Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/ccree/cc_cipher.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3
4
#include <linux/kernel.h>
5
#include <linux/module.h>
6
#include <crypto/algapi.h>
7
#include <crypto/internal/skcipher.h>
8
#include <crypto/internal/des.h>
9
#include <crypto/xts.h>
10
#include <crypto/sm4.h>
11
#include <crypto/scatterwalk.h>
12
13
#include "cc_driver.h"
14
#include "cc_lli_defs.h"
15
#include "cc_buffer_mgr.h"
16
#include "cc_cipher.h"
17
#include "cc_request_mgr.h"
18
19
#define MAX_SKCIPHER_SEQ_LEN 6
20
21
#define template_skcipher template_u.skcipher
22
23
struct cc_user_key_info {
24
u8 *key;
25
dma_addr_t key_dma_addr;
26
};
27
28
struct cc_hw_key_info {
29
enum cc_hw_crypto_key key1_slot;
30
enum cc_hw_crypto_key key2_slot;
31
};
32
33
struct cc_cpp_key_info {
34
u8 slot;
35
enum cc_cpp_alg alg;
36
};
37
38
enum cc_key_type {
39
CC_UNPROTECTED_KEY, /* User key */
40
CC_HW_PROTECTED_KEY, /* HW (FDE) key */
41
CC_POLICY_PROTECTED_KEY, /* CPP key */
42
CC_INVALID_PROTECTED_KEY /* Invalid key */
43
};
44
45
struct cc_cipher_ctx {
46
struct cc_drvdata *drvdata;
47
int keylen;
48
int cipher_mode;
49
int flow_mode;
50
unsigned int flags;
51
enum cc_key_type key_type;
52
struct cc_user_key_info user;
53
union {
54
struct cc_hw_key_info hw;
55
struct cc_cpp_key_info cpp;
56
};
57
struct crypto_shash *shash_tfm;
58
struct crypto_skcipher *fallback_tfm;
59
bool fallback_on;
60
};
61
62
static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
63
64
static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm)
65
{
66
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
67
68
return ctx_p->key_type;
69
}
70
71
static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
72
{
73
switch (ctx_p->flow_mode) {
74
case S_DIN_to_AES:
75
switch (size) {
76
case CC_AES_128_BIT_KEY_SIZE:
77
case CC_AES_192_BIT_KEY_SIZE:
78
if (ctx_p->cipher_mode != DRV_CIPHER_XTS)
79
return 0;
80
break;
81
case CC_AES_256_BIT_KEY_SIZE:
82
return 0;
83
case (CC_AES_192_BIT_KEY_SIZE * 2):
84
case (CC_AES_256_BIT_KEY_SIZE * 2):
85
if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
86
ctx_p->cipher_mode == DRV_CIPHER_ESSIV)
87
return 0;
88
break;
89
default:
90
break;
91
}
92
break;
93
case S_DIN_to_DES:
94
if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
95
return 0;
96
break;
97
case S_DIN_to_SM4:
98
if (size == SM4_KEY_SIZE)
99
return 0;
100
break;
101
default:
102
break;
103
}
104
return -EINVAL;
105
}
106
107
static int validate_data_size(struct cc_cipher_ctx *ctx_p,
108
unsigned int size)
109
{
110
switch (ctx_p->flow_mode) {
111
case S_DIN_to_AES:
112
switch (ctx_p->cipher_mode) {
113
case DRV_CIPHER_XTS:
114
case DRV_CIPHER_CBC_CTS:
115
if (size >= AES_BLOCK_SIZE)
116
return 0;
117
break;
118
case DRV_CIPHER_OFB:
119
case DRV_CIPHER_CTR:
120
return 0;
121
case DRV_CIPHER_ECB:
122
case DRV_CIPHER_CBC:
123
case DRV_CIPHER_ESSIV:
124
if (IS_ALIGNED(size, AES_BLOCK_SIZE))
125
return 0;
126
break;
127
default:
128
break;
129
}
130
break;
131
case S_DIN_to_DES:
132
if (IS_ALIGNED(size, DES_BLOCK_SIZE))
133
return 0;
134
break;
135
case S_DIN_to_SM4:
136
switch (ctx_p->cipher_mode) {
137
case DRV_CIPHER_CTR:
138
return 0;
139
case DRV_CIPHER_ECB:
140
case DRV_CIPHER_CBC:
141
if (IS_ALIGNED(size, SM4_BLOCK_SIZE))
142
return 0;
143
break;
144
default:
145
break;
146
}
147
break;
148
default:
149
break;
150
}
151
return -EINVAL;
152
}
153
154
static int cc_cipher_init(struct crypto_tfm *tfm)
155
{
156
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
157
struct cc_crypto_alg *cc_alg =
158
container_of(tfm->__crt_alg, struct cc_crypto_alg,
159
skcipher_alg.base);
160
struct device *dev = drvdata_to_dev(cc_alg->drvdata);
161
unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
162
unsigned int fallback_req_size = 0;
163
164
dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
165
crypto_tfm_alg_name(tfm));
166
167
ctx_p->cipher_mode = cc_alg->cipher_mode;
168
ctx_p->flow_mode = cc_alg->flow_mode;
169
ctx_p->drvdata = cc_alg->drvdata;
170
171
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
172
const char *name = crypto_tfm_alg_name(tfm);
173
174
/* Alloc hash tfm for essiv */
175
ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0);
176
if (IS_ERR(ctx_p->shash_tfm)) {
177
dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
178
return PTR_ERR(ctx_p->shash_tfm);
179
}
180
max_key_buf_size <<= 1;
181
182
/* Alloc fallback tfm or essiv when key size != 256 bit */
183
ctx_p->fallback_tfm =
184
crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
185
186
if (IS_ERR(ctx_p->fallback_tfm)) {
187
/* Note we're still allowing registration with no fallback since it's
188
* better to have most modes supported than none at all.
189
*/
190
dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n",
191
name);
192
ctx_p->fallback_tfm = NULL;
193
} else {
194
fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm);
195
}
196
}
197
198
crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
199
sizeof(struct cipher_req_ctx) + fallback_req_size);
200
201
/* Allocate key buffer, cache line aligned */
202
ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL);
203
if (!ctx_p->user.key)
204
goto free_fallback;
205
206
dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
207
ctx_p->user.key);
208
209
/* Map key buffer */
210
ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key,
211
max_key_buf_size,
212
DMA_TO_DEVICE);
213
if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
214
dev_err(dev, "Mapping Key %u B at va=%p for DMA failed\n",
215
max_key_buf_size, ctx_p->user.key);
216
goto free_key;
217
}
218
dev_dbg(dev, "Mapped key %u B at va=%p to dma=%pad\n",
219
max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
220
221
return 0;
222
223
free_key:
224
kfree(ctx_p->user.key);
225
free_fallback:
226
crypto_free_skcipher(ctx_p->fallback_tfm);
227
crypto_free_shash(ctx_p->shash_tfm);
228
229
return -ENOMEM;
230
}
231
232
static void cc_cipher_exit(struct crypto_tfm *tfm)
233
{
234
struct crypto_alg *alg = tfm->__crt_alg;
235
struct cc_crypto_alg *cc_alg =
236
container_of(alg, struct cc_crypto_alg,
237
skcipher_alg.base);
238
unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
239
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
240
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
241
242
dev_dbg(dev, "Clearing context @%p for %s\n",
243
crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
244
245
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
246
/* Free hash tfm for essiv */
247
crypto_free_shash(ctx_p->shash_tfm);
248
ctx_p->shash_tfm = NULL;
249
crypto_free_skcipher(ctx_p->fallback_tfm);
250
ctx_p->fallback_tfm = NULL;
251
}
252
253
/* Unmap key buffer */
254
dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
255
DMA_TO_DEVICE);
256
dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
257
&ctx_p->user.key_dma_addr);
258
259
/* Free key buffer in context */
260
dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
261
kfree_sensitive(ctx_p->user.key);
262
}
263
264
static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num)
265
{
266
switch (slot_num) {
267
case 0:
268
return KFDE0_KEY;
269
case 1:
270
return KFDE1_KEY;
271
case 2:
272
return KFDE2_KEY;
273
case 3:
274
return KFDE3_KEY;
275
}
276
return END_OF_KEYS;
277
}
278
279
static u8 cc_slot_to_cpp_key(u8 slot_num)
280
{
281
return (slot_num - CC_FIRST_CPP_KEY_SLOT);
282
}
283
284
static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num)
285
{
286
if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT)
287
return CC_HW_PROTECTED_KEY;
288
else if (slot_num >= CC_FIRST_CPP_KEY_SLOT &&
289
slot_num <= CC_LAST_CPP_KEY_SLOT)
290
return CC_POLICY_PROTECTED_KEY;
291
else
292
return CC_INVALID_PROTECTED_KEY;
293
}
294
295
static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key,
296
unsigned int keylen)
297
{
298
struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
299
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
300
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
301
struct cc_hkey_info hki;
302
303
dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n",
304
ctx_p, crypto_tfm_alg_name(tfm), keylen);
305
dump_byte_array("key", key, keylen);
306
307
/* STAT_PHASE_0: Init and sanity checks */
308
309
/* This check the size of the protected key token */
310
if (keylen != sizeof(hki)) {
311
dev_err(dev, "Unsupported protected key size %d.\n", keylen);
312
return -EINVAL;
313
}
314
315
memcpy(&hki, key, keylen);
316
317
/* The real key len for crypto op is the size of the HW key
318
* referenced by the HW key slot, not the hardware key token
319
*/
320
keylen = hki.keylen;
321
322
if (validate_keys_sizes(ctx_p, keylen)) {
323
dev_dbg(dev, "Unsupported key size %d.\n", keylen);
324
return -EINVAL;
325
}
326
327
ctx_p->keylen = keylen;
328
ctx_p->fallback_on = false;
329
330
switch (cc_slot_to_key_type(hki.hw_key1)) {
331
case CC_HW_PROTECTED_KEY:
332
if (ctx_p->flow_mode == S_DIN_to_SM4) {
333
dev_err(dev, "Only AES HW protected keys are supported\n");
334
return -EINVAL;
335
}
336
337
ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1);
338
if (ctx_p->hw.key1_slot == END_OF_KEYS) {
339
dev_err(dev, "Unsupported hw key1 number (%d)\n",
340
hki.hw_key1);
341
return -EINVAL;
342
}
343
344
if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
345
ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
346
if (hki.hw_key1 == hki.hw_key2) {
347
dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
348
hki.hw_key1, hki.hw_key2);
349
return -EINVAL;
350
}
351
352
ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2);
353
if (ctx_p->hw.key2_slot == END_OF_KEYS) {
354
dev_err(dev, "Unsupported hw key2 number (%d)\n",
355
hki.hw_key2);
356
return -EINVAL;
357
}
358
}
359
360
ctx_p->key_type = CC_HW_PROTECTED_KEY;
361
dev_dbg(dev, "HW protected key %d/%d set\n.",
362
ctx_p->hw.key1_slot, ctx_p->hw.key2_slot);
363
break;
364
365
case CC_POLICY_PROTECTED_KEY:
366
if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) {
367
dev_err(dev, "CPP keys not supported in this hardware revision.\n");
368
return -EINVAL;
369
}
370
371
if (ctx_p->cipher_mode != DRV_CIPHER_CBC &&
372
ctx_p->cipher_mode != DRV_CIPHER_CTR) {
373
dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n");
374
return -EINVAL;
375
}
376
377
ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1);
378
if (ctx_p->flow_mode == S_DIN_to_AES)
379
ctx_p->cpp.alg = CC_CPP_AES;
380
else /* Must be SM4 since due to sethkey registration */
381
ctx_p->cpp.alg = CC_CPP_SM4;
382
ctx_p->key_type = CC_POLICY_PROTECTED_KEY;
383
dev_dbg(dev, "policy protected key alg: %d slot: %d.\n",
384
ctx_p->cpp.alg, ctx_p->cpp.slot);
385
break;
386
387
default:
388
dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1);
389
return -EINVAL;
390
}
391
392
return 0;
393
}
394
395
static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
396
unsigned int keylen)
397
{
398
struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
399
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
400
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
401
struct cc_crypto_alg *cc_alg =
402
container_of(tfm->__crt_alg, struct cc_crypto_alg,
403
skcipher_alg.base);
404
unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
405
406
dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
407
ctx_p, crypto_tfm_alg_name(tfm), keylen);
408
dump_byte_array("key", key, keylen);
409
410
/* STAT_PHASE_0: Init and sanity checks */
411
412
if (validate_keys_sizes(ctx_p, keylen)) {
413
dev_dbg(dev, "Invalid key size %d.\n", keylen);
414
return -EINVAL;
415
}
416
417
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
418
419
/* We only support 256 bit ESSIV-CBC-AES keys */
420
if (keylen != AES_KEYSIZE_256) {
421
unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK;
422
423
if (likely(ctx_p->fallback_tfm)) {
424
ctx_p->fallback_on = true;
425
crypto_skcipher_clear_flags(ctx_p->fallback_tfm,
426
CRYPTO_TFM_REQ_MASK);
427
crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags);
428
return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen);
429
}
430
431
dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen);
432
return -EINVAL;
433
}
434
435
/* Internal ESSIV key buffer is double sized */
436
max_key_buf_size <<= 1;
437
}
438
439
ctx_p->fallback_on = false;
440
ctx_p->key_type = CC_UNPROTECTED_KEY;
441
442
/*
443
* Verify DES weak keys
444
* Note that we're dropping the expanded key since the
445
* HW does the expansion on its own.
446
*/
447
if (ctx_p->flow_mode == S_DIN_to_DES) {
448
if ((keylen == DES3_EDE_KEY_SIZE &&
449
verify_skcipher_des3_key(sktfm, key)) ||
450
verify_skcipher_des_key(sktfm, key)) {
451
dev_dbg(dev, "weak DES key");
452
return -EINVAL;
453
}
454
}
455
456
if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
457
xts_verify_key(sktfm, key, keylen)) {
458
dev_dbg(dev, "weak XTS key");
459
return -EINVAL;
460
}
461
462
/* STAT_PHASE_1: Copy key to ctx */
463
dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
464
max_key_buf_size, DMA_TO_DEVICE);
465
466
memcpy(ctx_p->user.key, key, keylen);
467
468
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
469
/* sha256 for key2 - use sw implementation */
470
int err;
471
472
err = crypto_shash_tfm_digest(ctx_p->shash_tfm,
473
ctx_p->user.key, keylen,
474
ctx_p->user.key + keylen);
475
if (err) {
476
dev_err(dev, "Failed to hash ESSIV key.\n");
477
return err;
478
}
479
480
keylen <<= 1;
481
}
482
dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
483
max_key_buf_size, DMA_TO_DEVICE);
484
ctx_p->keylen = keylen;
485
486
dev_dbg(dev, "return safely");
487
return 0;
488
}
489
490
static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p)
491
{
492
switch (ctx_p->flow_mode) {
493
case S_DIN_to_AES:
494
return S_AES_to_DOUT;
495
case S_DIN_to_DES:
496
return S_DES_to_DOUT;
497
case S_DIN_to_SM4:
498
return S_SM4_to_DOUT;
499
default:
500
return ctx_p->flow_mode;
501
}
502
}
503
504
static void cc_setup_readiv_desc(struct crypto_tfm *tfm,
505
struct cipher_req_ctx *req_ctx,
506
unsigned int ivsize, struct cc_hw_desc desc[],
507
unsigned int *seq_size)
508
{
509
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
510
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
511
int cipher_mode = ctx_p->cipher_mode;
512
int flow_mode = cc_out_setup_mode(ctx_p);
513
int direction = req_ctx->gen_ctx.op_type;
514
dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
515
516
if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY)
517
return;
518
519
switch (cipher_mode) {
520
case DRV_CIPHER_ECB:
521
break;
522
case DRV_CIPHER_CBC:
523
case DRV_CIPHER_CBC_CTS:
524
case DRV_CIPHER_CTR:
525
case DRV_CIPHER_OFB:
526
/* Read next IV */
527
hw_desc_init(&desc[*seq_size]);
528
set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1);
529
set_cipher_config0(&desc[*seq_size], direction);
530
set_flow_mode(&desc[*seq_size], flow_mode);
531
set_cipher_mode(&desc[*seq_size], cipher_mode);
532
if (cipher_mode == DRV_CIPHER_CTR ||
533
cipher_mode == DRV_CIPHER_OFB) {
534
set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
535
} else {
536
set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0);
537
}
538
set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
539
(*seq_size)++;
540
break;
541
case DRV_CIPHER_XTS:
542
case DRV_CIPHER_ESSIV:
543
/* IV */
544
hw_desc_init(&desc[*seq_size]);
545
set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
546
set_cipher_mode(&desc[*seq_size], cipher_mode);
547
set_cipher_config0(&desc[*seq_size], direction);
548
set_flow_mode(&desc[*seq_size], flow_mode);
549
set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE,
550
NS_BIT, 1);
551
set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
552
(*seq_size)++;
553
break;
554
default:
555
dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
556
}
557
}
558
559
560
static void cc_setup_state_desc(struct crypto_tfm *tfm,
561
struct cipher_req_ctx *req_ctx,
562
unsigned int ivsize, unsigned int nbytes,
563
struct cc_hw_desc desc[],
564
unsigned int *seq_size)
565
{
566
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
567
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
568
int cipher_mode = ctx_p->cipher_mode;
569
int flow_mode = ctx_p->flow_mode;
570
int direction = req_ctx->gen_ctx.op_type;
571
dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
572
573
switch (cipher_mode) {
574
case DRV_CIPHER_ECB:
575
break;
576
case DRV_CIPHER_CBC:
577
case DRV_CIPHER_CBC_CTS:
578
case DRV_CIPHER_CTR:
579
case DRV_CIPHER_OFB:
580
/* Load IV */
581
hw_desc_init(&desc[*seq_size]);
582
set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
583
NS_BIT);
584
set_cipher_config0(&desc[*seq_size], direction);
585
set_flow_mode(&desc[*seq_size], flow_mode);
586
set_cipher_mode(&desc[*seq_size], cipher_mode);
587
if (cipher_mode == DRV_CIPHER_CTR ||
588
cipher_mode == DRV_CIPHER_OFB) {
589
set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
590
} else {
591
set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
592
}
593
(*seq_size)++;
594
break;
595
case DRV_CIPHER_XTS:
596
case DRV_CIPHER_ESSIV:
597
break;
598
default:
599
dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
600
}
601
}
602
603
604
static void cc_setup_xex_state_desc(struct crypto_tfm *tfm,
605
struct cipher_req_ctx *req_ctx,
606
unsigned int ivsize, unsigned int nbytes,
607
struct cc_hw_desc desc[],
608
unsigned int *seq_size)
609
{
610
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
611
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
612
int cipher_mode = ctx_p->cipher_mode;
613
int flow_mode = ctx_p->flow_mode;
614
int direction = req_ctx->gen_ctx.op_type;
615
dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
616
unsigned int key_len = (ctx_p->keylen / 2);
617
dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
618
unsigned int key_offset = key_len;
619
620
switch (cipher_mode) {
621
case DRV_CIPHER_ECB:
622
break;
623
case DRV_CIPHER_CBC:
624
case DRV_CIPHER_CBC_CTS:
625
case DRV_CIPHER_CTR:
626
case DRV_CIPHER_OFB:
627
break;
628
case DRV_CIPHER_XTS:
629
case DRV_CIPHER_ESSIV:
630
631
if (cipher_mode == DRV_CIPHER_ESSIV)
632
key_len = SHA256_DIGEST_SIZE;
633
634
/* load XEX key */
635
hw_desc_init(&desc[*seq_size]);
636
set_cipher_mode(&desc[*seq_size], cipher_mode);
637
set_cipher_config0(&desc[*seq_size], direction);
638
if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
639
set_hw_crypto_key(&desc[*seq_size],
640
ctx_p->hw.key2_slot);
641
} else {
642
set_din_type(&desc[*seq_size], DMA_DLLI,
643
(key_dma_addr + key_offset),
644
key_len, NS_BIT);
645
}
646
set_xex_data_unit_size(&desc[*seq_size], nbytes);
647
set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
648
set_key_size_aes(&desc[*seq_size], key_len);
649
set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
650
(*seq_size)++;
651
652
/* Load IV */
653
hw_desc_init(&desc[*seq_size]);
654
set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
655
set_cipher_mode(&desc[*seq_size], cipher_mode);
656
set_cipher_config0(&desc[*seq_size], direction);
657
set_key_size_aes(&desc[*seq_size], key_len);
658
set_flow_mode(&desc[*seq_size], flow_mode);
659
set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
660
CC_AES_BLOCK_SIZE, NS_BIT);
661
(*seq_size)++;
662
break;
663
default:
664
dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
665
}
666
}
667
668
static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p)
669
{
670
switch (ctx_p->flow_mode) {
671
case S_DIN_to_AES:
672
return DIN_AES_DOUT;
673
case S_DIN_to_DES:
674
return DIN_DES_DOUT;
675
case S_DIN_to_SM4:
676
return DIN_SM4_DOUT;
677
default:
678
return ctx_p->flow_mode;
679
}
680
}
681
682
static void cc_setup_key_desc(struct crypto_tfm *tfm,
683
struct cipher_req_ctx *req_ctx,
684
unsigned int nbytes, struct cc_hw_desc desc[],
685
unsigned int *seq_size)
686
{
687
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
688
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
689
int cipher_mode = ctx_p->cipher_mode;
690
int flow_mode = ctx_p->flow_mode;
691
int direction = req_ctx->gen_ctx.op_type;
692
dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
693
unsigned int key_len = ctx_p->keylen;
694
unsigned int din_size;
695
696
switch (cipher_mode) {
697
case DRV_CIPHER_CBC:
698
case DRV_CIPHER_CBC_CTS:
699
case DRV_CIPHER_CTR:
700
case DRV_CIPHER_OFB:
701
case DRV_CIPHER_ECB:
702
/* Load key */
703
hw_desc_init(&desc[*seq_size]);
704
set_cipher_mode(&desc[*seq_size], cipher_mode);
705
set_cipher_config0(&desc[*seq_size], direction);
706
707
if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) {
708
/* We use the AES key size coding for all CPP algs */
709
set_key_size_aes(&desc[*seq_size], key_len);
710
set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot);
711
flow_mode = cc_out_flow_mode(ctx_p);
712
} else {
713
if (flow_mode == S_DIN_to_AES) {
714
if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
715
set_hw_crypto_key(&desc[*seq_size],
716
ctx_p->hw.key1_slot);
717
} else {
718
/* CC_POLICY_UNPROTECTED_KEY
719
* Invalid keys are filtered out in
720
* sethkey()
721
*/
722
din_size = (key_len == 24) ?
723
AES_MAX_KEY_SIZE : key_len;
724
725
set_din_type(&desc[*seq_size], DMA_DLLI,
726
key_dma_addr, din_size,
727
NS_BIT);
728
}
729
set_key_size_aes(&desc[*seq_size], key_len);
730
} else {
731
/*des*/
732
set_din_type(&desc[*seq_size], DMA_DLLI,
733
key_dma_addr, key_len, NS_BIT);
734
set_key_size_des(&desc[*seq_size], key_len);
735
}
736
set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
737
}
738
set_flow_mode(&desc[*seq_size], flow_mode);
739
(*seq_size)++;
740
break;
741
case DRV_CIPHER_XTS:
742
case DRV_CIPHER_ESSIV:
743
/* Load AES key */
744
hw_desc_init(&desc[*seq_size]);
745
set_cipher_mode(&desc[*seq_size], cipher_mode);
746
set_cipher_config0(&desc[*seq_size], direction);
747
if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
748
set_hw_crypto_key(&desc[*seq_size],
749
ctx_p->hw.key1_slot);
750
} else {
751
set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
752
(key_len / 2), NS_BIT);
753
}
754
set_key_size_aes(&desc[*seq_size], (key_len / 2));
755
set_flow_mode(&desc[*seq_size], flow_mode);
756
set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
757
(*seq_size)++;
758
break;
759
default:
760
dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
761
}
762
}
763
764
static void cc_setup_mlli_desc(struct crypto_tfm *tfm,
765
struct cipher_req_ctx *req_ctx,
766
struct scatterlist *dst, struct scatterlist *src,
767
unsigned int nbytes, void *areq,
768
struct cc_hw_desc desc[], unsigned int *seq_size)
769
{
770
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
771
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
772
773
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
774
/* bypass */
775
dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
776
&req_ctx->mlli_params.mlli_dma_addr,
777
req_ctx->mlli_params.mlli_len,
778
ctx_p->drvdata->mlli_sram_addr);
779
hw_desc_init(&desc[*seq_size]);
780
set_din_type(&desc[*seq_size], DMA_DLLI,
781
req_ctx->mlli_params.mlli_dma_addr,
782
req_ctx->mlli_params.mlli_len, NS_BIT);
783
set_dout_sram(&desc[*seq_size],
784
ctx_p->drvdata->mlli_sram_addr,
785
req_ctx->mlli_params.mlli_len);
786
set_flow_mode(&desc[*seq_size], BYPASS);
787
(*seq_size)++;
788
}
789
}
790
791
static void cc_setup_flow_desc(struct crypto_tfm *tfm,
792
struct cipher_req_ctx *req_ctx,
793
struct scatterlist *dst, struct scatterlist *src,
794
unsigned int nbytes, struct cc_hw_desc desc[],
795
unsigned int *seq_size)
796
{
797
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
798
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
799
unsigned int flow_mode = cc_out_flow_mode(ctx_p);
800
bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY ||
801
ctx_p->cipher_mode == DRV_CIPHER_ECB);
802
803
/* Process */
804
if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
805
dev_dbg(dev, " data params addr %pad length 0x%X\n",
806
&sg_dma_address(src), nbytes);
807
dev_dbg(dev, " data params addr %pad length 0x%X\n",
808
&sg_dma_address(dst), nbytes);
809
hw_desc_init(&desc[*seq_size]);
810
set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
811
nbytes, NS_BIT);
812
set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
813
nbytes, NS_BIT, (!last_desc ? 0 : 1));
814
if (last_desc)
815
set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
816
817
set_flow_mode(&desc[*seq_size], flow_mode);
818
(*seq_size)++;
819
} else {
820
hw_desc_init(&desc[*seq_size]);
821
set_din_type(&desc[*seq_size], DMA_MLLI,
822
ctx_p->drvdata->mlli_sram_addr,
823
req_ctx->in_mlli_nents, NS_BIT);
824
if (req_ctx->out_nents == 0) {
825
dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
826
ctx_p->drvdata->mlli_sram_addr,
827
ctx_p->drvdata->mlli_sram_addr);
828
set_dout_mlli(&desc[*seq_size],
829
ctx_p->drvdata->mlli_sram_addr,
830
req_ctx->in_mlli_nents, NS_BIT,
831
(!last_desc ? 0 : 1));
832
} else {
833
dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
834
ctx_p->drvdata->mlli_sram_addr,
835
ctx_p->drvdata->mlli_sram_addr +
836
(u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
837
set_dout_mlli(&desc[*seq_size],
838
(ctx_p->drvdata->mlli_sram_addr +
839
(LLI_ENTRY_BYTE_SIZE *
840
req_ctx->in_mlli_nents)),
841
req_ctx->out_mlli_nents, NS_BIT,
842
(!last_desc ? 0 : 1));
843
}
844
if (last_desc)
845
set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
846
847
set_flow_mode(&desc[*seq_size], flow_mode);
848
(*seq_size)++;
849
}
850
}
851
852
static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
853
{
854
struct skcipher_request *req = (struct skcipher_request *)cc_req;
855
struct scatterlist *dst = req->dst;
856
struct scatterlist *src = req->src;
857
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
858
struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
859
unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
860
861
if (err != -EINPROGRESS) {
862
/* Not a BACKLOG notification */
863
cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
864
memcpy(req->iv, req_ctx->iv, ivsize);
865
kfree_sensitive(req_ctx->iv);
866
}
867
868
skcipher_request_complete(req, err);
869
}
870
871
static int cc_cipher_process(struct skcipher_request *req,
872
enum drv_crypto_direction direction)
873
{
874
struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
875
struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
876
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
877
unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
878
struct scatterlist *dst = req->dst;
879
struct scatterlist *src = req->src;
880
unsigned int nbytes = req->cryptlen;
881
void *iv = req->iv;
882
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
883
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
884
struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN];
885
struct cc_crypto_req cc_req = {};
886
int rc;
887
unsigned int seq_len = 0;
888
gfp_t flags = cc_gfp_flags(&req->base);
889
890
dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
891
((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
892
"Encrypt" : "Decrypt"), req, iv, nbytes);
893
894
/* STAT_PHASE_0: Init and sanity checks */
895
896
if (validate_data_size(ctx_p, nbytes)) {
897
dev_dbg(dev, "Unsupported data size %d.\n", nbytes);
898
rc = -EINVAL;
899
goto exit_process;
900
}
901
if (nbytes == 0) {
902
/* No data to process is valid */
903
rc = 0;
904
goto exit_process;
905
}
906
907
if (ctx_p->fallback_on) {
908
struct skcipher_request *subreq = skcipher_request_ctx(req);
909
910
*subreq = *req;
911
skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm);
912
if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT)
913
return crypto_skcipher_encrypt(subreq);
914
else
915
return crypto_skcipher_decrypt(subreq);
916
}
917
918
/* The IV we are handed may be allocated from the stack so
919
* we must copy it to a DMAable buffer before use.
920
*/
921
req_ctx->iv = kmemdup(iv, ivsize, flags);
922
if (!req_ctx->iv) {
923
rc = -ENOMEM;
924
goto exit_process;
925
}
926
927
/* Setup request structure */
928
cc_req.user_cb = cc_cipher_complete;
929
cc_req.user_arg = req;
930
931
/* Setup CPP operation details */
932
if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) {
933
cc_req.cpp.is_cpp = true;
934
cc_req.cpp.alg = ctx_p->cpp.alg;
935
cc_req.cpp.slot = ctx_p->cpp.slot;
936
}
937
938
/* Setup request context */
939
req_ctx->gen_ctx.op_type = direction;
940
941
/* STAT_PHASE_1: Map buffers */
942
943
rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
944
req_ctx->iv, src, dst, flags);
945
if (rc) {
946
dev_err(dev, "map_request() failed\n");
947
goto exit_process;
948
}
949
950
/* STAT_PHASE_2: Create sequence */
951
952
/* Setup state (IV) */
953
cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
954
/* Setup MLLI line, if needed */
955
cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len);
956
/* Setup key */
957
cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len);
958
/* Setup state (IV and XEX key) */
959
cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
960
/* Data processing */
961
cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len);
962
/* Read next IV */
963
cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len);
964
965
/* STAT_PHASE_3: Lock HW and push sequence */
966
967
rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
968
&req->base);
969
if (rc != -EINPROGRESS && rc != -EBUSY) {
970
/* Failed to send the request or request completed
971
* synchronously
972
*/
973
cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
974
}
975
976
exit_process:
977
if (rc != -EINPROGRESS && rc != -EBUSY) {
978
kfree_sensitive(req_ctx->iv);
979
}
980
981
return rc;
982
}
983
984
static int cc_cipher_encrypt(struct skcipher_request *req)
985
{
986
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
987
988
memset(req_ctx, 0, sizeof(*req_ctx));
989
990
return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
991
}
992
993
static int cc_cipher_decrypt(struct skcipher_request *req)
994
{
995
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
996
997
memset(req_ctx, 0, sizeof(*req_ctx));
998
999
return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
1000
}
1001
1002
/* Block cipher alg */
1003
static const struct cc_alg_template skcipher_algs[] = {
1004
{
1005
.name = "xts(paes)",
1006
.driver_name = "xts-paes-ccree",
1007
.blocksize = 1,
1008
.template_skcipher = {
1009
.setkey = cc_cipher_sethkey,
1010
.encrypt = cc_cipher_encrypt,
1011
.decrypt = cc_cipher_decrypt,
1012
.min_keysize = CC_HW_KEY_SIZE,
1013
.max_keysize = CC_HW_KEY_SIZE,
1014
.ivsize = AES_BLOCK_SIZE,
1015
},
1016
.cipher_mode = DRV_CIPHER_XTS,
1017
.flow_mode = S_DIN_to_AES,
1018
.min_hw_rev = CC_HW_REV_630,
1019
.std_body = CC_STD_NIST,
1020
.sec_func = true,
1021
},
1022
{
1023
.name = "essiv(cbc(paes),sha256)",
1024
.driver_name = "essiv-paes-ccree",
1025
.blocksize = AES_BLOCK_SIZE,
1026
.template_skcipher = {
1027
.setkey = cc_cipher_sethkey,
1028
.encrypt = cc_cipher_encrypt,
1029
.decrypt = cc_cipher_decrypt,
1030
.min_keysize = CC_HW_KEY_SIZE,
1031
.max_keysize = CC_HW_KEY_SIZE,
1032
.ivsize = AES_BLOCK_SIZE,
1033
},
1034
.cipher_mode = DRV_CIPHER_ESSIV,
1035
.flow_mode = S_DIN_to_AES,
1036
.min_hw_rev = CC_HW_REV_712,
1037
.std_body = CC_STD_NIST,
1038
.sec_func = true,
1039
},
1040
{
1041
.name = "ecb(paes)",
1042
.driver_name = "ecb-paes-ccree",
1043
.blocksize = AES_BLOCK_SIZE,
1044
.template_skcipher = {
1045
.setkey = cc_cipher_sethkey,
1046
.encrypt = cc_cipher_encrypt,
1047
.decrypt = cc_cipher_decrypt,
1048
.min_keysize = CC_HW_KEY_SIZE,
1049
.max_keysize = CC_HW_KEY_SIZE,
1050
.ivsize = 0,
1051
},
1052
.cipher_mode = DRV_CIPHER_ECB,
1053
.flow_mode = S_DIN_to_AES,
1054
.min_hw_rev = CC_HW_REV_712,
1055
.std_body = CC_STD_NIST,
1056
.sec_func = true,
1057
},
1058
{
1059
.name = "cbc(paes)",
1060
.driver_name = "cbc-paes-ccree",
1061
.blocksize = AES_BLOCK_SIZE,
1062
.template_skcipher = {
1063
.setkey = cc_cipher_sethkey,
1064
.encrypt = cc_cipher_encrypt,
1065
.decrypt = cc_cipher_decrypt,
1066
.min_keysize = CC_HW_KEY_SIZE,
1067
.max_keysize = CC_HW_KEY_SIZE,
1068
.ivsize = AES_BLOCK_SIZE,
1069
},
1070
.cipher_mode = DRV_CIPHER_CBC,
1071
.flow_mode = S_DIN_to_AES,
1072
.min_hw_rev = CC_HW_REV_712,
1073
.std_body = CC_STD_NIST,
1074
.sec_func = true,
1075
},
1076
{
1077
.name = "cts(cbc(paes))",
1078
.driver_name = "cts-cbc-paes-ccree",
1079
.blocksize = AES_BLOCK_SIZE,
1080
.template_skcipher = {
1081
.setkey = cc_cipher_sethkey,
1082
.encrypt = cc_cipher_encrypt,
1083
.decrypt = cc_cipher_decrypt,
1084
.min_keysize = CC_HW_KEY_SIZE,
1085
.max_keysize = CC_HW_KEY_SIZE,
1086
.ivsize = AES_BLOCK_SIZE,
1087
},
1088
.cipher_mode = DRV_CIPHER_CBC_CTS,
1089
.flow_mode = S_DIN_to_AES,
1090
.min_hw_rev = CC_HW_REV_712,
1091
.std_body = CC_STD_NIST,
1092
.sec_func = true,
1093
},
1094
{
1095
.name = "ctr(paes)",
1096
.driver_name = "ctr-paes-ccree",
1097
.blocksize = 1,
1098
.template_skcipher = {
1099
.setkey = cc_cipher_sethkey,
1100
.encrypt = cc_cipher_encrypt,
1101
.decrypt = cc_cipher_decrypt,
1102
.min_keysize = CC_HW_KEY_SIZE,
1103
.max_keysize = CC_HW_KEY_SIZE,
1104
.ivsize = AES_BLOCK_SIZE,
1105
},
1106
.cipher_mode = DRV_CIPHER_CTR,
1107
.flow_mode = S_DIN_to_AES,
1108
.min_hw_rev = CC_HW_REV_712,
1109
.std_body = CC_STD_NIST,
1110
.sec_func = true,
1111
},
1112
{
1113
/* See https://www.mail-archive.com/[email protected]/msg40576.html
1114
* for the reason why this differs from the generic
1115
* implementation.
1116
*/
1117
.name = "xts(aes)",
1118
.driver_name = "xts-aes-ccree",
1119
.blocksize = 1,
1120
.template_skcipher = {
1121
.setkey = cc_cipher_setkey,
1122
.encrypt = cc_cipher_encrypt,
1123
.decrypt = cc_cipher_decrypt,
1124
.min_keysize = AES_MIN_KEY_SIZE * 2,
1125
.max_keysize = AES_MAX_KEY_SIZE * 2,
1126
.ivsize = AES_BLOCK_SIZE,
1127
},
1128
.cipher_mode = DRV_CIPHER_XTS,
1129
.flow_mode = S_DIN_to_AES,
1130
.min_hw_rev = CC_HW_REV_630,
1131
.std_body = CC_STD_NIST,
1132
},
1133
{
1134
.name = "essiv(cbc(aes),sha256)",
1135
.driver_name = "essiv-aes-ccree",
1136
.blocksize = AES_BLOCK_SIZE,
1137
.template_skcipher = {
1138
.setkey = cc_cipher_setkey,
1139
.encrypt = cc_cipher_encrypt,
1140
.decrypt = cc_cipher_decrypt,
1141
.min_keysize = AES_MIN_KEY_SIZE,
1142
.max_keysize = AES_MAX_KEY_SIZE,
1143
.ivsize = AES_BLOCK_SIZE,
1144
},
1145
.cipher_mode = DRV_CIPHER_ESSIV,
1146
.flow_mode = S_DIN_to_AES,
1147
.min_hw_rev = CC_HW_REV_712,
1148
.std_body = CC_STD_NIST,
1149
},
1150
{
1151
.name = "ecb(aes)",
1152
.driver_name = "ecb-aes-ccree",
1153
.blocksize = AES_BLOCK_SIZE,
1154
.template_skcipher = {
1155
.setkey = cc_cipher_setkey,
1156
.encrypt = cc_cipher_encrypt,
1157
.decrypt = cc_cipher_decrypt,
1158
.min_keysize = AES_MIN_KEY_SIZE,
1159
.max_keysize = AES_MAX_KEY_SIZE,
1160
.ivsize = 0,
1161
},
1162
.cipher_mode = DRV_CIPHER_ECB,
1163
.flow_mode = S_DIN_to_AES,
1164
.min_hw_rev = CC_HW_REV_630,
1165
.std_body = CC_STD_NIST,
1166
},
1167
{
1168
.name = "cbc(aes)",
1169
.driver_name = "cbc-aes-ccree",
1170
.blocksize = AES_BLOCK_SIZE,
1171
.template_skcipher = {
1172
.setkey = cc_cipher_setkey,
1173
.encrypt = cc_cipher_encrypt,
1174
.decrypt = cc_cipher_decrypt,
1175
.min_keysize = AES_MIN_KEY_SIZE,
1176
.max_keysize = AES_MAX_KEY_SIZE,
1177
.ivsize = AES_BLOCK_SIZE,
1178
},
1179
.cipher_mode = DRV_CIPHER_CBC,
1180
.flow_mode = S_DIN_to_AES,
1181
.min_hw_rev = CC_HW_REV_630,
1182
.std_body = CC_STD_NIST,
1183
},
1184
{
1185
.name = "cts(cbc(aes))",
1186
.driver_name = "cts-cbc-aes-ccree",
1187
.blocksize = AES_BLOCK_SIZE,
1188
.template_skcipher = {
1189
.setkey = cc_cipher_setkey,
1190
.encrypt = cc_cipher_encrypt,
1191
.decrypt = cc_cipher_decrypt,
1192
.min_keysize = AES_MIN_KEY_SIZE,
1193
.max_keysize = AES_MAX_KEY_SIZE,
1194
.ivsize = AES_BLOCK_SIZE,
1195
},
1196
.cipher_mode = DRV_CIPHER_CBC_CTS,
1197
.flow_mode = S_DIN_to_AES,
1198
.min_hw_rev = CC_HW_REV_630,
1199
.std_body = CC_STD_NIST,
1200
},
1201
{
1202
.name = "ctr(aes)",
1203
.driver_name = "ctr-aes-ccree",
1204
.blocksize = 1,
1205
.template_skcipher = {
1206
.setkey = cc_cipher_setkey,
1207
.encrypt = cc_cipher_encrypt,
1208
.decrypt = cc_cipher_decrypt,
1209
.min_keysize = AES_MIN_KEY_SIZE,
1210
.max_keysize = AES_MAX_KEY_SIZE,
1211
.ivsize = AES_BLOCK_SIZE,
1212
},
1213
.cipher_mode = DRV_CIPHER_CTR,
1214
.flow_mode = S_DIN_to_AES,
1215
.min_hw_rev = CC_HW_REV_630,
1216
.std_body = CC_STD_NIST,
1217
},
1218
{
1219
.name = "cbc(des3_ede)",
1220
.driver_name = "cbc-3des-ccree",
1221
.blocksize = DES3_EDE_BLOCK_SIZE,
1222
.template_skcipher = {
1223
.setkey = cc_cipher_setkey,
1224
.encrypt = cc_cipher_encrypt,
1225
.decrypt = cc_cipher_decrypt,
1226
.min_keysize = DES3_EDE_KEY_SIZE,
1227
.max_keysize = DES3_EDE_KEY_SIZE,
1228
.ivsize = DES3_EDE_BLOCK_SIZE,
1229
},
1230
.cipher_mode = DRV_CIPHER_CBC,
1231
.flow_mode = S_DIN_to_DES,
1232
.min_hw_rev = CC_HW_REV_630,
1233
.std_body = CC_STD_NIST,
1234
},
1235
{
1236
.name = "ecb(des3_ede)",
1237
.driver_name = "ecb-3des-ccree",
1238
.blocksize = DES3_EDE_BLOCK_SIZE,
1239
.template_skcipher = {
1240
.setkey = cc_cipher_setkey,
1241
.encrypt = cc_cipher_encrypt,
1242
.decrypt = cc_cipher_decrypt,
1243
.min_keysize = DES3_EDE_KEY_SIZE,
1244
.max_keysize = DES3_EDE_KEY_SIZE,
1245
.ivsize = 0,
1246
},
1247
.cipher_mode = DRV_CIPHER_ECB,
1248
.flow_mode = S_DIN_to_DES,
1249
.min_hw_rev = CC_HW_REV_630,
1250
.std_body = CC_STD_NIST,
1251
},
1252
{
1253
.name = "cbc(des)",
1254
.driver_name = "cbc-des-ccree",
1255
.blocksize = DES_BLOCK_SIZE,
1256
.template_skcipher = {
1257
.setkey = cc_cipher_setkey,
1258
.encrypt = cc_cipher_encrypt,
1259
.decrypt = cc_cipher_decrypt,
1260
.min_keysize = DES_KEY_SIZE,
1261
.max_keysize = DES_KEY_SIZE,
1262
.ivsize = DES_BLOCK_SIZE,
1263
},
1264
.cipher_mode = DRV_CIPHER_CBC,
1265
.flow_mode = S_DIN_to_DES,
1266
.min_hw_rev = CC_HW_REV_630,
1267
.std_body = CC_STD_NIST,
1268
},
1269
{
1270
.name = "ecb(des)",
1271
.driver_name = "ecb-des-ccree",
1272
.blocksize = DES_BLOCK_SIZE,
1273
.template_skcipher = {
1274
.setkey = cc_cipher_setkey,
1275
.encrypt = cc_cipher_encrypt,
1276
.decrypt = cc_cipher_decrypt,
1277
.min_keysize = DES_KEY_SIZE,
1278
.max_keysize = DES_KEY_SIZE,
1279
.ivsize = 0,
1280
},
1281
.cipher_mode = DRV_CIPHER_ECB,
1282
.flow_mode = S_DIN_to_DES,
1283
.min_hw_rev = CC_HW_REV_630,
1284
.std_body = CC_STD_NIST,
1285
},
1286
{
1287
.name = "cbc(sm4)",
1288
.driver_name = "cbc-sm4-ccree",
1289
.blocksize = SM4_BLOCK_SIZE,
1290
.template_skcipher = {
1291
.setkey = cc_cipher_setkey,
1292
.encrypt = cc_cipher_encrypt,
1293
.decrypt = cc_cipher_decrypt,
1294
.min_keysize = SM4_KEY_SIZE,
1295
.max_keysize = SM4_KEY_SIZE,
1296
.ivsize = SM4_BLOCK_SIZE,
1297
},
1298
.cipher_mode = DRV_CIPHER_CBC,
1299
.flow_mode = S_DIN_to_SM4,
1300
.min_hw_rev = CC_HW_REV_713,
1301
.std_body = CC_STD_OSCCA,
1302
},
1303
{
1304
.name = "ecb(sm4)",
1305
.driver_name = "ecb-sm4-ccree",
1306
.blocksize = SM4_BLOCK_SIZE,
1307
.template_skcipher = {
1308
.setkey = cc_cipher_setkey,
1309
.encrypt = cc_cipher_encrypt,
1310
.decrypt = cc_cipher_decrypt,
1311
.min_keysize = SM4_KEY_SIZE,
1312
.max_keysize = SM4_KEY_SIZE,
1313
.ivsize = 0,
1314
},
1315
.cipher_mode = DRV_CIPHER_ECB,
1316
.flow_mode = S_DIN_to_SM4,
1317
.min_hw_rev = CC_HW_REV_713,
1318
.std_body = CC_STD_OSCCA,
1319
},
1320
{
1321
.name = "ctr(sm4)",
1322
.driver_name = "ctr-sm4-ccree",
1323
.blocksize = 1,
1324
.template_skcipher = {
1325
.setkey = cc_cipher_setkey,
1326
.encrypt = cc_cipher_encrypt,
1327
.decrypt = cc_cipher_decrypt,
1328
.min_keysize = SM4_KEY_SIZE,
1329
.max_keysize = SM4_KEY_SIZE,
1330
.ivsize = SM4_BLOCK_SIZE,
1331
},
1332
.cipher_mode = DRV_CIPHER_CTR,
1333
.flow_mode = S_DIN_to_SM4,
1334
.min_hw_rev = CC_HW_REV_713,
1335
.std_body = CC_STD_OSCCA,
1336
},
1337
{
1338
.name = "cbc(psm4)",
1339
.driver_name = "cbc-psm4-ccree",
1340
.blocksize = SM4_BLOCK_SIZE,
1341
.template_skcipher = {
1342
.setkey = cc_cipher_sethkey,
1343
.encrypt = cc_cipher_encrypt,
1344
.decrypt = cc_cipher_decrypt,
1345
.min_keysize = CC_HW_KEY_SIZE,
1346
.max_keysize = CC_HW_KEY_SIZE,
1347
.ivsize = SM4_BLOCK_SIZE,
1348
},
1349
.cipher_mode = DRV_CIPHER_CBC,
1350
.flow_mode = S_DIN_to_SM4,
1351
.min_hw_rev = CC_HW_REV_713,
1352
.std_body = CC_STD_OSCCA,
1353
.sec_func = true,
1354
},
1355
{
1356
.name = "ctr(psm4)",
1357
.driver_name = "ctr-psm4-ccree",
1358
.blocksize = SM4_BLOCK_SIZE,
1359
.template_skcipher = {
1360
.setkey = cc_cipher_sethkey,
1361
.encrypt = cc_cipher_encrypt,
1362
.decrypt = cc_cipher_decrypt,
1363
.min_keysize = CC_HW_KEY_SIZE,
1364
.max_keysize = CC_HW_KEY_SIZE,
1365
.ivsize = SM4_BLOCK_SIZE,
1366
},
1367
.cipher_mode = DRV_CIPHER_CTR,
1368
.flow_mode = S_DIN_to_SM4,
1369
.min_hw_rev = CC_HW_REV_713,
1370
.std_body = CC_STD_OSCCA,
1371
.sec_func = true,
1372
},
1373
};
1374
1375
static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
1376
struct device *dev)
1377
{
1378
struct cc_crypto_alg *t_alg;
1379
struct skcipher_alg *alg;
1380
1381
t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
1382
if (!t_alg)
1383
return ERR_PTR(-ENOMEM);
1384
1385
alg = &t_alg->skcipher_alg;
1386
1387
memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
1388
1389
if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s",
1390
tmpl->name) >= CRYPTO_MAX_ALG_NAME)
1391
return ERR_PTR(-EINVAL);
1392
if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1393
tmpl->driver_name) >= CRYPTO_MAX_ALG_NAME)
1394
return ERR_PTR(-EINVAL);
1395
1396
alg->base.cra_module = THIS_MODULE;
1397
alg->base.cra_priority = CC_CRA_PRIO;
1398
alg->base.cra_blocksize = tmpl->blocksize;
1399
alg->base.cra_alignmask = 0;
1400
alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
1401
1402
alg->base.cra_init = cc_cipher_init;
1403
alg->base.cra_exit = cc_cipher_exit;
1404
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
1405
1406
t_alg->cipher_mode = tmpl->cipher_mode;
1407
t_alg->flow_mode = tmpl->flow_mode;
1408
1409
return t_alg;
1410
}
1411
1412
int cc_cipher_free(struct cc_drvdata *drvdata)
1413
{
1414
struct cc_crypto_alg *t_alg, *n;
1415
1416
/* Remove registered algs */
1417
list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) {
1418
crypto_unregister_skcipher(&t_alg->skcipher_alg);
1419
list_del(&t_alg->entry);
1420
}
1421
return 0;
1422
}
1423
1424
int cc_cipher_alloc(struct cc_drvdata *drvdata)
1425
{
1426
struct cc_crypto_alg *t_alg;
1427
struct device *dev = drvdata_to_dev(drvdata);
1428
int rc = -ENOMEM;
1429
int alg;
1430
1431
INIT_LIST_HEAD(&drvdata->alg_list);
1432
1433
/* Linux crypto */
1434
dev_dbg(dev, "Number of algorithms = %zu\n",
1435
ARRAY_SIZE(skcipher_algs));
1436
for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
1437
if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) ||
1438
!(drvdata->std_bodies & skcipher_algs[alg].std_body) ||
1439
(drvdata->sec_disabled && skcipher_algs[alg].sec_func))
1440
continue;
1441
1442
dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
1443
t_alg = cc_create_alg(&skcipher_algs[alg], dev);
1444
if (IS_ERR(t_alg)) {
1445
rc = PTR_ERR(t_alg);
1446
dev_err(dev, "%s alg allocation failed\n",
1447
skcipher_algs[alg].driver_name);
1448
goto fail0;
1449
}
1450
t_alg->drvdata = drvdata;
1451
1452
dev_dbg(dev, "registering %s\n",
1453
skcipher_algs[alg].driver_name);
1454
rc = crypto_register_skcipher(&t_alg->skcipher_alg);
1455
dev_dbg(dev, "%s alg registration rc = %x\n",
1456
t_alg->skcipher_alg.base.cra_driver_name, rc);
1457
if (rc) {
1458
dev_err(dev, "%s alg registration failed\n",
1459
t_alg->skcipher_alg.base.cra_driver_name);
1460
goto fail0;
1461
}
1462
1463
list_add_tail(&t_alg->entry, &drvdata->alg_list);
1464
dev_dbg(dev, "Registered %s\n",
1465
t_alg->skcipher_alg.base.cra_driver_name);
1466
}
1467
return 0;
1468
1469
fail0:
1470
cc_cipher_free(drvdata);
1471
return rc;
1472
}
1473
1474