2142
unsigned int authsize)
2143
{
2144
switch (authsize) {
2145
case 4:
2146
case 8:
2147
case 12:
2148
case 13:
2149
case 14:
2150
case 15:
2151
case 16:
2152
break;
2153
default:
2154
return -EINVAL;
2155
}
2156
2157
return cc_aead_setauthsize(authenc, authsize);
2158
}
2159
2160
static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2161
unsigned int authsize)
2162
{
2163
struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2164
struct device *dev = drvdata_to_dev(ctx->drvdata);
2165
2166
dev_dbg(dev, "authsize %d\n", authsize);
2167
2168
switch (authsize) {
2169
case 8:
2170
case 12:
2171
case 16:
2172
break;
2173
default:
2174
return -EINVAL;
2175
}
2176
2177
return cc_aead_setauthsize(authenc, authsize);
2178
}
2179
2180
static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2181
unsigned int authsize)
2182
{
2183
struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2184
struct device *dev = drvdata_to_dev(ctx->drvdata);
2185
2186
dev_dbg(dev, "authsize %d\n", authsize);
2187
2188
if (authsize != 16)
2189
return -EINVAL;
2190
2191
return cc_aead_setauthsize(authenc, authsize);
2192
}
2193
2194
static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2195
{
2196
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2197
int rc;
2198
2199
rc = crypto_ipsec_check_assoclen(req->assoclen);
2200
if (rc)
2201
goto out;
2202
2203
memset(areq_ctx, 0, sizeof(*areq_ctx));
2204
2205
/* No generated IV required */
2206
areq_ctx->backup_iv = req->iv;
2207
areq_ctx->assoclen = req->assoclen - GCM_BLOCK_RFC4_IV_SIZE;
2208
2209
cc_proc_rfc4_gcm(req);
2210
2211
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2212
if (rc != -EINPROGRESS && rc != -EBUSY)
2213
req->iv = areq_ctx->backup_iv;
2214
out:
2215
return rc;
2216
}
2217
2218
static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2219
{
2220
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2221
int rc;
2222
2223
rc = crypto_ipsec_check_assoclen(req->assoclen);
2224
if (rc)
2225
goto out;
2226
2227
memset(areq_ctx, 0, sizeof(*areq_ctx));
2228
2229
//plaintext is not encrypted with rfc4543
2230
areq_ctx->plaintext_authenticate_only = true;
2231
2232
/* No generated IV required */
2233
areq_ctx->backup_iv = req->iv;
2234
areq_ctx->assoclen = req->assoclen;
2235
2236
cc_proc_rfc4_gcm(req);
2237
2238
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2239
if (rc != -EINPROGRESS && rc != -EBUSY)
2240
req->iv = areq_ctx->backup_iv;
2241
out:
2242
return rc;
2243
}
2244
2245
static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2246
{
2247
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2248
int rc;
2249
2250
rc = crypto_ipsec_check_assoclen(req->assoclen);
2251
if (rc)
2252
goto out;
2253
2254
memset(areq_ctx, 0, sizeof(*areq_ctx));
2255
2256
/* No generated IV required */
2257
areq_ctx->backup_iv = req->iv;
2258
areq_ctx->assoclen = req->assoclen - GCM_BLOCK_RFC4_IV_SIZE;
2259
2260
cc_proc_rfc4_gcm(req);
2261
2262
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2263
if (rc != -EINPROGRESS && rc != -EBUSY)
2264
req->iv = areq_ctx->backup_iv;
2265
out:
2266
return rc;
2267
}
2268
2269
static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2270
{
2271
struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2272
int rc;
2273
2274
rc = crypto_ipsec_check_assoclen(req->assoclen);
2275
if (rc)
2276
goto out;
2277
2278
memset(areq_ctx, 0, sizeof(*areq_ctx));
2279
2280
//plaintext is not decrypted with rfc4543
2281
areq_ctx->plaintext_authenticate_only = true;
2282
2283
/* No generated IV required */
2284
areq_ctx->backup_iv = req->iv;
2285
areq_ctx->assoclen = req->assoclen;
2286
2287
cc_proc_rfc4_gcm(req);
2288
2289
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2290
if (rc != -EINPROGRESS && rc != -EBUSY)
2291
req->iv = areq_ctx->backup_iv;
2292
out:
2293
return rc;
2294
}
2295
2296
/* aead alg */
2297
static struct cc_alg_template aead_algs[] = {
2298
{
2299
.name = "authenc(hmac(sha1),cbc(aes))",
2300
.driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2301
.blocksize = AES_BLOCK_SIZE,
2302
.template_aead = {
2303
.setkey = cc_aead_setkey,
2304
.setauthsize = cc_aead_setauthsize,
2305
.encrypt = cc_aead_encrypt,
2306
.decrypt = cc_aead_decrypt,
2307
.init = cc_aead_init,
2308
.exit = cc_aead_exit,
2309
.ivsize = AES_BLOCK_SIZE,
2310
.maxauthsize = SHA1_DIGEST_SIZE,
2311
},
2312
.cipher_mode = DRV_CIPHER_CBC,
2313
.flow_mode = S_DIN_to_AES,
2314
.auth_mode = DRV_HASH_SHA1,
2315
.min_hw_rev = CC_HW_REV_630,
2316
.std_body = CC_STD_NIST,
2317
},
2318
{
2319
.name = "authenc(hmac(sha1),cbc(des3_ede))",
2320
.driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2321
.blocksize = DES3_EDE_BLOCK_SIZE,
2322
.template_aead = {
2323
.setkey = cc_des3_aead_setkey,
2324
.setauthsize = cc_aead_setauthsize,
2325
.encrypt = cc_aead_encrypt,
2326
.decrypt = cc_aead_decrypt,
2327
.init = cc_aead_init,
2328
.exit = cc_aead_exit,
2329
.ivsize = DES3_EDE_BLOCK_SIZE,
2330
.maxauthsize = SHA1_DIGEST_SIZE,
2331
},
2332
.cipher_mode = DRV_CIPHER_CBC,
2333
.flow_mode = S_DIN_to_DES,
2334
.auth_mode = DRV_HASH_SHA1,
2335
.min_hw_rev = CC_HW_REV_630,
2336
.std_body = CC_STD_NIST,
2337
},
2338
{
2339
.name = "authenc(hmac(sha256),cbc(aes))",
2340
.driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2341
.blocksize = AES_BLOCK_SIZE,
2342
.template_aead = {
2343
.setkey = cc_aead_setkey,
2344
.setauthsize = cc_aead_setauthsize,
2345
.encrypt = cc_aead_encrypt,
2346
.decrypt = cc_aead_decrypt,
2347
.init = cc_aead_init,
2348
.exit = cc_aead_exit,
2349
.ivsize = AES_BLOCK_SIZE,
2350
.maxauthsize = SHA256_DIGEST_SIZE,
2351
},
2352
.cipher_mode = DRV_CIPHER_CBC,
2353
.flow_mode = S_DIN_to_AES,
2354
.auth_mode = DRV_HASH_SHA256,
2355
.min_hw_rev = CC_HW_REV_630,
2356
.std_body = CC_STD_NIST,
2357
},
2358
{
2359
.name = "authenc(hmac(sha256),cbc(des3_ede))",
2360
.driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2361
.blocksize = DES3_EDE_BLOCK_SIZE,
2362
.template_aead = {
2363
.setkey = cc_des3_aead_setkey,
2364
.setauthsize = cc_aead_setauthsize,
2365
.encrypt = cc_aead_encrypt,
2366
.decrypt = cc_aead_decrypt,
2367
.init = cc_aead_init,
2368
.exit = cc_aead_exit,
2369
.ivsize = DES3_EDE_BLOCK_SIZE,
2370
.maxauthsize = SHA256_DIGEST_SIZE,
2371
},
2372
.cipher_mode = DRV_CIPHER_CBC,
2373
.flow_mode = S_DIN_to_DES,
2374
.auth_mode = DRV_HASH_SHA256,
2375
.min_hw_rev = CC_HW_REV_630,
2376
.std_body = CC_STD_NIST,
2377
},
2378
{
2379
.name = "authenc(xcbc(aes),cbc(aes))",
2380
.driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2381
.blocksize = AES_BLOCK_SIZE,
2382
.template_aead = {
2383
.setkey = cc_aead_setkey,
2384
.setauthsize = cc_aead_setauthsize,
2385
.encrypt = cc_aead_encrypt,
2386
.decrypt = cc_aead_decrypt,
2387
.init = cc_aead_init,
2388
.exit = cc_aead_exit,
2389
.ivsize = AES_BLOCK_SIZE,
2390
.maxauthsize = AES_BLOCK_SIZE,
2391
},
2392
.cipher_mode = DRV_CIPHER_CBC,
2393
.flow_mode = S_DIN_to_AES,
2394
.auth_mode = DRV_HASH_XCBC_MAC,
2395
.min_hw_rev = CC_HW_REV_630,
2396
.std_body = CC_STD_NIST,
2397
},
2398
{
2399
.name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2400
.driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2401
.blocksize = 1,
2402
.template_aead = {
2403
.setkey = cc_aead_setkey,
2404
.setauthsize = cc_aead_setauthsize,
2405
.encrypt = cc_aead_encrypt,
2406
.decrypt = cc_aead_decrypt,
2407
.init = cc_aead_init,
2408
.exit = cc_aead_exit,
2409
.ivsize = CTR_RFC3686_IV_SIZE,
2410
.maxauthsize = SHA1_DIGEST_SIZE,
2411
},
2412
.cipher_mode = DRV_CIPHER_CTR,
2413
.flow_mode = S_DIN_to_AES,
2414
.auth_mode = DRV_HASH_SHA1,
2415
.min_hw_rev = CC_HW_REV_630,
2416
.std_body = CC_STD_NIST,
2417
},
2418
{
2419
.name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2420
.driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2421
.blocksize = 1,
2422
.template_aead = {
2423
.setkey = cc_aead_setkey,
2424
.setauthsize = cc_aead_setauthsize,
2425
.encrypt = cc_aead_encrypt,
2426
.decrypt = cc_aead_decrypt,
2427
.init = cc_aead_init,
2428
.exit = cc_aead_exit,
2429
.ivsize = CTR_RFC3686_IV_SIZE,
2430
.maxauthsize = SHA256_DIGEST_SIZE,
2431
},
2432
.cipher_mode = DRV_CIPHER_CTR,
2433
.flow_mode = S_DIN_to_AES,
2434
.auth_mode = DRV_HASH_SHA256,
2435
.min_hw_rev = CC_HW_REV_630,
2436
.std_body = CC_STD_NIST,
2437
},
2438
{
2439
.name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2440
.driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2441
.blocksize = 1,
2442
.template_aead = {
2443
.setkey = cc_aead_setkey,
2444
.setauthsize = cc_aead_setauthsize,
2445
.encrypt = cc_aead_encrypt,
2446
.decrypt = cc_aead_decrypt,
2447
.init = cc_aead_init,
2448
.exit = cc_aead_exit,
2449
.ivsize = CTR_RFC3686_IV_SIZE,
2450
.maxauthsize = AES_BLOCK_SIZE,
2451
},
2452
.cipher_mode = DRV_CIPHER_CTR,
2453
.flow_mode = S_DIN_to_AES,
2454
.auth_mode = DRV_HASH_XCBC_MAC,
2455
.min_hw_rev = CC_HW_REV_630,
2456
.std_body = CC_STD_NIST,
2457
},
2458
{
2459
.name = "ccm(aes)",
2460
.driver_name = "ccm-aes-ccree",
2461
.blocksize = 1,
2462
.template_aead = {
2463
.setkey = cc_aead_setkey,
2464
.setauthsize = cc_ccm_setauthsize,
2465
.encrypt = cc_aead_encrypt,
2466
.decrypt = cc_aead_decrypt,
2467
.init = cc_aead_init,
2468
.exit = cc_aead_exit,
2469
.ivsize = AES_BLOCK_SIZE,
2470
.maxauthsize = AES_BLOCK_SIZE,
2471
},
2472
.cipher_mode = DRV_CIPHER_CCM,
2473
.flow_mode = S_DIN_to_AES,
2474
.auth_mode = DRV_HASH_NULL,
2475
.min_hw_rev = CC_HW_REV_630,
2476
.std_body = CC_STD_NIST,
2477
},
2478
{
2479
.name = "rfc4309(ccm(aes))",
2480
.driver_name = "rfc4309-ccm-aes-ccree",
2481
.blocksize = 1,
2482
.template_aead = {
2483
.setkey = cc_rfc4309_ccm_setkey,
2484
.setauthsize = cc_rfc4309_ccm_setauthsize,
2485
.encrypt = cc_rfc4309_ccm_encrypt,
2486
.decrypt = cc_rfc4309_ccm_decrypt,
2487
.init = cc_aead_init,
2488
.exit = cc_aead_exit,
2489
.ivsize = CCM_BLOCK_IV_SIZE,
2490
.maxauthsize = AES_BLOCK_SIZE,
2491
},
2492
.cipher_mode = DRV_CIPHER_CCM,
2493
.flow_mode = S_DIN_to_AES,
2494
.auth_mode = DRV_HASH_NULL,
2495
.min_hw_rev = CC_HW_REV_630,
2496
.std_body = CC_STD_NIST,
2497
},
2498
{
2499
.name = "gcm(aes)",
2500
.driver_name = "gcm-aes-ccree",
2501
.blocksize = 1,
2502
.template_aead = {
2503
.setkey = cc_aead_setkey,
2504
.setauthsize = cc_gcm_setauthsize,
2505
.encrypt = cc_aead_encrypt,
2506
.decrypt = cc_aead_decrypt,
2507
.init = cc_aead_init,
2508
.exit = cc_aead_exit,
2509
.ivsize = 12,
2510
.maxauthsize = AES_BLOCK_SIZE,
2511
},
2512
.cipher_mode = DRV_CIPHER_GCTR,
2513
.flow_mode = S_DIN_to_AES,
2514
.auth_mode = DRV_HASH_NULL,
2515
.min_hw_rev = CC_HW_REV_630,
2516
.std_body = CC_STD_NIST,
2517
},
2518
{
2519
.name = "rfc4106(gcm(aes))",
2520
.driver_name = "rfc4106-gcm-aes-ccree",
2521
.blocksize = 1,
2522
.template_aead = {
2523
.setkey = cc_rfc4106_gcm_setkey,
2524
.setauthsize = cc_rfc4106_gcm_setauthsize,
2525
.encrypt = cc_rfc4106_gcm_encrypt,
2526
.decrypt = cc_rfc4106_gcm_decrypt,
2527
.init = cc_aead_init,
2528
.exit = cc_aead_exit,
2529
.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2530
.maxauthsize = AES_BLOCK_SIZE,
2531
},
2532
.cipher_mode = DRV_CIPHER_GCTR,
2533
.flow_mode = S_DIN_to_AES,
2534
.auth_mode = DRV_HASH_NULL,
2535
.min_hw_rev = CC_HW_REV_630,
2536
.std_body = CC_STD_NIST,
2537
},
2538
{
2539
.name = "rfc4543(gcm(aes))",
2540
.driver_name = "rfc4543-gcm-aes-ccree",
2541
.blocksize = 1,
2542
.template_aead = {
2543
.setkey = cc_rfc4543_gcm_setkey,
2544
.setauthsize = cc_rfc4543_gcm_setauthsize,
2545
.encrypt = cc_rfc4543_gcm_encrypt,
2546
.decrypt = cc_rfc4543_gcm_decrypt,
2547
.init = cc_aead_init,
2548
.exit = cc_aead_exit,
2549
.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2550
.maxauthsize = AES_BLOCK_SIZE,
2551
},
2552
.cipher_mode = DRV_CIPHER_GCTR,
2553
.flow_mode = S_DIN_to_AES,
2554
.auth_mode = DRV_HASH_NULL,
2555
.min_hw_rev = CC_HW_REV_630,
2556
.std_body = CC_STD_NIST,
2557
},
2558
};
2559
2560
static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2561
struct device *dev)
2562
{
2563
struct cc_crypto_alg *t_alg;
2564
struct aead_alg *alg;
2565
2566
t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
2567
if (!t_alg)
2568
return ERR_PTR(-ENOMEM);
2569
2570
alg = &tmpl->template_aead;
2571
2572
if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s",
2573
tmpl->name) >= CRYPTO_MAX_ALG_NAME)
2574
return ERR_PTR(-EINVAL);
2575
if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2576
tmpl->driver_name) >= CRYPTO_MAX_ALG_NAME)
2577
return ERR_PTR(-EINVAL);
2578
2579
alg->base.cra_module = THIS_MODULE;
2580
alg->base.cra_priority = CC_CRA_PRIO;
2581
2582
alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2583
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2584
alg->base.cra_blocksize = tmpl->blocksize;
2585
alg->init = cc_aead_init;
2586
alg->exit = cc_aead_exit;
2587
2588
t_alg->aead_alg = *alg;
2589
2590
t_alg->cipher_mode = tmpl->cipher_mode;
2591
t_alg->flow_mode = tmpl->flow_mode;
2592
t_alg->auth_mode = tmpl->auth_mode;
2593
2594
return t_alg;
2595
}
2596
2597
int cc_aead_free(struct cc_drvdata *drvdata)
2598
{
2599
struct cc_crypto_alg *t_alg, *n;
2600
struct cc_aead_handle *aead_handle = drvdata->aead_handle;
2601
2602
/* Remove registered algs */
2603
list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list, entry) {
2604
crypto_unregister_aead(&t_alg->aead_alg);
2605
list_del(&t_alg->entry);
2606
}
2607
2608
return 0;
2609
}
2610
2611
int cc_aead_alloc(struct cc_drvdata *drvdata)
2612
{
2613
struct cc_aead_handle *aead_handle;
2614
struct cc_crypto_alg *t_alg;
2615
int rc = -ENOMEM;
2616
int alg;
2617
struct device *dev = drvdata_to_dev(drvdata);
2618
2619
aead_handle = devm_kmalloc(dev, sizeof(*aead_handle), GFP_KERNEL);
2620
if (!aead_handle) {
2621
rc = -ENOMEM;
2622
goto fail0;
2623
}
2624
2625
INIT_LIST_HEAD(&aead_handle->aead_list);
2626
drvdata->aead_handle = aead_handle;
2627
2628
aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2629
MAX_HMAC_DIGEST_SIZE);
2630
2631
if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2632
rc = -ENOMEM;
2633
goto fail1;
2634
}
2635
2636
/* Linux crypto */
2637
for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2638
if ((aead_algs[alg].min_hw_rev > drvdata->hw_rev) ||
2639
!(drvdata->std_bodies & aead_algs[alg].std_body))
2640
continue;
2641
2642
t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2643
if (IS_ERR(t_alg)) {
2644
rc = PTR_ERR(t_alg);
2645
dev_err(dev, "%s alg allocation failed\n",
2646
aead_algs[alg].driver_name);
2647
goto fail1;
2648
}
2649
t_alg->drvdata = drvdata;
2650
rc = crypto_register_aead(&t_alg->aead_alg);
2651
if (rc) {
2652
dev_err(dev, "%s alg registration failed\n",
2653
t_alg->aead_alg.base.cra_driver_name);
2654
goto fail1;
2655
}
2656
2657
list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2658
dev_dbg(dev, "Registered %s\n",
2659
t_alg->aead_alg.base.cra_driver_name);
2660
}
2661
2662
return 0;
2663
2664
fail1:
2665
cc_aead_free(drvdata);
2666
fail0:
2667
return rc;
2668
}
2669
2670