Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/hifn_795x.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* 2007+ Copyright (c) Evgeniy Polyakov <[email protected]>
4
* All rights reserved.
5
*/
6
7
#include <linux/kernel.h>
8
#include <linux/module.h>
9
#include <linux/moduleparam.h>
10
#include <linux/mod_devicetable.h>
11
#include <linux/interrupt.h>
12
#include <linux/pci.h>
13
#include <linux/slab.h>
14
#include <linux/delay.h>
15
#include <linux/mm.h>
16
#include <linux/dma-mapping.h>
17
#include <linux/scatterlist.h>
18
#include <linux/highmem.h>
19
#include <linux/crypto.h>
20
#include <linux/hw_random.h>
21
#include <linux/ktime.h>
22
23
#include <crypto/algapi.h>
24
#include <crypto/internal/des.h>
25
#include <crypto/internal/skcipher.h>
26
27
static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28
module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29
MODULE_PARM_DESC(hifn_pll_ref,
30
"PLL reference clock (pci[freq] or ext[freq], default ext)");
31
32
static atomic_t hifn_dev_number;
33
34
#define ACRYPTO_OP_DECRYPT 0
35
#define ACRYPTO_OP_ENCRYPT 1
36
#define ACRYPTO_OP_HMAC 2
37
#define ACRYPTO_OP_RNG 3
38
39
#define ACRYPTO_MODE_ECB 0
40
#define ACRYPTO_MODE_CBC 1
41
#define ACRYPTO_MODE_CFB 2
42
#define ACRYPTO_MODE_OFB 3
43
44
#define ACRYPTO_TYPE_AES_128 0
45
#define ACRYPTO_TYPE_AES_192 1
46
#define ACRYPTO_TYPE_AES_256 2
47
#define ACRYPTO_TYPE_3DES 3
48
#define ACRYPTO_TYPE_DES 4
49
50
#define PCI_VENDOR_ID_HIFN 0x13A3
51
#define PCI_DEVICE_ID_HIFN_7955 0x0020
52
#define PCI_DEVICE_ID_HIFN_7956 0x001d
53
54
/* I/O region sizes */
55
56
#define HIFN_BAR0_SIZE 0x1000
57
#define HIFN_BAR1_SIZE 0x2000
58
#define HIFN_BAR2_SIZE 0x8000
59
60
/* DMA registres */
61
62
#define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
63
#define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
64
#define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
65
#define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
66
#define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
67
#define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
68
#define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
69
#define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
70
#define HIFN_CHIP_ID 0x98 /* Chip ID */
71
72
/*
73
* Processing Unit Registers (offset from BASEREG0)
74
*/
75
#define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
76
#define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
77
#define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
78
#define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
79
#define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
80
#define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
81
#define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
82
#define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
83
#define HIFN_0_SPACESIZE 0x20 /* Register space size */
84
85
/* Processing Unit Control Register (HIFN_0_PUCTRL) */
86
#define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
87
#define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
88
#define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
89
#define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
90
#define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
91
92
/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93
#define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
94
#define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
95
#define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
96
#define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
97
#define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
98
#define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
99
#define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
100
#define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
101
#define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
102
#define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
103
104
/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105
#define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
106
#define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
107
#define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
108
#define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
109
#define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
110
#define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
111
#define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
112
#define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
113
#define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
114
#define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
115
#define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
116
#define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
117
#define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
118
#define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
119
#define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
120
#define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
121
#define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
122
#define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
123
#define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
124
#define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
125
#define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
126
#define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
127
#define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
128
129
/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130
#define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
131
#define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
132
#define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
133
#define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
134
#define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
135
#define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
136
#define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
137
#define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
138
#define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
139
#define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
140
141
/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142
#define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
143
#define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
144
#define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
145
#define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
146
#define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
147
#define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
148
#define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
149
#define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
150
#define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
151
#define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
152
#define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
153
#define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
154
#define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
155
#define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
156
#define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
157
#define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
158
#define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
159
160
/* FIFO Status Register (HIFN_0_FIFOSTAT) */
161
#define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
162
#define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
163
164
/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165
#define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
166
167
/*
168
* DMA Interface Registers (offset from BASEREG1)
169
*/
170
#define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
171
#define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
172
#define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
173
#define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
174
#define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
175
#define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
176
#define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
177
#define HIFN_1_PLL 0x4c /* 795x: PLL config */
178
#define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
179
#define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
180
#define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
181
#define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
182
#define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
183
#define HIFN_1_REVID 0x98 /* Revision ID */
184
#define HIFN_1_UNLOCK_SECRET1 0xf4
185
#define HIFN_1_UNLOCK_SECRET2 0xfc
186
#define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
187
#define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
188
#define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
189
#define HIFN_1_PUB_OP 0x308 /* Public Operand */
190
#define HIFN_1_PUB_STATUS 0x30c /* Public Status */
191
#define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
192
#define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
193
#define HIFN_1_RNG_DATA 0x318 /* RNG data */
194
#define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
195
#define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
196
197
/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198
#define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
199
#define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
200
#define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
201
#define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
202
#define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
203
#define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
204
#define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
205
#define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
206
#define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
207
#define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
208
#define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
209
#define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
210
#define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
211
#define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
212
#define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
213
#define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
214
#define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
215
#define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
216
#define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
217
#define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
218
#define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
219
#define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
220
#define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
221
#define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
222
#define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
223
#define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
224
#define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
225
#define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
226
#define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
227
#define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
228
#define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
229
#define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
230
#define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
231
#define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
232
#define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
233
#define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
234
#define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
235
#define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
236
237
/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238
#define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
239
#define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
240
#define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
241
#define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
242
#define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
243
#define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
244
#define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
245
#define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
246
#define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
247
#define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
248
#define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
249
#define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
250
#define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
251
#define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
252
#define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
253
#define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
254
#define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
255
#define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
256
#define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
257
#define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
258
#define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
259
#define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
260
261
/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262
#define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
263
#define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
264
#define HIFN_DMACNFG_UNLOCK 0x00000800
265
#define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
266
#define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
267
#define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
268
#define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
269
#define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
270
271
/* PLL configuration register */
272
#define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
273
#define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
274
#define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
275
#define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
276
#define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
277
#define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
278
#define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
279
#define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
280
#define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
281
#define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
282
#define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
283
#define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
284
#define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
285
#define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
286
#define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
287
#define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
288
#define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
289
290
#define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
291
292
/* Public key reset register (HIFN_1_PUB_RESET) */
293
#define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
294
295
/* Public base address register (HIFN_1_PUB_BASE) */
296
#define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
297
298
/* Public operand length register (HIFN_1_PUB_OPLEN) */
299
#define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
300
#define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
301
#define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
302
#define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
303
#define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
304
#define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
305
306
/* Public operation register (HIFN_1_PUB_OP) */
307
#define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
308
#define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
309
#define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
310
#define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
311
#define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
312
#define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
313
#define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
314
#define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
315
#define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
316
#define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
317
#define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
318
#define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
319
#define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
320
#define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
321
#define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
322
#define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
323
#define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
324
#define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
325
#define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
326
#define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
327
328
/* Public status register (HIFN_1_PUB_STATUS) */
329
#define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
330
#define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
331
332
/* Public interrupt enable register (HIFN_1_PUB_IEN) */
333
#define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
334
335
/* Random number generator config register (HIFN_1_RNG_CONFIG) */
336
#define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
337
338
#define HIFN_NAMESIZE 32
339
#define HIFN_MAX_RESULT_ORDER 5
340
341
#define HIFN_D_CMD_RSIZE (24 * 1)
342
#define HIFN_D_SRC_RSIZE (80 * 1)
343
#define HIFN_D_DST_RSIZE (80 * 1)
344
#define HIFN_D_RES_RSIZE (24 * 1)
345
346
#define HIFN_D_DST_DALIGN 4
347
348
#define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
349
350
#define AES_MIN_KEY_SIZE 16
351
#define AES_MAX_KEY_SIZE 32
352
353
#define HIFN_DES_KEY_LENGTH 8
354
#define HIFN_3DES_KEY_LENGTH 24
355
#define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
356
#define HIFN_IV_LENGTH 8
357
#define HIFN_AES_IV_LENGTH 16
358
#define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
359
360
#define HIFN_MAC_KEY_LENGTH 64
361
#define HIFN_MD5_LENGTH 16
362
#define HIFN_SHA1_LENGTH 20
363
#define HIFN_MAC_TRUNC_LENGTH 12
364
365
#define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
366
#define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
367
#define HIFN_USED_RESULT 12
368
369
struct hifn_desc {
370
volatile __le32 l;
371
volatile __le32 p;
372
};
373
374
struct hifn_dma {
375
struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1];
376
struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1];
377
struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1];
378
struct hifn_desc resr[HIFN_D_RES_RSIZE + 1];
379
380
u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381
u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382
383
/*
384
* Our current positions for insertion and removal from the descriptor
385
* rings.
386
*/
387
volatile int cmdi, srci, dsti, resi;
388
volatile int cmdu, srcu, dstu, resu;
389
int cmdk, srck, dstk, resk;
390
};
391
392
#define HIFN_FLAG_CMD_BUSY (1 << 0)
393
#define HIFN_FLAG_SRC_BUSY (1 << 1)
394
#define HIFN_FLAG_DST_BUSY (1 << 2)
395
#define HIFN_FLAG_RES_BUSY (1 << 3)
396
#define HIFN_FLAG_OLD_KEY (1 << 4)
397
398
#define HIFN_DEFAULT_ACTIVE_NUM 5
399
400
struct hifn_device {
401
char name[HIFN_NAMESIZE];
402
403
int irq;
404
405
struct pci_dev *pdev;
406
void __iomem *bar[3];
407
408
void *desc_virt;
409
dma_addr_t desc_dma;
410
411
u32 dmareg;
412
413
void *sa[HIFN_D_RES_RSIZE];
414
415
spinlock_t lock;
416
417
u32 flags;
418
int active, started;
419
struct delayed_work work;
420
unsigned long reset;
421
unsigned long success;
422
unsigned long prev_success;
423
424
u8 snum;
425
426
struct tasklet_struct tasklet;
427
428
struct crypto_queue queue;
429
struct list_head alg_list;
430
431
unsigned int pk_clk_freq;
432
433
#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434
unsigned int rng_wait_time;
435
ktime_t rngtime;
436
struct hwrng rng;
437
#endif
438
};
439
440
#define HIFN_D_LENGTH 0x0000ffff
441
#define HIFN_D_NOINVALID 0x01000000
442
#define HIFN_D_MASKDONEIRQ 0x02000000
443
#define HIFN_D_DESTOVER 0x04000000
444
#define HIFN_D_OVER 0x08000000
445
#define HIFN_D_LAST 0x20000000
446
#define HIFN_D_JUMP 0x40000000
447
#define HIFN_D_VALID 0x80000000
448
449
struct hifn_base_command {
450
volatile __le16 masks;
451
volatile __le16 session_num;
452
volatile __le16 total_source_count;
453
volatile __le16 total_dest_count;
454
};
455
456
#define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
457
#define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
458
#define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
459
#define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
460
#define HIFN_BASE_CMD_DECODE 0x2000
461
#define HIFN_BASE_CMD_SRCLEN_M 0xc000
462
#define HIFN_BASE_CMD_SRCLEN_S 14
463
#define HIFN_BASE_CMD_DSTLEN_M 0x3000
464
#define HIFN_BASE_CMD_DSTLEN_S 12
465
#define HIFN_BASE_CMD_LENMASK_HI 0x30000
466
#define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
467
468
/*
469
* Structure to help build up the command data structure.
470
*/
471
struct hifn_crypt_command {
472
volatile __le16 masks;
473
volatile __le16 header_skip;
474
volatile __le16 source_count;
475
volatile __le16 reserved;
476
};
477
478
#define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
479
#define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
480
#define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
481
#define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
482
#define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
483
#define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
484
#define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
485
#define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
486
#define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
487
#define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
488
#define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
489
#define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
490
#define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
491
#define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
492
#define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
493
#define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
494
#define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
495
#define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
496
#define HIFN_CRYPT_CMD_SRCLEN_S 14
497
498
#define HIFN_MAC_CMD_ALG_MASK 0x0001
499
#define HIFN_MAC_CMD_ALG_SHA1 0x0000
500
#define HIFN_MAC_CMD_ALG_MD5 0x0001
501
#define HIFN_MAC_CMD_MODE_MASK 0x000c
502
#define HIFN_MAC_CMD_MODE_HMAC 0x0000
503
#define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
504
#define HIFN_MAC_CMD_MODE_HASH 0x0008
505
#define HIFN_MAC_CMD_MODE_FULL 0x0004
506
#define HIFN_MAC_CMD_TRUNC 0x0010
507
#define HIFN_MAC_CMD_RESULT 0x0020
508
#define HIFN_MAC_CMD_APPEND 0x0040
509
#define HIFN_MAC_CMD_SRCLEN_M 0xc000
510
#define HIFN_MAC_CMD_SRCLEN_S 14
511
512
/*
513
* MAC POS IPsec initiates authentication after encryption on encodes
514
* and before decryption on decodes.
515
*/
516
#define HIFN_MAC_CMD_POS_IPSEC 0x0200
517
#define HIFN_MAC_CMD_NEW_KEY 0x0800
518
519
#define HIFN_COMP_CMD_SRCLEN_M 0xc000
520
#define HIFN_COMP_CMD_SRCLEN_S 14
521
#define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
522
#define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
523
#define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
524
#define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
525
#define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
526
#define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
527
#define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
528
#define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
529
530
struct hifn_base_result {
531
volatile __le16 flags;
532
volatile __le16 session;
533
volatile __le16 src_cnt; /* 15:0 of source count */
534
volatile __le16 dst_cnt; /* 15:0 of dest count */
535
};
536
537
#define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
538
#define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
539
#define HIFN_BASE_RES_SRCLEN_S 14
540
#define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
541
#define HIFN_BASE_RES_DSTLEN_S 12
542
543
struct hifn_comp_result {
544
volatile __le16 flags;
545
volatile __le16 crc;
546
};
547
548
#define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
549
#define HIFN_COMP_RES_LCB_S 8
550
#define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
551
#define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
552
#define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
553
554
struct hifn_mac_result {
555
volatile __le16 flags;
556
volatile __le16 reserved;
557
/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
558
};
559
560
#define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
561
#define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
562
563
struct hifn_crypt_result {
564
volatile __le16 flags;
565
volatile __le16 reserved;
566
};
567
568
#define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
569
570
#ifndef HIFN_POLL_FREQUENCY
571
#define HIFN_POLL_FREQUENCY 0x1
572
#endif
573
574
#ifndef HIFN_POLL_SCALAR
575
#define HIFN_POLL_SCALAR 0x0
576
#endif
577
578
#define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
579
#define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
580
581
struct hifn_crypto_alg {
582
struct list_head entry;
583
struct skcipher_alg alg;
584
struct hifn_device *dev;
585
};
586
587
#define ASYNC_SCATTERLIST_CACHE 16
588
589
#define ASYNC_FLAGS_MISALIGNED (1 << 0)
590
591
struct hifn_cipher_walk {
592
struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
593
u32 flags;
594
int num;
595
};
596
597
struct hifn_context {
598
u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
599
struct hifn_device *dev;
600
unsigned int keysize;
601
};
602
603
struct hifn_request_context {
604
u8 *iv;
605
unsigned int ivsize;
606
u8 op, type, mode, unused;
607
struct hifn_cipher_walk walk;
608
};
609
610
#define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
611
612
static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
613
{
614
return readl(dev->bar[0] + reg);
615
}
616
617
static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
618
{
619
return readl(dev->bar[1] + reg);
620
}
621
622
static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
623
{
624
writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
625
}
626
627
static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
628
{
629
writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
630
}
631
632
static void hifn_wait_puc(struct hifn_device *dev)
633
{
634
int i;
635
u32 ret;
636
637
for (i = 10000; i > 0; --i) {
638
ret = hifn_read_0(dev, HIFN_0_PUCTRL);
639
if (!(ret & HIFN_PUCTRL_RESET))
640
break;
641
642
udelay(1);
643
}
644
645
if (!i)
646
dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
647
}
648
649
static void hifn_reset_puc(struct hifn_device *dev)
650
{
651
hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
652
hifn_wait_puc(dev);
653
}
654
655
static void hifn_stop_device(struct hifn_device *dev)
656
{
657
hifn_write_1(dev, HIFN_1_DMA_CSR,
658
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
659
HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
660
hifn_write_0(dev, HIFN_0_PUIER, 0);
661
hifn_write_1(dev, HIFN_1_DMA_IER, 0);
662
}
663
664
static void hifn_reset_dma(struct hifn_device *dev, int full)
665
{
666
hifn_stop_device(dev);
667
668
/*
669
* Setting poll frequency and others to 0.
670
*/
671
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
672
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
673
mdelay(1);
674
675
/*
676
* Reset DMA.
677
*/
678
if (full) {
679
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
680
mdelay(1);
681
} else {
682
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
683
HIFN_DMACNFG_MSTRESET);
684
hifn_reset_puc(dev);
685
}
686
687
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
688
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
689
690
hifn_reset_puc(dev);
691
}
692
693
static u32 hifn_next_signature(u32 a, u_int cnt)
694
{
695
int i;
696
u32 v;
697
698
for (i = 0; i < cnt; i++) {
699
/* get the parity */
700
v = a & 0x80080125;
701
v ^= v >> 16;
702
v ^= v >> 8;
703
v ^= v >> 4;
704
v ^= v >> 2;
705
v ^= v >> 1;
706
707
a = (v & 1) ^ (a << 1);
708
}
709
710
return a;
711
}
712
713
static struct pci2id {
714
u_short pci_vendor;
715
u_short pci_prod;
716
char card_id[13];
717
} pci2id[] = {
718
{
719
PCI_VENDOR_ID_HIFN,
720
PCI_DEVICE_ID_HIFN_7955,
721
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
722
0x00, 0x00, 0x00, 0x00, 0x00 }
723
},
724
{
725
PCI_VENDOR_ID_HIFN,
726
PCI_DEVICE_ID_HIFN_7956,
727
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
728
0x00, 0x00, 0x00, 0x00, 0x00 }
729
}
730
};
731
732
#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
733
static int hifn_rng_data_present(struct hwrng *rng, int wait)
734
{
735
struct hifn_device *dev = (struct hifn_device *)rng->priv;
736
s64 nsec;
737
738
nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
739
nsec -= dev->rng_wait_time;
740
if (nsec <= 0)
741
return 1;
742
if (!wait)
743
return 0;
744
ndelay(nsec);
745
return 1;
746
}
747
748
static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
749
{
750
struct hifn_device *dev = (struct hifn_device *)rng->priv;
751
752
*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
753
dev->rngtime = ktime_get();
754
return 4;
755
}
756
757
static int hifn_register_rng(struct hifn_device *dev)
758
{
759
/*
760
* We must wait at least 256 Pk_clk cycles between two reads of the rng.
761
*/
762
dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
763
dev->pk_clk_freq) * 256;
764
765
dev->rng.name = dev->name;
766
dev->rng.data_present = hifn_rng_data_present;
767
dev->rng.data_read = hifn_rng_data_read;
768
dev->rng.priv = (unsigned long)dev;
769
770
return hwrng_register(&dev->rng);
771
}
772
773
static void hifn_unregister_rng(struct hifn_device *dev)
774
{
775
hwrng_unregister(&dev->rng);
776
}
777
#else
778
#define hifn_register_rng(dev) 0
779
#define hifn_unregister_rng(dev)
780
#endif
781
782
static int hifn_init_pubrng(struct hifn_device *dev)
783
{
784
int i;
785
786
hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
787
HIFN_PUBRST_RESET);
788
789
for (i = 100; i > 0; --i) {
790
mdelay(1);
791
792
if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
793
break;
794
}
795
796
if (!i) {
797
dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
798
} else {
799
hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
800
dev->dmareg |= HIFN_DMAIER_PUBDONE;
801
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
802
803
dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
804
}
805
806
/* Enable RNG engine. */
807
808
hifn_write_1(dev, HIFN_1_RNG_CONFIG,
809
hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
810
dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
811
812
#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
813
/* First value must be discarded */
814
hifn_read_1(dev, HIFN_1_RNG_DATA);
815
dev->rngtime = ktime_get();
816
#endif
817
return 0;
818
}
819
820
static int hifn_enable_crypto(struct hifn_device *dev)
821
{
822
u32 dmacfg, addr;
823
char *offtbl = NULL;
824
int i;
825
826
for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
827
if (pci2id[i].pci_vendor == dev->pdev->vendor &&
828
pci2id[i].pci_prod == dev->pdev->device) {
829
offtbl = pci2id[i].card_id;
830
break;
831
}
832
}
833
834
if (!offtbl) {
835
dev_err(&dev->pdev->dev, "Unknown card!\n");
836
return -ENODEV;
837
}
838
839
dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
840
841
hifn_write_1(dev, HIFN_1_DMA_CNFG,
842
HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
843
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
844
mdelay(1);
845
addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
846
mdelay(1);
847
hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
848
mdelay(1);
849
850
for (i = 0; i < 12; ++i) {
851
addr = hifn_next_signature(addr, offtbl[i] + 0x101);
852
hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
853
854
mdelay(1);
855
}
856
hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
857
858
dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
859
860
return 0;
861
}
862
863
static void hifn_init_dma(struct hifn_device *dev)
864
{
865
struct hifn_dma *dma = dev->desc_virt;
866
u32 dptr = dev->desc_dma;
867
int i;
868
869
for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
870
dma->cmdr[i].p = __cpu_to_le32(dptr +
871
offsetof(struct hifn_dma, command_bufs[i][0]));
872
for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
873
dma->resr[i].p = __cpu_to_le32(dptr +
874
offsetof(struct hifn_dma, result_bufs[i][0]));
875
876
/* Setup LAST descriptors. */
877
dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
878
offsetof(struct hifn_dma, cmdr[0]));
879
dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
880
offsetof(struct hifn_dma, srcr[0]));
881
dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
882
offsetof(struct hifn_dma, dstr[0]));
883
dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
884
offsetof(struct hifn_dma, resr[0]));
885
886
dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
887
dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
888
dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
889
}
890
891
/*
892
* Initialize the PLL. We need to know the frequency of the reference clock
893
* to calculate the optimal multiplier. For PCI we assume 66MHz, since that
894
* allows us to operate without the risk of overclocking the chip. If it
895
* actually uses 33MHz, the chip will operate at half the speed, this can be
896
* overridden by specifying the frequency as module parameter (pci33).
897
*
898
* Unfortunately the PCI clock is not very suitable since the HIFN needs a
899
* stable clock and the PCI clock frequency may vary, so the default is the
900
* external clock. There is no way to find out its frequency, we default to
901
* 66MHz since according to Mike Ham of HiFn, almost every board in existence
902
* has an external crystal populated at 66MHz.
903
*/
904
static void hifn_init_pll(struct hifn_device *dev)
905
{
906
unsigned int freq, m;
907
u32 pllcfg;
908
909
pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
910
911
if (strncmp(hifn_pll_ref, "ext", 3) == 0)
912
pllcfg |= HIFN_PLL_REF_CLK_PLL;
913
else
914
pllcfg |= HIFN_PLL_REF_CLK_HBI;
915
916
if (hifn_pll_ref[3] != '\0')
917
freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
918
else {
919
freq = 66;
920
dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
921
freq, hifn_pll_ref);
922
}
923
924
m = HIFN_PLL_FCK_MAX / freq;
925
926
pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
927
if (m <= 8)
928
pllcfg |= HIFN_PLL_IS_1_8;
929
else
930
pllcfg |= HIFN_PLL_IS_9_12;
931
932
/* Select clock source and enable clock bypass */
933
hifn_write_1(dev, HIFN_1_PLL, pllcfg |
934
HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
935
936
/* Let the chip lock to the input clock */
937
mdelay(10);
938
939
/* Disable clock bypass */
940
hifn_write_1(dev, HIFN_1_PLL, pllcfg |
941
HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
942
943
/* Switch the engines to the PLL */
944
hifn_write_1(dev, HIFN_1_PLL, pllcfg |
945
HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
946
947
/*
948
* The Fpk_clk runs at half the total speed. Its frequency is needed to
949
* calculate the minimum time between two reads of the rng. Since 33MHz
950
* is actually 33.333... we overestimate the frequency here, resulting
951
* in slightly larger intervals.
952
*/
953
dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
954
}
955
956
static void hifn_init_registers(struct hifn_device *dev)
957
{
958
u32 dptr = dev->desc_dma;
959
960
/* Initialization magic... */
961
hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
962
hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
963
hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
964
965
/* write all 4 ring address registers */
966
hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
967
offsetof(struct hifn_dma, cmdr[0]));
968
hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
969
offsetof(struct hifn_dma, srcr[0]));
970
hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
971
offsetof(struct hifn_dma, dstr[0]));
972
hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
973
offsetof(struct hifn_dma, resr[0]));
974
975
mdelay(2);
976
#if 0
977
hifn_write_1(dev, HIFN_1_DMA_CSR,
978
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
979
HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
980
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
981
HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
982
HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
983
HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
984
HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
985
HIFN_DMACSR_S_WAIT |
986
HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
987
HIFN_DMACSR_C_WAIT |
988
HIFN_DMACSR_ENGINE |
989
HIFN_DMACSR_PUBDONE);
990
#else
991
hifn_write_1(dev, HIFN_1_DMA_CSR,
992
HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
993
HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
994
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
995
HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
996
HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
997
HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
998
HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
999
HIFN_DMACSR_S_WAIT |
1000
HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1001
HIFN_DMACSR_C_WAIT |
1002
HIFN_DMACSR_ENGINE |
1003
HIFN_DMACSR_PUBDONE);
1004
#endif
1005
hifn_read_1(dev, HIFN_1_DMA_CSR);
1006
1007
dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1008
HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1009
HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1010
HIFN_DMAIER_ENGINE;
1011
dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1012
1013
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1014
hifn_read_1(dev, HIFN_1_DMA_IER);
1015
#if 0
1016
hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1017
HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1018
HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1019
HIFN_PUCNFG_DRAM);
1020
#else
1021
hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1022
#endif
1023
hifn_init_pll(dev);
1024
1025
hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1026
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1027
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1028
((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1029
((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1030
}
1031
1032
static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1033
unsigned dlen, unsigned slen, u16 mask, u8 snum)
1034
{
1035
struct hifn_base_command *base_cmd;
1036
u8 *buf_pos = buf;
1037
1038
base_cmd = (struct hifn_base_command *)buf_pos;
1039
base_cmd->masks = __cpu_to_le16(mask);
1040
base_cmd->total_source_count =
1041
__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1042
base_cmd->total_dest_count =
1043
__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1044
1045
dlen >>= 16;
1046
slen >>= 16;
1047
base_cmd->session_num = __cpu_to_le16(snum |
1048
((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1049
((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1050
1051
return sizeof(struct hifn_base_command);
1052
}
1053
1054
static int hifn_setup_crypto_command(struct hifn_device *dev,
1055
u8 *buf, unsigned dlen, unsigned slen,
1056
u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1057
{
1058
struct hifn_dma *dma = dev->desc_virt;
1059
struct hifn_crypt_command *cry_cmd;
1060
u8 *buf_pos = buf;
1061
u16 cmd_len;
1062
1063
cry_cmd = (struct hifn_crypt_command *)buf_pos;
1064
1065
cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1066
dlen >>= 16;
1067
cry_cmd->masks = __cpu_to_le16(mode |
1068
((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1069
HIFN_CRYPT_CMD_SRCLEN_M));
1070
cry_cmd->header_skip = 0;
1071
cry_cmd->reserved = 0;
1072
1073
buf_pos += sizeof(struct hifn_crypt_command);
1074
1075
dma->cmdu++;
1076
if (dma->cmdu > 1) {
1077
dev->dmareg |= HIFN_DMAIER_C_WAIT;
1078
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1079
}
1080
1081
if (keylen) {
1082
memcpy(buf_pos, key, keylen);
1083
buf_pos += keylen;
1084
}
1085
if (ivsize) {
1086
memcpy(buf_pos, iv, ivsize);
1087
buf_pos += ivsize;
1088
}
1089
1090
cmd_len = buf_pos - buf;
1091
1092
return cmd_len;
1093
}
1094
1095
static int hifn_setup_cmd_desc(struct hifn_device *dev,
1096
struct hifn_context *ctx, struct hifn_request_context *rctx,
1097
void *priv, unsigned int nbytes)
1098
{
1099
struct hifn_dma *dma = dev->desc_virt;
1100
int cmd_len, sa_idx;
1101
u8 *buf, *buf_pos;
1102
u16 mask;
1103
1104
sa_idx = dma->cmdi;
1105
buf_pos = buf = dma->command_bufs[dma->cmdi];
1106
1107
mask = 0;
1108
switch (rctx->op) {
1109
case ACRYPTO_OP_DECRYPT:
1110
mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1111
break;
1112
case ACRYPTO_OP_ENCRYPT:
1113
mask = HIFN_BASE_CMD_CRYPT;
1114
break;
1115
case ACRYPTO_OP_HMAC:
1116
mask = HIFN_BASE_CMD_MAC;
1117
break;
1118
default:
1119
goto err_out;
1120
}
1121
1122
buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1123
nbytes, mask, dev->snum);
1124
1125
if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1126
u16 md = 0;
1127
1128
if (ctx->keysize)
1129
md |= HIFN_CRYPT_CMD_NEW_KEY;
1130
if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1131
md |= HIFN_CRYPT_CMD_NEW_IV;
1132
1133
switch (rctx->mode) {
1134
case ACRYPTO_MODE_ECB:
1135
md |= HIFN_CRYPT_CMD_MODE_ECB;
1136
break;
1137
case ACRYPTO_MODE_CBC:
1138
md |= HIFN_CRYPT_CMD_MODE_CBC;
1139
break;
1140
case ACRYPTO_MODE_CFB:
1141
md |= HIFN_CRYPT_CMD_MODE_CFB;
1142
break;
1143
case ACRYPTO_MODE_OFB:
1144
md |= HIFN_CRYPT_CMD_MODE_OFB;
1145
break;
1146
default:
1147
goto err_out;
1148
}
1149
1150
switch (rctx->type) {
1151
case ACRYPTO_TYPE_AES_128:
1152
if (ctx->keysize != 16)
1153
goto err_out;
1154
md |= HIFN_CRYPT_CMD_KSZ_128 |
1155
HIFN_CRYPT_CMD_ALG_AES;
1156
break;
1157
case ACRYPTO_TYPE_AES_192:
1158
if (ctx->keysize != 24)
1159
goto err_out;
1160
md |= HIFN_CRYPT_CMD_KSZ_192 |
1161
HIFN_CRYPT_CMD_ALG_AES;
1162
break;
1163
case ACRYPTO_TYPE_AES_256:
1164
if (ctx->keysize != 32)
1165
goto err_out;
1166
md |= HIFN_CRYPT_CMD_KSZ_256 |
1167
HIFN_CRYPT_CMD_ALG_AES;
1168
break;
1169
case ACRYPTO_TYPE_3DES:
1170
if (ctx->keysize != 24)
1171
goto err_out;
1172
md |= HIFN_CRYPT_CMD_ALG_3DES;
1173
break;
1174
case ACRYPTO_TYPE_DES:
1175
if (ctx->keysize != 8)
1176
goto err_out;
1177
md |= HIFN_CRYPT_CMD_ALG_DES;
1178
break;
1179
default:
1180
goto err_out;
1181
}
1182
1183
buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1184
nbytes, nbytes, ctx->key, ctx->keysize,
1185
rctx->iv, rctx->ivsize, md);
1186
}
1187
1188
dev->sa[sa_idx] = priv;
1189
dev->started++;
1190
1191
cmd_len = buf_pos - buf;
1192
dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1193
HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1194
1195
if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1196
dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1197
HIFN_D_VALID | HIFN_D_LAST |
1198
HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1199
dma->cmdi = 0;
1200
} else {
1201
dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1202
}
1203
1204
if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1205
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1206
dev->flags |= HIFN_FLAG_CMD_BUSY;
1207
}
1208
return 0;
1209
1210
err_out:
1211
return -EINVAL;
1212
}
1213
1214
static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1215
unsigned int offset, unsigned int size, int last)
1216
{
1217
struct hifn_dma *dma = dev->desc_virt;
1218
int idx;
1219
dma_addr_t addr;
1220
1221
addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1222
DMA_TO_DEVICE);
1223
1224
idx = dma->srci;
1225
1226
dma->srcr[idx].p = __cpu_to_le32(addr);
1227
dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1228
HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1229
1230
if (++idx == HIFN_D_SRC_RSIZE) {
1231
dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1232
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1233
(last ? HIFN_D_LAST : 0));
1234
idx = 0;
1235
}
1236
1237
dma->srci = idx;
1238
dma->srcu++;
1239
1240
if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1241
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1242
dev->flags |= HIFN_FLAG_SRC_BUSY;
1243
}
1244
1245
return size;
1246
}
1247
1248
static void hifn_setup_res_desc(struct hifn_device *dev)
1249
{
1250
struct hifn_dma *dma = dev->desc_virt;
1251
1252
dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1253
HIFN_D_VALID | HIFN_D_LAST);
1254
/*
1255
* dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1256
* HIFN_D_LAST);
1257
*/
1258
1259
if (++dma->resi == HIFN_D_RES_RSIZE) {
1260
dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1261
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1262
dma->resi = 0;
1263
}
1264
1265
dma->resu++;
1266
1267
if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1268
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1269
dev->flags |= HIFN_FLAG_RES_BUSY;
1270
}
1271
}
1272
1273
static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1274
unsigned offset, unsigned size, int last)
1275
{
1276
struct hifn_dma *dma = dev->desc_virt;
1277
int idx;
1278
dma_addr_t addr;
1279
1280
addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1281
DMA_FROM_DEVICE);
1282
1283
idx = dma->dsti;
1284
dma->dstr[idx].p = __cpu_to_le32(addr);
1285
dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1286
HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1287
1288
if (++idx == HIFN_D_DST_RSIZE) {
1289
dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1290
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1291
(last ? HIFN_D_LAST : 0));
1292
idx = 0;
1293
}
1294
dma->dsti = idx;
1295
dma->dstu++;
1296
1297
if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1298
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1299
dev->flags |= HIFN_FLAG_DST_BUSY;
1300
}
1301
}
1302
1303
static int hifn_setup_dma(struct hifn_device *dev,
1304
struct hifn_context *ctx, struct hifn_request_context *rctx,
1305
struct scatterlist *src, struct scatterlist *dst,
1306
unsigned int nbytes, void *priv)
1307
{
1308
struct scatterlist *t;
1309
struct page *spage, *dpage;
1310
unsigned int soff, doff;
1311
unsigned int n, len;
1312
1313
n = nbytes;
1314
while (n) {
1315
spage = sg_page(src);
1316
soff = src->offset;
1317
len = min(src->length, n);
1318
1319
hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1320
1321
src++;
1322
n -= len;
1323
}
1324
1325
t = &rctx->walk.cache[0];
1326
n = nbytes;
1327
while (n) {
1328
if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1329
BUG_ON(!sg_page(t));
1330
dpage = sg_page(t);
1331
doff = 0;
1332
len = t->length;
1333
} else {
1334
BUG_ON(!sg_page(dst));
1335
dpage = sg_page(dst);
1336
doff = dst->offset;
1337
len = dst->length;
1338
}
1339
len = min(len, n);
1340
1341
hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1342
1343
dst++;
1344
t++;
1345
n -= len;
1346
}
1347
1348
hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1349
hifn_setup_res_desc(dev);
1350
return 0;
1351
}
1352
1353
static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1354
int num, gfp_t gfp_flags)
1355
{
1356
int i;
1357
1358
num = min(ASYNC_SCATTERLIST_CACHE, num);
1359
sg_init_table(w->cache, num);
1360
1361
w->num = 0;
1362
for (i = 0; i < num; ++i) {
1363
struct page *page = alloc_page(gfp_flags);
1364
struct scatterlist *s;
1365
1366
if (!page)
1367
break;
1368
1369
s = &w->cache[i];
1370
1371
sg_set_page(s, page, PAGE_SIZE, 0);
1372
w->num++;
1373
}
1374
1375
return i;
1376
}
1377
1378
static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1379
{
1380
int i;
1381
1382
for (i = 0; i < w->num; ++i) {
1383
struct scatterlist *s = &w->cache[i];
1384
1385
__free_page(sg_page(s));
1386
1387
s->length = 0;
1388
}
1389
1390
w->num = 0;
1391
}
1392
1393
static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1394
unsigned int size, unsigned int *nbytesp)
1395
{
1396
unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1397
int idx = 0;
1398
1399
if (drest < size || size > nbytes)
1400
return -EINVAL;
1401
1402
while (size) {
1403
copy = min3(drest, size, dst->length);
1404
1405
size -= copy;
1406
drest -= copy;
1407
nbytes -= copy;
1408
1409
pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1410
__func__, copy, size, drest, nbytes);
1411
1412
dst++;
1413
idx++;
1414
}
1415
1416
*nbytesp = nbytes;
1417
*drestp = drest;
1418
1419
return idx;
1420
}
1421
1422
static int hifn_cipher_walk(struct skcipher_request *req,
1423
struct hifn_cipher_walk *w)
1424
{
1425
struct scatterlist *dst, *t;
1426
unsigned int nbytes = req->cryptlen, offset, copy, diff;
1427
int idx, tidx, err;
1428
1429
tidx = idx = 0;
1430
offset = 0;
1431
while (nbytes) {
1432
if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1433
return -EINVAL;
1434
1435
dst = &req->dst[idx];
1436
1437
pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1438
__func__, dst->length, dst->offset, offset, nbytes);
1439
1440
if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1441
!IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1442
offset) {
1443
unsigned slen = min(dst->length - offset, nbytes);
1444
unsigned dlen = PAGE_SIZE;
1445
1446
t = &w->cache[idx];
1447
1448
err = skcipher_add(&dlen, dst, slen, &nbytes);
1449
if (err < 0)
1450
return err;
1451
1452
idx += err;
1453
1454
copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1455
diff = slen & (HIFN_D_DST_DALIGN - 1);
1456
1457
if (dlen < nbytes) {
1458
/*
1459
* Destination page does not have enough space
1460
* to put there additional blocksized chunk,
1461
* so we mark that page as containing only
1462
* blocksize aligned chunks:
1463
* t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1464
* and increase number of bytes to be processed
1465
* in next chunk:
1466
* nbytes += diff;
1467
*/
1468
nbytes += diff;
1469
1470
/*
1471
* Temporary of course...
1472
* Kick author if you will catch this one.
1473
*/
1474
pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1475
__func__, dlen, nbytes, slen, offset);
1476
pr_err("%s: please contact author to fix this "
1477
"issue, generally you should not catch "
1478
"this path under any condition but who "
1479
"knows how did you use crypto code.\n"
1480
"Thank you.\n", __func__);
1481
BUG();
1482
} else {
1483
copy += diff + nbytes;
1484
1485
dst = &req->dst[idx];
1486
1487
err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1488
if (err < 0)
1489
return err;
1490
1491
idx += err;
1492
}
1493
1494
t->length = copy;
1495
t->offset = offset;
1496
} else {
1497
nbytes -= min(dst->length, nbytes);
1498
idx++;
1499
}
1500
1501
tidx++;
1502
}
1503
1504
return tidx;
1505
}
1506
1507
static int hifn_setup_session(struct skcipher_request *req)
1508
{
1509
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1510
struct hifn_request_context *rctx = skcipher_request_ctx(req);
1511
struct hifn_device *dev = ctx->dev;
1512
unsigned long dlen, flags;
1513
unsigned int nbytes = req->cryptlen, idx = 0;
1514
int err = -EINVAL, sg_num;
1515
struct scatterlist *dst;
1516
1517
if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1518
goto err_out_exit;
1519
1520
rctx->walk.flags = 0;
1521
1522
while (nbytes) {
1523
dst = &req->dst[idx];
1524
dlen = min(dst->length, nbytes);
1525
1526
if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1527
!IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1528
rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1529
1530
nbytes -= dlen;
1531
idx++;
1532
}
1533
1534
if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1535
err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1536
if (err < 0)
1537
return err;
1538
}
1539
1540
sg_num = hifn_cipher_walk(req, &rctx->walk);
1541
if (sg_num < 0) {
1542
err = sg_num;
1543
goto err_out_exit;
1544
}
1545
1546
spin_lock_irqsave(&dev->lock, flags);
1547
if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1548
err = -EAGAIN;
1549
goto err_out;
1550
}
1551
1552
err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1553
if (err)
1554
goto err_out;
1555
1556
dev->snum++;
1557
1558
dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1559
spin_unlock_irqrestore(&dev->lock, flags);
1560
1561
return 0;
1562
1563
err_out:
1564
spin_unlock_irqrestore(&dev->lock, flags);
1565
err_out_exit:
1566
if (err) {
1567
dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1568
"type: %u, err: %d.\n",
1569
rctx->iv, rctx->ivsize,
1570
ctx->key, ctx->keysize,
1571
rctx->mode, rctx->op, rctx->type, err);
1572
}
1573
1574
return err;
1575
}
1576
1577
static int hifn_start_device(struct hifn_device *dev)
1578
{
1579
int err;
1580
1581
dev->started = dev->active = 0;
1582
hifn_reset_dma(dev, 1);
1583
1584
err = hifn_enable_crypto(dev);
1585
if (err)
1586
return err;
1587
1588
hifn_reset_puc(dev);
1589
1590
hifn_init_dma(dev);
1591
1592
hifn_init_registers(dev);
1593
1594
hifn_init_pubrng(dev);
1595
1596
return 0;
1597
}
1598
1599
static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1600
struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1601
{
1602
unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1603
void *daddr;
1604
int idx = 0;
1605
1606
if (srest < size || size > nbytes)
1607
return -EINVAL;
1608
1609
while (size) {
1610
copy = min3(srest, dst->length, size);
1611
1612
daddr = kmap_atomic(sg_page(dst));
1613
memcpy(daddr + dst->offset + offset, saddr, copy);
1614
kunmap_atomic(daddr);
1615
1616
nbytes -= copy;
1617
size -= copy;
1618
srest -= copy;
1619
saddr += copy;
1620
offset = 0;
1621
1622
pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1623
__func__, copy, size, srest, nbytes);
1624
1625
dst++;
1626
idx++;
1627
}
1628
1629
*nbytesp = nbytes;
1630
*srestp = srest;
1631
1632
return idx;
1633
}
1634
1635
static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1636
{
1637
unsigned long flags;
1638
1639
spin_lock_irqsave(&dev->lock, flags);
1640
dev->sa[i] = NULL;
1641
dev->started--;
1642
if (dev->started < 0)
1643
dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1644
dev->started);
1645
spin_unlock_irqrestore(&dev->lock, flags);
1646
BUG_ON(dev->started < 0);
1647
}
1648
1649
static void hifn_process_ready(struct skcipher_request *req, int error)
1650
{
1651
struct hifn_request_context *rctx = skcipher_request_ctx(req);
1652
1653
if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1654
unsigned int nbytes = req->cryptlen;
1655
int idx = 0, err;
1656
struct scatterlist *dst, *t;
1657
void *saddr;
1658
1659
while (nbytes) {
1660
t = &rctx->walk.cache[idx];
1661
dst = &req->dst[idx];
1662
1663
pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1664
"sg_page(dst): %p, dst->length: %u, "
1665
"nbytes: %u.\n",
1666
__func__, sg_page(t), t->length,
1667
sg_page(dst), dst->length, nbytes);
1668
1669
if (!t->length) {
1670
nbytes -= min(dst->length, nbytes);
1671
idx++;
1672
continue;
1673
}
1674
1675
saddr = kmap_atomic(sg_page(t));
1676
1677
err = skcipher_get(saddr, &t->length, t->offset,
1678
dst, nbytes, &nbytes);
1679
if (err < 0) {
1680
kunmap_atomic(saddr);
1681
break;
1682
}
1683
1684
idx += err;
1685
kunmap_atomic(saddr);
1686
}
1687
1688
hifn_cipher_walk_exit(&rctx->walk);
1689
}
1690
1691
skcipher_request_complete(req, error);
1692
}
1693
1694
static void hifn_clear_rings(struct hifn_device *dev, int error)
1695
{
1696
struct hifn_dma *dma = dev->desc_virt;
1697
int i, u;
1698
1699
dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1700
"k: %d.%d.%d.%d.\n",
1701
dma->cmdi, dma->srci, dma->dsti, dma->resi,
1702
dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1703
dma->cmdk, dma->srck, dma->dstk, dma->resk);
1704
1705
i = dma->resk; u = dma->resu;
1706
while (u != 0) {
1707
if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1708
break;
1709
1710
if (dev->sa[i]) {
1711
dev->success++;
1712
dev->reset = 0;
1713
hifn_process_ready(dev->sa[i], error);
1714
hifn_complete_sa(dev, i);
1715
}
1716
1717
if (++i == HIFN_D_RES_RSIZE)
1718
i = 0;
1719
u--;
1720
}
1721
dma->resk = i; dma->resu = u;
1722
1723
i = dma->srck; u = dma->srcu;
1724
while (u != 0) {
1725
if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1726
break;
1727
if (++i == HIFN_D_SRC_RSIZE)
1728
i = 0;
1729
u--;
1730
}
1731
dma->srck = i; dma->srcu = u;
1732
1733
i = dma->cmdk; u = dma->cmdu;
1734
while (u != 0) {
1735
if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1736
break;
1737
if (++i == HIFN_D_CMD_RSIZE)
1738
i = 0;
1739
u--;
1740
}
1741
dma->cmdk = i; dma->cmdu = u;
1742
1743
i = dma->dstk; u = dma->dstu;
1744
while (u != 0) {
1745
if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1746
break;
1747
if (++i == HIFN_D_DST_RSIZE)
1748
i = 0;
1749
u--;
1750
}
1751
dma->dstk = i; dma->dstu = u;
1752
1753
dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1754
"k: %d.%d.%d.%d.\n",
1755
dma->cmdi, dma->srci, dma->dsti, dma->resi,
1756
dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1757
dma->cmdk, dma->srck, dma->dstk, dma->resk);
1758
}
1759
1760
static void hifn_work(struct work_struct *work)
1761
{
1762
struct delayed_work *dw = to_delayed_work(work);
1763
struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1764
unsigned long flags;
1765
int reset = 0;
1766
u32 r = 0;
1767
1768
spin_lock_irqsave(&dev->lock, flags);
1769
if (dev->active == 0) {
1770
struct hifn_dma *dma = dev->desc_virt;
1771
1772
if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1773
dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1774
r |= HIFN_DMACSR_C_CTRL_DIS;
1775
}
1776
if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1777
dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1778
r |= HIFN_DMACSR_S_CTRL_DIS;
1779
}
1780
if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1781
dev->flags &= ~HIFN_FLAG_DST_BUSY;
1782
r |= HIFN_DMACSR_D_CTRL_DIS;
1783
}
1784
if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1785
dev->flags &= ~HIFN_FLAG_RES_BUSY;
1786
r |= HIFN_DMACSR_R_CTRL_DIS;
1787
}
1788
if (r)
1789
hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1790
} else
1791
dev->active--;
1792
1793
if ((dev->prev_success == dev->success) && dev->started)
1794
reset = 1;
1795
dev->prev_success = dev->success;
1796
spin_unlock_irqrestore(&dev->lock, flags);
1797
1798
if (reset) {
1799
if (++dev->reset >= 5) {
1800
int i;
1801
struct hifn_dma *dma = dev->desc_virt;
1802
1803
dev_info(&dev->pdev->dev,
1804
"r: %08x, active: %d, started: %d, "
1805
"success: %lu: qlen: %u/%u, reset: %d.\n",
1806
r, dev->active, dev->started,
1807
dev->success, dev->queue.qlen, dev->queue.max_qlen,
1808
reset);
1809
1810
dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1811
for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1812
pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1813
if (dev->sa[i]) {
1814
hifn_process_ready(dev->sa[i], -ENODEV);
1815
hifn_complete_sa(dev, i);
1816
}
1817
}
1818
pr_info("\n");
1819
1820
hifn_reset_dma(dev, 1);
1821
hifn_stop_device(dev);
1822
hifn_start_device(dev);
1823
dev->reset = 0;
1824
}
1825
1826
tasklet_schedule(&dev->tasklet);
1827
}
1828
1829
schedule_delayed_work(&dev->work, HZ);
1830
}
1831
1832
static irqreturn_t hifn_interrupt(int irq, void *data)
1833
{
1834
struct hifn_device *dev = data;
1835
struct hifn_dma *dma = dev->desc_virt;
1836
u32 dmacsr, restart;
1837
1838
dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1839
1840
dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1841
"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1842
dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1843
dma->cmdi, dma->srci, dma->dsti, dma->resi,
1844
dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1845
1846
if ((dmacsr & dev->dmareg) == 0)
1847
return IRQ_NONE;
1848
1849
hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1850
1851
if (dmacsr & HIFN_DMACSR_ENGINE)
1852
hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1853
if (dmacsr & HIFN_DMACSR_PUBDONE)
1854
hifn_write_1(dev, HIFN_1_PUB_STATUS,
1855
hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1856
1857
restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1858
if (restart) {
1859
u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1860
1861
dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1862
!!(dmacsr & HIFN_DMACSR_R_OVER),
1863
!!(dmacsr & HIFN_DMACSR_D_OVER),
1864
puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1865
if (!!(puisr & HIFN_PUISR_DSTOVER))
1866
hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1867
hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1868
HIFN_DMACSR_D_OVER));
1869
}
1870
1871
restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1872
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1873
if (restart) {
1874
dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1875
!!(dmacsr & HIFN_DMACSR_C_ABORT),
1876
!!(dmacsr & HIFN_DMACSR_S_ABORT),
1877
!!(dmacsr & HIFN_DMACSR_D_ABORT),
1878
!!(dmacsr & HIFN_DMACSR_R_ABORT));
1879
hifn_reset_dma(dev, 1);
1880
hifn_init_dma(dev);
1881
hifn_init_registers(dev);
1882
}
1883
1884
if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1885
dev_dbg(&dev->pdev->dev, "wait on command.\n");
1886
dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1887
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1888
}
1889
1890
tasklet_schedule(&dev->tasklet);
1891
1892
return IRQ_HANDLED;
1893
}
1894
1895
static void hifn_flush(struct hifn_device *dev)
1896
{
1897
unsigned long flags;
1898
struct crypto_async_request *async_req;
1899
struct skcipher_request *req;
1900
struct hifn_dma *dma = dev->desc_virt;
1901
int i;
1902
1903
for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1904
struct hifn_desc *d = &dma->resr[i];
1905
1906
if (dev->sa[i]) {
1907
hifn_process_ready(dev->sa[i],
1908
(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1909
hifn_complete_sa(dev, i);
1910
}
1911
}
1912
1913
spin_lock_irqsave(&dev->lock, flags);
1914
while ((async_req = crypto_dequeue_request(&dev->queue))) {
1915
req = skcipher_request_cast(async_req);
1916
spin_unlock_irqrestore(&dev->lock, flags);
1917
1918
hifn_process_ready(req, -ENODEV);
1919
1920
spin_lock_irqsave(&dev->lock, flags);
1921
}
1922
spin_unlock_irqrestore(&dev->lock, flags);
1923
}
1924
1925
static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1926
unsigned int len)
1927
{
1928
struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1929
struct hifn_device *dev = ctx->dev;
1930
int err;
1931
1932
err = verify_skcipher_des_key(cipher, key);
1933
if (err)
1934
return err;
1935
1936
dev->flags &= ~HIFN_FLAG_OLD_KEY;
1937
1938
memcpy(ctx->key, key, len);
1939
ctx->keysize = len;
1940
1941
return 0;
1942
}
1943
1944
static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1945
unsigned int len)
1946
{
1947
struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1948
struct hifn_device *dev = ctx->dev;
1949
int err;
1950
1951
err = verify_skcipher_des3_key(cipher, key);
1952
if (err)
1953
return err;
1954
1955
dev->flags &= ~HIFN_FLAG_OLD_KEY;
1956
1957
memcpy(ctx->key, key, len);
1958
ctx->keysize = len;
1959
1960
return 0;
1961
}
1962
1963
static int hifn_handle_req(struct skcipher_request *req)
1964
{
1965
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1966
struct hifn_device *dev = ctx->dev;
1967
int err = -EAGAIN;
1968
1969
if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1970
err = hifn_setup_session(req);
1971
1972
if (err == -EAGAIN) {
1973
unsigned long flags;
1974
1975
spin_lock_irqsave(&dev->lock, flags);
1976
err = crypto_enqueue_request(&dev->queue, &req->base);
1977
spin_unlock_irqrestore(&dev->lock, flags);
1978
}
1979
1980
return err;
1981
}
1982
1983
static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
1984
u8 type, u8 mode)
1985
{
1986
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1987
struct hifn_request_context *rctx = skcipher_request_ctx(req);
1988
unsigned ivsize;
1989
1990
ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1991
1992
if (req->iv && mode != ACRYPTO_MODE_ECB) {
1993
if (type == ACRYPTO_TYPE_AES_128)
1994
ivsize = HIFN_AES_IV_LENGTH;
1995
else if (type == ACRYPTO_TYPE_DES)
1996
ivsize = HIFN_DES_KEY_LENGTH;
1997
else if (type == ACRYPTO_TYPE_3DES)
1998
ivsize = HIFN_3DES_KEY_LENGTH;
1999
}
2000
2001
if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2002
if (ctx->keysize == 24)
2003
type = ACRYPTO_TYPE_AES_192;
2004
else if (ctx->keysize == 32)
2005
type = ACRYPTO_TYPE_AES_256;
2006
}
2007
2008
rctx->op = op;
2009
rctx->mode = mode;
2010
rctx->type = type;
2011
rctx->iv = req->iv;
2012
rctx->ivsize = ivsize;
2013
2014
/*
2015
* HEAVY TODO: needs to kick Herbert XU to write documentation.
2016
* HEAVY TODO: needs to kick Herbert XU to write documentation.
2017
* HEAVY TODO: needs to kick Herbert XU to write documentation.
2018
*/
2019
2020
return hifn_handle_req(req);
2021
}
2022
2023
static int hifn_process_queue(struct hifn_device *dev)
2024
{
2025
struct crypto_async_request *async_req, *backlog;
2026
struct skcipher_request *req;
2027
unsigned long flags;
2028
int err = 0;
2029
2030
while (dev->started < HIFN_QUEUE_LENGTH) {
2031
spin_lock_irqsave(&dev->lock, flags);
2032
backlog = crypto_get_backlog(&dev->queue);
2033
async_req = crypto_dequeue_request(&dev->queue);
2034
spin_unlock_irqrestore(&dev->lock, flags);
2035
2036
if (!async_req)
2037
break;
2038
2039
if (backlog)
2040
crypto_request_complete(backlog, -EINPROGRESS);
2041
2042
req = skcipher_request_cast(async_req);
2043
2044
err = hifn_handle_req(req);
2045
if (err)
2046
break;
2047
}
2048
2049
return err;
2050
}
2051
2052
static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2053
u8 type, u8 mode)
2054
{
2055
int err;
2056
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2057
struct hifn_device *dev = ctx->dev;
2058
2059
err = hifn_setup_crypto_req(req, op, type, mode);
2060
if (err)
2061
return err;
2062
2063
if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2064
hifn_process_queue(dev);
2065
2066
return -EINPROGRESS;
2067
}
2068
2069
/*
2070
* AES ecryption functions.
2071
*/
2072
static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2073
{
2074
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2075
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2076
}
2077
static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2078
{
2079
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2080
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2081
}
2082
2083
/*
2084
* AES decryption functions.
2085
*/
2086
static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2087
{
2088
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2089
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2090
}
2091
static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2092
{
2093
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2094
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2095
}
2096
2097
/*
2098
* DES ecryption functions.
2099
*/
2100
static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2101
{
2102
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2103
ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2104
}
2105
static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2106
{
2107
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2108
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2109
}
2110
2111
/*
2112
* DES decryption functions.
2113
*/
2114
static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2115
{
2116
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2117
ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2118
}
2119
static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2120
{
2121
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2122
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2123
}
2124
2125
/*
2126
* 3DES ecryption functions.
2127
*/
2128
static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2129
{
2130
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2131
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2132
}
2133
static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2134
{
2135
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2136
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2137
}
2138
2139
/* 3DES decryption functions. */
2140
static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2141
{
2142
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2143
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2144
}
2145
static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2146
{
2147
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2148
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2149
}
2150
2151
struct hifn_alg_template {
2152
char name[CRYPTO_MAX_ALG_NAME];
2153
char drv_name[CRYPTO_MAX_ALG_NAME];
2154
unsigned int bsize;
2155
struct skcipher_alg skcipher;
2156
};
2157
2158
static const struct hifn_alg_template hifn_alg_templates[] = {
2159
/*
2160
* 3DES ECB and CBC modes.
2161
*/
2162
{
2163
.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2164
.skcipher = {
2165
.ivsize = HIFN_IV_LENGTH,
2166
.min_keysize = HIFN_3DES_KEY_LENGTH,
2167
.max_keysize = HIFN_3DES_KEY_LENGTH,
2168
.setkey = hifn_des3_setkey,
2169
.encrypt = hifn_encrypt_3des_cbc,
2170
.decrypt = hifn_decrypt_3des_cbc,
2171
},
2172
},
2173
{
2174
.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2175
.skcipher = {
2176
.min_keysize = HIFN_3DES_KEY_LENGTH,
2177
.max_keysize = HIFN_3DES_KEY_LENGTH,
2178
.setkey = hifn_des3_setkey,
2179
.encrypt = hifn_encrypt_3des_ecb,
2180
.decrypt = hifn_decrypt_3des_ecb,
2181
},
2182
},
2183
2184
/*
2185
* DES ECB and CBC modes.
2186
*/
2187
{
2188
.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2189
.skcipher = {
2190
.ivsize = HIFN_IV_LENGTH,
2191
.min_keysize = HIFN_DES_KEY_LENGTH,
2192
.max_keysize = HIFN_DES_KEY_LENGTH,
2193
.setkey = hifn_setkey,
2194
.encrypt = hifn_encrypt_des_cbc,
2195
.decrypt = hifn_decrypt_des_cbc,
2196
},
2197
},
2198
{
2199
.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2200
.skcipher = {
2201
.min_keysize = HIFN_DES_KEY_LENGTH,
2202
.max_keysize = HIFN_DES_KEY_LENGTH,
2203
.setkey = hifn_setkey,
2204
.encrypt = hifn_encrypt_des_ecb,
2205
.decrypt = hifn_decrypt_des_ecb,
2206
},
2207
},
2208
2209
/*
2210
* AES ECB and CBC modes.
2211
*/
2212
{
2213
.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2214
.skcipher = {
2215
.min_keysize = AES_MIN_KEY_SIZE,
2216
.max_keysize = AES_MAX_KEY_SIZE,
2217
.setkey = hifn_setkey,
2218
.encrypt = hifn_encrypt_aes_ecb,
2219
.decrypt = hifn_decrypt_aes_ecb,
2220
},
2221
},
2222
{
2223
.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2224
.skcipher = {
2225
.ivsize = HIFN_AES_IV_LENGTH,
2226
.min_keysize = AES_MIN_KEY_SIZE,
2227
.max_keysize = AES_MAX_KEY_SIZE,
2228
.setkey = hifn_setkey,
2229
.encrypt = hifn_encrypt_aes_cbc,
2230
.decrypt = hifn_decrypt_aes_cbc,
2231
},
2232
},
2233
};
2234
2235
static int hifn_init_tfm(struct crypto_skcipher *tfm)
2236
{
2237
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2238
struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2239
struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2240
2241
ctx->dev = ha->dev;
2242
crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2243
2244
return 0;
2245
}
2246
2247
static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2248
{
2249
struct hifn_crypto_alg *alg;
2250
int err;
2251
2252
alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2253
if (!alg)
2254
return -ENOMEM;
2255
2256
alg->alg = t->skcipher;
2257
alg->alg.init = hifn_init_tfm;
2258
2259
err = -EINVAL;
2260
if (snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
2261
"%s", t->name) >= CRYPTO_MAX_ALG_NAME)
2262
goto out_free_alg;
2263
if (snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
2264
"%s-%s", t->drv_name, dev->name) >= CRYPTO_MAX_ALG_NAME)
2265
goto out_free_alg;
2266
2267
alg->alg.base.cra_priority = 300;
2268
alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2269
alg->alg.base.cra_blocksize = t->bsize;
2270
alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2271
alg->alg.base.cra_alignmask = 0;
2272
alg->alg.base.cra_module = THIS_MODULE;
2273
2274
alg->dev = dev;
2275
2276
list_add_tail(&alg->entry, &dev->alg_list);
2277
2278
err = crypto_register_skcipher(&alg->alg);
2279
if (err) {
2280
list_del(&alg->entry);
2281
out_free_alg:
2282
kfree(alg);
2283
}
2284
2285
return err;
2286
}
2287
2288
static void hifn_unregister_alg(struct hifn_device *dev)
2289
{
2290
struct hifn_crypto_alg *a, *n;
2291
2292
list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2293
list_del(&a->entry);
2294
crypto_unregister_skcipher(&a->alg);
2295
kfree(a);
2296
}
2297
}
2298
2299
static int hifn_register_alg(struct hifn_device *dev)
2300
{
2301
int i, err;
2302
2303
for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2304
err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2305
if (err)
2306
goto err_out_exit;
2307
}
2308
2309
return 0;
2310
2311
err_out_exit:
2312
hifn_unregister_alg(dev);
2313
return err;
2314
}
2315
2316
static void hifn_tasklet_callback(unsigned long data)
2317
{
2318
struct hifn_device *dev = (struct hifn_device *)data;
2319
2320
/*
2321
* This is ok to call this without lock being held,
2322
* althogh it modifies some parameters used in parallel,
2323
* (like dev->success), but they are used in process
2324
* context or update is atomic (like setting dev->sa[i] to NULL).
2325
*/
2326
hifn_clear_rings(dev, 0);
2327
2328
if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2329
hifn_process_queue(dev);
2330
}
2331
2332
static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2333
{
2334
int err, i;
2335
struct hifn_device *dev;
2336
char name[8];
2337
2338
err = pci_enable_device(pdev);
2339
if (err)
2340
return err;
2341
pci_set_master(pdev);
2342
2343
err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2344
if (err)
2345
goto err_out_disable_pci_device;
2346
2347
snprintf(name, sizeof(name), "hifn%d",
2348
atomic_inc_return(&hifn_dev_number) - 1);
2349
2350
err = pci_request_regions(pdev, name);
2351
if (err)
2352
goto err_out_disable_pci_device;
2353
2354
if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2355
pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2356
pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2357
dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2358
err = -ENODEV;
2359
goto err_out_free_regions;
2360
}
2361
2362
dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2363
GFP_KERNEL);
2364
if (!dev) {
2365
err = -ENOMEM;
2366
goto err_out_free_regions;
2367
}
2368
2369
INIT_LIST_HEAD(&dev->alg_list);
2370
2371
snprintf(dev->name, sizeof(dev->name), "%s", name);
2372
spin_lock_init(&dev->lock);
2373
2374
for (i = 0; i < 3; ++i) {
2375
unsigned long addr, size;
2376
2377
addr = pci_resource_start(pdev, i);
2378
size = pci_resource_len(pdev, i);
2379
2380
dev->bar[i] = ioremap(addr, size);
2381
if (!dev->bar[i]) {
2382
err = -ENOMEM;
2383
goto err_out_unmap_bars;
2384
}
2385
}
2386
2387
dev->desc_virt = dma_alloc_coherent(&pdev->dev,
2388
sizeof(struct hifn_dma),
2389
&dev->desc_dma, GFP_KERNEL);
2390
if (!dev->desc_virt) {
2391
dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2392
err = -ENOMEM;
2393
goto err_out_unmap_bars;
2394
}
2395
2396
dev->pdev = pdev;
2397
dev->irq = pdev->irq;
2398
2399
for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2400
dev->sa[i] = NULL;
2401
2402
pci_set_drvdata(pdev, dev);
2403
2404
tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2405
2406
crypto_init_queue(&dev->queue, 1);
2407
2408
err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2409
if (err) {
2410
dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2411
dev->irq, err);
2412
dev->irq = 0;
2413
goto err_out_free_desc;
2414
}
2415
2416
err = hifn_start_device(dev);
2417
if (err)
2418
goto err_out_free_irq;
2419
2420
err = hifn_register_rng(dev);
2421
if (err)
2422
goto err_out_stop_device;
2423
2424
err = hifn_register_alg(dev);
2425
if (err)
2426
goto err_out_unregister_rng;
2427
2428
INIT_DELAYED_WORK(&dev->work, hifn_work);
2429
schedule_delayed_work(&dev->work, HZ);
2430
2431
dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2432
"successfully registered as %s.\n",
2433
pci_name(pdev), dev->name);
2434
2435
return 0;
2436
2437
err_out_unregister_rng:
2438
hifn_unregister_rng(dev);
2439
err_out_stop_device:
2440
hifn_reset_dma(dev, 1);
2441
hifn_stop_device(dev);
2442
err_out_free_irq:
2443
free_irq(dev->irq, dev);
2444
tasklet_kill(&dev->tasklet);
2445
err_out_free_desc:
2446
dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
2447
dev->desc_dma);
2448
2449
err_out_unmap_bars:
2450
for (i = 0; i < 3; ++i)
2451
if (dev->bar[i])
2452
iounmap(dev->bar[i]);
2453
kfree(dev);
2454
2455
err_out_free_regions:
2456
pci_release_regions(pdev);
2457
2458
err_out_disable_pci_device:
2459
pci_disable_device(pdev);
2460
2461
return err;
2462
}
2463
2464
static void hifn_remove(struct pci_dev *pdev)
2465
{
2466
int i;
2467
struct hifn_device *dev;
2468
2469
dev = pci_get_drvdata(pdev);
2470
2471
if (dev) {
2472
cancel_delayed_work_sync(&dev->work);
2473
2474
hifn_unregister_rng(dev);
2475
hifn_unregister_alg(dev);
2476
hifn_reset_dma(dev, 1);
2477
hifn_stop_device(dev);
2478
2479
free_irq(dev->irq, dev);
2480
tasklet_kill(&dev->tasklet);
2481
2482
hifn_flush(dev);
2483
2484
dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
2485
dev->desc_virt, dev->desc_dma);
2486
for (i = 0; i < 3; ++i)
2487
if (dev->bar[i])
2488
iounmap(dev->bar[i]);
2489
2490
kfree(dev);
2491
}
2492
2493
pci_release_regions(pdev);
2494
pci_disable_device(pdev);
2495
}
2496
2497
static struct pci_device_id hifn_pci_tbl[] = {
2498
{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2499
{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2500
{ 0 }
2501
};
2502
MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2503
2504
static struct pci_driver hifn_pci_driver = {
2505
.name = "hifn795x",
2506
.id_table = hifn_pci_tbl,
2507
.probe = hifn_probe,
2508
.remove = hifn_remove,
2509
};
2510
2511
static int __init hifn_init(void)
2512
{
2513
unsigned int freq;
2514
int err;
2515
2516
if (strncmp(hifn_pll_ref, "ext", 3) &&
2517
strncmp(hifn_pll_ref, "pci", 3)) {
2518
pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2519
return -EINVAL;
2520
}
2521
2522
/*
2523
* For the 7955/7956 the reference clock frequency must be in the
2524
* range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2525
* but this chip is currently not supported.
2526
*/
2527
if (hifn_pll_ref[3] != '\0') {
2528
freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2529
if (freq < 20 || freq > 100) {
2530
pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2531
"be in the range of 20-100");
2532
return -EINVAL;
2533
}
2534
}
2535
2536
err = pci_register_driver(&hifn_pci_driver);
2537
if (err < 0) {
2538
pr_err("Failed to register PCI driver for %s device.\n",
2539
hifn_pci_driver.name);
2540
return -ENODEV;
2541
}
2542
2543
pr_info("Driver for HIFN 795x crypto accelerator chip "
2544
"has been successfully registered.\n");
2545
2546
return 0;
2547
}
2548
2549
static void __exit hifn_fini(void)
2550
{
2551
pci_unregister_driver(&hifn_pci_driver);
2552
2553
pr_info("Driver for HIFN 795x crypto accelerator chip "
2554
"has been successfully unregistered.\n");
2555
}
2556
2557
module_init(hifn_init);
2558
module_exit(hifn_fini);
2559
2560
MODULE_LICENSE("GPL");
2561
MODULE_AUTHOR("Evgeniy Polyakov <[email protected]>");
2562
MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2563
2564