Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/hisilicon/qm.c
26288 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright (c) 2019 HiSilicon Limited. */
3
#include <asm/page.h>
4
#include <linux/acpi.h>
5
#include <linux/bitmap.h>
6
#include <linux/dma-mapping.h>
7
#include <linux/idr.h>
8
#include <linux/io.h>
9
#include <linux/irqreturn.h>
10
#include <linux/log2.h>
11
#include <linux/pm_runtime.h>
12
#include <linux/seq_file.h>
13
#include <linux/slab.h>
14
#include <linux/uacce.h>
15
#include <linux/uaccess.h>
16
#include <uapi/misc/uacce/hisi_qm.h>
17
#include <linux/hisi_acc_qm.h>
18
#include "qm_common.h"
19
20
/* eq/aeq irq enable */
21
#define QM_VF_AEQ_INT_SOURCE 0x0
22
#define QM_VF_AEQ_INT_MASK 0x4
23
#define QM_VF_EQ_INT_SOURCE 0x8
24
#define QM_VF_EQ_INT_MASK 0xc
25
26
#define QM_IRQ_VECTOR_MASK GENMASK(15, 0)
27
#define QM_IRQ_TYPE_MASK GENMASK(15, 0)
28
#define QM_IRQ_TYPE_SHIFT 16
29
#define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0)
30
31
/* mailbox */
32
#define QM_MB_PING_ALL_VFS 0xffff
33
#define QM_MB_STATUS_MASK GENMASK(12, 9)
34
35
/* sqc shift */
36
#define QM_SQ_HOP_NUM_SHIFT 0
37
#define QM_SQ_PAGE_SIZE_SHIFT 4
38
#define QM_SQ_BUF_SIZE_SHIFT 8
39
#define QM_SQ_SQE_SIZE_SHIFT 12
40
#define QM_SQ_PRIORITY_SHIFT 0
41
#define QM_SQ_ORDERS_SHIFT 4
42
#define QM_SQ_TYPE_SHIFT 8
43
#define QM_QC_PASID_ENABLE 0x1
44
#define QM_QC_PASID_ENABLE_SHIFT 7
45
46
#define QM_SQ_TYPE_MASK GENMASK(3, 0)
47
#define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc).w11) >> 6) & 0x1)
48
49
/* cqc shift */
50
#define QM_CQ_HOP_NUM_SHIFT 0
51
#define QM_CQ_PAGE_SIZE_SHIFT 4
52
#define QM_CQ_BUF_SIZE_SHIFT 8
53
#define QM_CQ_CQE_SIZE_SHIFT 12
54
#define QM_CQ_PHASE_SHIFT 0
55
#define QM_CQ_FLAG_SHIFT 1
56
57
#define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1)
58
#define QM_QC_CQE_SIZE 4
59
#define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc).w11) >> 6) & 0x1)
60
61
/* eqc shift */
62
#define QM_EQE_AEQE_SIZE (2UL << 12)
63
#define QM_EQC_PHASE_SHIFT 16
64
65
#define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
66
#define QM_EQE_CQN_MASK GENMASK(15, 0)
67
68
#define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
69
#define QM_AEQE_TYPE_SHIFT 17
70
#define QM_AEQE_TYPE_MASK 0xf
71
#define QM_AEQE_CQN_MASK GENMASK(15, 0)
72
#define QM_CQ_OVERFLOW 0
73
#define QM_EQ_OVERFLOW 1
74
#define QM_CQE_ERROR 2
75
76
#define QM_XQ_DEPTH_SHIFT 16
77
#define QM_XQ_DEPTH_MASK GENMASK(15, 0)
78
79
#define QM_DOORBELL_CMD_SQ 0
80
#define QM_DOORBELL_CMD_CQ 1
81
#define QM_DOORBELL_CMD_EQ 2
82
#define QM_DOORBELL_CMD_AEQ 3
83
84
#define QM_DOORBELL_BASE_V1 0x340
85
#define QM_DB_CMD_SHIFT_V1 16
86
#define QM_DB_INDEX_SHIFT_V1 32
87
#define QM_DB_PRIORITY_SHIFT_V1 48
88
#define QM_PAGE_SIZE 0x0034
89
#define QM_QP_DB_INTERVAL 0x10000
90
#define QM_DB_TIMEOUT_CFG 0x100074
91
#define QM_DB_TIMEOUT_SET 0x1fffff
92
93
#define QM_MEM_START_INIT 0x100040
94
#define QM_MEM_INIT_DONE 0x100044
95
#define QM_VFT_CFG_RDY 0x10006c
96
#define QM_VFT_CFG_OP_WR 0x100058
97
#define QM_VFT_CFG_TYPE 0x10005c
98
#define QM_VFT_CFG 0x100060
99
#define QM_VFT_CFG_OP_ENABLE 0x100054
100
#define QM_PM_CTRL 0x100148
101
#define QM_IDLE_DISABLE BIT(9)
102
103
#define QM_SUB_VERSION_ID 0x210
104
105
#define QM_VFT_CFG_DATA_L 0x100064
106
#define QM_VFT_CFG_DATA_H 0x100068
107
#define QM_SQC_VFT_BUF_SIZE (7ULL << 8)
108
#define QM_SQC_VFT_SQC_SIZE (5ULL << 12)
109
#define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16)
110
#define QM_SQC_VFT_START_SQN_SHIFT 28
111
#define QM_SQC_VFT_VALID (1ULL << 44)
112
#define QM_SQC_VFT_SQN_SHIFT 45
113
#define QM_CQC_VFT_BUF_SIZE (7ULL << 8)
114
#define QM_CQC_VFT_SQC_SIZE (5ULL << 12)
115
#define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16)
116
#define QM_CQC_VFT_VALID (1ULL << 28)
117
118
#define QM_SQC_VFT_BASE_SHIFT_V2 28
119
#define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0)
120
#define QM_SQC_VFT_NUM_SHIFT_V2 45
121
#define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0)
122
#define QM_MAX_QC_TYPE 2
123
124
#define QM_ABNORMAL_INT_SOURCE 0x100000
125
#define QM_ABNORMAL_INT_MASK 0x100004
126
#define QM_ABNORMAL_INT_MASK_VALUE 0x7fff
127
#define QM_ABNORMAL_INT_STATUS 0x100008
128
#define QM_ABNORMAL_INT_SET 0x10000c
129
#define QM_ABNORMAL_INF00 0x100010
130
#define QM_FIFO_OVERFLOW_TYPE 0xc0
131
#define QM_FIFO_OVERFLOW_TYPE_SHIFT 6
132
#define QM_FIFO_OVERFLOW_VF 0x3f
133
#define QM_FIFO_OVERFLOW_QP_SHIFT 16
134
#define QM_ABNORMAL_INF01 0x100014
135
#define QM_DB_TIMEOUT_TYPE 0xc0
136
#define QM_DB_TIMEOUT_TYPE_SHIFT 6
137
#define QM_DB_TIMEOUT_VF 0x3f
138
#define QM_DB_TIMEOUT_QP_SHIFT 16
139
#define QM_ABNORMAL_INF02 0x100018
140
#define QM_AXI_POISON_ERR BIT(22)
141
#define QM_RAS_CE_ENABLE 0x1000ec
142
#define QM_RAS_FE_ENABLE 0x1000f0
143
#define QM_RAS_NFE_ENABLE 0x1000f4
144
#define QM_RAS_CE_THRESHOLD 0x1000f8
145
#define QM_RAS_CE_TIMES_PER_IRQ 1
146
#define QM_OOO_SHUTDOWN_SEL 0x1040f8
147
#define QM_AXI_RRESP_ERR BIT(0)
148
#define QM_ECC_MBIT BIT(2)
149
#define QM_DB_TIMEOUT BIT(10)
150
#define QM_OF_FIFO_OF BIT(11)
151
152
#define QM_RESET_WAIT_TIMEOUT 400
153
#define QM_PEH_VENDOR_ID 0x1000d8
154
#define ACC_VENDOR_ID_VALUE 0x5a5a
155
#define QM_PEH_DFX_INFO0 0x1000fc
156
#define QM_PEH_DFX_INFO1 0x100100
157
#define QM_PEH_DFX_MASK (BIT(0) | BIT(2))
158
#define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16)
159
#define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3
160
#define ACC_PEH_MSI_DISABLE GENMASK(31, 0)
161
#define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1
162
#define ACC_MASTER_TRANS_RETURN_RW 3
163
#define ACC_MASTER_TRANS_RETURN 0x300150
164
#define ACC_MASTER_GLOBAL_CTRL 0x300000
165
#define ACC_AM_CFG_PORT_WR_EN 0x30001c
166
#define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT
167
#define ACC_AM_ROB_ECC_INT_STS 0x300104
168
#define ACC_ROB_ECC_ERR_MULTPL BIT(1)
169
#define QM_MSI_CAP_ENABLE BIT(16)
170
171
/* interfunction communication */
172
#define QM_IFC_READY_STATUS 0x100128
173
#define QM_IFC_INT_SET_P 0x100130
174
#define QM_IFC_INT_CFG 0x100134
175
#define QM_IFC_INT_SOURCE_P 0x100138
176
#define QM_IFC_INT_SOURCE_V 0x0020
177
#define QM_IFC_INT_MASK 0x0024
178
#define QM_IFC_INT_STATUS 0x0028
179
#define QM_IFC_INT_SET_V 0x002C
180
#define QM_PF2VF_PF_W 0x104700
181
#define QM_VF2PF_PF_R 0x104800
182
#define QM_VF2PF_VF_W 0x320
183
#define QM_PF2VF_VF_R 0x380
184
#define QM_IFC_SEND_ALL_VFS GENMASK(6, 0)
185
#define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0)
186
#define QM_IFC_INT_SOURCE_MASK BIT(0)
187
#define QM_IFC_INT_DISABLE BIT(0)
188
#define QM_IFC_INT_STATUS_MASK BIT(0)
189
#define QM_IFC_INT_SET_MASK BIT(0)
190
#define QM_WAIT_DST_ACK 10
191
#define QM_MAX_PF_WAIT_COUNT 10
192
#define QM_MAX_VF_WAIT_COUNT 40
193
#define QM_VF_RESET_WAIT_US 20000
194
#define QM_VF_RESET_WAIT_CNT 3000
195
#define QM_VF2PF_REG_SIZE 4
196
#define QM_IFC_CMD_MASK GENMASK(31, 0)
197
#define QM_IFC_DATA_SHIFT 32
198
#define QM_VF_RESET_WAIT_TIMEOUT_US \
199
(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
200
201
#define POLL_PERIOD 10
202
#define POLL_TIMEOUT 1000
203
#define WAIT_PERIOD_US_MAX 200
204
#define WAIT_PERIOD_US_MIN 100
205
#define MAX_WAIT_COUNTS 1000
206
#define QM_CACHE_WB_START 0x204
207
#define QM_CACHE_WB_DONE 0x208
208
#define QM_FUNC_CAPS_REG 0x3100
209
#define QM_CAPBILITY_VERSION GENMASK(7, 0)
210
211
#define PCI_BAR_2 2
212
#define PCI_BAR_4 4
213
#define QMC_ALIGN(sz) ALIGN(sz, 32)
214
215
#define QM_DBG_READ_LEN 256
216
#define QM_PCI_COMMAND_INVALID ~0
217
#define QM_RESET_STOP_TX_OFFSET 1
218
#define QM_RESET_STOP_RX_OFFSET 2
219
220
#define WAIT_PERIOD 20
221
#define REMOVE_WAIT_DELAY 10
222
223
#define QM_QOS_PARAM_NUM 2
224
#define QM_QOS_MAX_VAL 1000
225
#define QM_QOS_RATE 100
226
#define QM_QOS_EXPAND_RATE 1000
227
#define QM_SHAPER_CIR_B_MASK GENMASK(7, 0)
228
#define QM_SHAPER_CIR_U_MASK GENMASK(10, 8)
229
#define QM_SHAPER_CIR_S_MASK GENMASK(14, 11)
230
#define QM_SHAPER_FACTOR_CIR_U_SHIFT 8
231
#define QM_SHAPER_FACTOR_CIR_S_SHIFT 11
232
#define QM_SHAPER_FACTOR_CBS_B_SHIFT 15
233
#define QM_SHAPER_FACTOR_CBS_S_SHIFT 19
234
#define QM_SHAPER_CBS_B 1
235
#define QM_SHAPER_VFT_OFFSET 6
236
#define QM_QOS_MIN_ERROR_RATE 5
237
#define QM_SHAPER_MIN_CBS_S 8
238
#define QM_QOS_TICK 0x300U
239
#define QM_QOS_DIVISOR_CLK 0x1f40U
240
#define QM_QOS_MAX_CIR_B 200
241
#define QM_QOS_MIN_CIR_B 100
242
#define QM_QOS_MAX_CIR_U 6
243
#define QM_AUTOSUSPEND_DELAY 3000
244
245
/* abnormal status value for stopping queue */
246
#define QM_STOP_QUEUE_FAIL 1
247
#define QM_DUMP_SQC_FAIL 3
248
#define QM_DUMP_CQC_FAIL 4
249
#define QM_FINISH_WAIT 5
250
251
#define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
252
(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
253
((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
254
((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
255
((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
256
257
#define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
258
((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
259
260
#define QM_MK_SQC_W13(priority, orders, alg_type) \
261
(((priority) << QM_SQ_PRIORITY_SHIFT) | \
262
((orders) << QM_SQ_ORDERS_SHIFT) | \
263
(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
264
265
#define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
266
(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
267
((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
268
((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
269
((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
270
271
#define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
272
((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
273
274
enum vft_type {
275
SQC_VFT = 0,
276
CQC_VFT,
277
SHAPER_VFT,
278
};
279
280
enum qm_alg_type {
281
ALG_TYPE_0,
282
ALG_TYPE_1,
283
};
284
285
enum qm_ifc_cmd {
286
QM_PF_FLR_PREPARE = 0x01,
287
QM_PF_SRST_PREPARE,
288
QM_PF_RESET_DONE,
289
QM_VF_PREPARE_DONE,
290
QM_VF_PREPARE_FAIL,
291
QM_VF_START_DONE,
292
QM_VF_START_FAIL,
293
QM_PF_SET_QOS,
294
QM_VF_GET_QOS,
295
};
296
297
enum qm_basic_type {
298
QM_TOTAL_QP_NUM_CAP = 0x0,
299
QM_FUNC_MAX_QP_CAP,
300
QM_XEQ_DEPTH_CAP,
301
QM_QP_DEPTH_CAP,
302
QM_EQ_IRQ_TYPE_CAP,
303
QM_AEQ_IRQ_TYPE_CAP,
304
QM_ABN_IRQ_TYPE_CAP,
305
QM_PF2VF_IRQ_TYPE_CAP,
306
QM_PF_IRQ_NUM_CAP,
307
QM_VF_IRQ_NUM_CAP,
308
};
309
310
enum qm_cap_table_type {
311
QM_CAP_VF = 0x0,
312
QM_AEQE_NUM,
313
QM_SCQE_NUM,
314
QM_EQ_IRQ,
315
QM_AEQ_IRQ,
316
QM_ABNORMAL_IRQ,
317
QM_MB_IRQ,
318
MAX_IRQ_NUM,
319
EXT_BAR_INDEX,
320
};
321
322
static const struct hisi_qm_cap_query_info qm_cap_query_info[] = {
323
{QM_CAP_VF, "QM_CAP_VF ", 0x3100, 0x0, 0x0, 0x6F01},
324
{QM_AEQE_NUM, "QM_AEQE_NUM ", 0x3104, 0x800, 0x4000800, 0x4000800},
325
{QM_SCQE_NUM, "QM_SCQE_NUM ",
326
0x3108, 0x4000400, 0x4000400, 0x4000400},
327
{QM_EQ_IRQ, "QM_EQ_IRQ ", 0x310c, 0x10000, 0x10000, 0x10000},
328
{QM_AEQ_IRQ, "QM_AEQ_IRQ ", 0x3110, 0x0, 0x10001, 0x10001},
329
{QM_ABNORMAL_IRQ, "QM_ABNORMAL_IRQ ", 0x3114, 0x0, 0x10003, 0x10003},
330
{QM_MB_IRQ, "QM_MB_IRQ ", 0x3118, 0x0, 0x0, 0x10002},
331
{MAX_IRQ_NUM, "MAX_IRQ_NUM ", 0x311c, 0x10001, 0x40002, 0x40003},
332
{EXT_BAR_INDEX, "EXT_BAR_INDEX ", 0x3120, 0x0, 0x0, 0x14},
333
};
334
335
static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
336
{QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0},
337
{QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1},
338
{QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1},
339
{QM_SUPPORT_STOP_FUNC, 0x3100, 0, BIT(10), 0x0, 0x0, 0x1},
340
{QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
341
{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
342
{QM_SUPPORT_DAE, 0x3100, 0, BIT(15), 0x0, 0x0, 0x0},
343
};
344
345
static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
346
{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
347
};
348
349
static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
350
{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
351
};
352
353
static const struct hisi_qm_cap_info qm_basic_info[] = {
354
{QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400},
355
{QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400},
356
{QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800},
357
{QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
358
{QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000},
359
{QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001},
360
{QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003},
361
{QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002},
362
{QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4},
363
{QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3},
364
};
365
366
struct qm_mailbox {
367
__le16 w0;
368
__le16 queue_num;
369
__le32 base_l;
370
__le32 base_h;
371
__le32 rsvd;
372
};
373
374
struct qm_doorbell {
375
__le16 queue_num;
376
__le16 cmd;
377
__le16 index;
378
__le16 priority;
379
};
380
381
struct hisi_qm_resource {
382
struct hisi_qm *qm;
383
int distance;
384
struct list_head list;
385
};
386
387
/**
388
* struct qm_hw_err - Structure describing the device errors
389
* @list: hardware error list
390
* @timestamp: timestamp when the error occurred
391
*/
392
struct qm_hw_err {
393
struct list_head list;
394
unsigned long long timestamp;
395
};
396
397
struct hisi_qm_hw_ops {
398
int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
399
void (*qm_db)(struct hisi_qm *qm, u16 qn,
400
u8 cmd, u16 index, u8 priority);
401
int (*debug_init)(struct hisi_qm *qm);
402
void (*hw_error_init)(struct hisi_qm *qm);
403
void (*hw_error_uninit)(struct hisi_qm *qm);
404
enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
405
int (*set_msi)(struct hisi_qm *qm, bool set);
406
407
/* (u64)msg = (u32)data << 32 | (enum qm_ifc_cmd)cmd */
408
int (*set_ifc_begin)(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num);
409
void (*set_ifc_end)(struct hisi_qm *qm);
410
int (*get_ifc)(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num);
411
};
412
413
struct hisi_qm_hw_error {
414
u32 int_msk;
415
const char *msg;
416
};
417
418
static const struct hisi_qm_hw_error qm_hw_error[] = {
419
{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
420
{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
421
{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
422
{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
423
{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
424
{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
425
{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
426
{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
427
{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
428
{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
429
{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
430
{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
431
{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
432
{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
433
{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
434
};
435
436
static const char * const qm_db_timeout[] = {
437
"sq", "cq", "eq", "aeq",
438
};
439
440
static const char * const qm_fifo_overflow[] = {
441
"cq", "eq", "aeq",
442
};
443
444
struct qm_typical_qos_table {
445
u32 start;
446
u32 end;
447
u32 val;
448
};
449
450
/* the qos step is 100 */
451
static struct qm_typical_qos_table shaper_cir_s[] = {
452
{100, 100, 4},
453
{200, 200, 3},
454
{300, 500, 2},
455
{600, 1000, 1},
456
{1100, 100000, 0},
457
};
458
459
static struct qm_typical_qos_table shaper_cbs_s[] = {
460
{100, 200, 9},
461
{300, 500, 11},
462
{600, 1000, 12},
463
{1100, 10000, 16},
464
{10100, 25000, 17},
465
{25100, 50000, 18},
466
{50100, 100000, 19}
467
};
468
469
static void qm_irqs_unregister(struct hisi_qm *qm);
470
static int qm_reset_device(struct hisi_qm *qm);
471
int hisi_qm_q_num_set(const char *val, const struct kernel_param *kp,
472
unsigned int device)
473
{
474
struct pci_dev *pdev;
475
u32 n, q_num;
476
int ret;
477
478
if (!val)
479
return -EINVAL;
480
481
pdev = pci_get_device(PCI_VENDOR_ID_HUAWEI, device, NULL);
482
if (!pdev) {
483
q_num = min_t(u32, QM_QNUM_V1, QM_QNUM_V2);
484
pr_info("No device found currently, suppose queue number is %u\n",
485
q_num);
486
} else {
487
if (pdev->revision == QM_HW_V1)
488
q_num = QM_QNUM_V1;
489
else
490
q_num = QM_QNUM_V2;
491
492
pci_dev_put(pdev);
493
}
494
495
ret = kstrtou32(val, 10, &n);
496
if (ret || n < QM_MIN_QNUM || n > q_num)
497
return -EINVAL;
498
499
return param_set_int(val, kp);
500
}
501
EXPORT_SYMBOL_GPL(hisi_qm_q_num_set);
502
503
static u32 qm_get_hw_error_status(struct hisi_qm *qm)
504
{
505
return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
506
}
507
508
static u32 qm_get_dev_err_status(struct hisi_qm *qm)
509
{
510
return qm->err_ini->get_dev_hw_err_status(qm);
511
}
512
513
/* Check if the error causes the master ooo block */
514
static bool qm_check_dev_error(struct hisi_qm *qm)
515
{
516
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
517
u32 err_status;
518
519
if (pf_qm->fun_type == QM_HW_VF)
520
return false;
521
522
err_status = qm_get_hw_error_status(pf_qm);
523
if (err_status & pf_qm->err_info.qm_shutdown_mask)
524
return true;
525
526
if (pf_qm->err_ini->dev_is_abnormal)
527
return pf_qm->err_ini->dev_is_abnormal(pf_qm);
528
529
return false;
530
}
531
532
static int qm_wait_reset_finish(struct hisi_qm *qm)
533
{
534
int delay = 0;
535
536
/* All reset requests need to be queued for processing */
537
while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
538
msleep(++delay);
539
if (delay > QM_RESET_WAIT_TIMEOUT)
540
return -EBUSY;
541
}
542
543
return 0;
544
}
545
546
static int qm_reset_prepare_ready(struct hisi_qm *qm)
547
{
548
struct pci_dev *pdev = qm->pdev;
549
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
550
551
/*
552
* PF and VF on host doesnot support resetting at the
553
* same time on Kunpeng920.
554
*/
555
if (qm->ver < QM_HW_V3)
556
return qm_wait_reset_finish(pf_qm);
557
558
return qm_wait_reset_finish(qm);
559
}
560
561
static void qm_reset_bit_clear(struct hisi_qm *qm)
562
{
563
struct pci_dev *pdev = qm->pdev;
564
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
565
566
if (qm->ver < QM_HW_V3)
567
clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
568
569
clear_bit(QM_RESETTING, &qm->misc_ctl);
570
}
571
572
static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
573
u64 base, u16 queue, bool op)
574
{
575
mailbox->w0 = cpu_to_le16((cmd) |
576
((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
577
(0x1 << QM_MB_BUSY_SHIFT));
578
mailbox->queue_num = cpu_to_le16(queue);
579
mailbox->base_l = cpu_to_le32(lower_32_bits(base));
580
mailbox->base_h = cpu_to_le32(upper_32_bits(base));
581
mailbox->rsvd = 0;
582
}
583
584
/* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
585
int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
586
{
587
u32 val;
588
589
return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
590
val, !((val >> QM_MB_BUSY_SHIFT) &
591
0x1), POLL_PERIOD, POLL_TIMEOUT);
592
}
593
EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
594
595
/* 128 bit should be written to hardware at one time to trigger a mailbox */
596
static void qm_mb_write(struct hisi_qm *qm, const void *src)
597
{
598
void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
599
600
#if IS_ENABLED(CONFIG_ARM64)
601
unsigned long tmp0 = 0, tmp1 = 0;
602
#endif
603
604
if (!IS_ENABLED(CONFIG_ARM64)) {
605
memcpy_toio(fun_base, src, 16);
606
dma_wmb();
607
return;
608
}
609
610
#if IS_ENABLED(CONFIG_ARM64)
611
asm volatile("ldp %0, %1, %3\n"
612
"stp %0, %1, %2\n"
613
"dmb oshst\n"
614
: "=&r" (tmp0),
615
"=&r" (tmp1),
616
"+Q" (*((char __iomem *)fun_base))
617
: "Q" (*((char *)src))
618
: "memory");
619
#endif
620
}
621
622
static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
623
{
624
int ret;
625
u32 val;
626
627
if (unlikely(hisi_qm_wait_mb_ready(qm))) {
628
dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
629
ret = -EBUSY;
630
goto mb_busy;
631
}
632
633
qm_mb_write(qm, mailbox);
634
635
if (unlikely(hisi_qm_wait_mb_ready(qm))) {
636
dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
637
ret = -ETIMEDOUT;
638
goto mb_busy;
639
}
640
641
val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
642
if (val & QM_MB_STATUS_MASK) {
643
dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
644
ret = -EIO;
645
goto mb_busy;
646
}
647
648
return 0;
649
650
mb_busy:
651
atomic64_inc(&qm->debug.dfx.mb_err_cnt);
652
return ret;
653
}
654
655
int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
656
bool op)
657
{
658
struct qm_mailbox mailbox;
659
int ret;
660
661
qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
662
663
mutex_lock(&qm->mailbox_lock);
664
ret = qm_mb_nolock(qm, &mailbox);
665
mutex_unlock(&qm->mailbox_lock);
666
667
return ret;
668
}
669
EXPORT_SYMBOL_GPL(hisi_qm_mb);
670
671
/* op 0: set xqc information to hardware, 1: get xqc information from hardware. */
672
int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op)
673
{
674
struct qm_mailbox mailbox;
675
dma_addr_t xqc_dma;
676
void *tmp_xqc;
677
size_t size;
678
int ret;
679
680
switch (cmd) {
681
case QM_MB_CMD_SQC:
682
size = sizeof(struct qm_sqc);
683
tmp_xqc = qm->xqc_buf.sqc;
684
xqc_dma = qm->xqc_buf.sqc_dma;
685
break;
686
case QM_MB_CMD_CQC:
687
size = sizeof(struct qm_cqc);
688
tmp_xqc = qm->xqc_buf.cqc;
689
xqc_dma = qm->xqc_buf.cqc_dma;
690
break;
691
case QM_MB_CMD_EQC:
692
size = sizeof(struct qm_eqc);
693
tmp_xqc = qm->xqc_buf.eqc;
694
xqc_dma = qm->xqc_buf.eqc_dma;
695
break;
696
case QM_MB_CMD_AEQC:
697
size = sizeof(struct qm_aeqc);
698
tmp_xqc = qm->xqc_buf.aeqc;
699
xqc_dma = qm->xqc_buf.aeqc_dma;
700
break;
701
default:
702
dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd);
703
return -EINVAL;
704
}
705
706
/* Setting xqc will fail if master OOO is blocked. */
707
if (qm_check_dev_error(qm)) {
708
dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n");
709
return -EIO;
710
}
711
712
mutex_lock(&qm->mailbox_lock);
713
if (!op)
714
memcpy(tmp_xqc, xqc, size);
715
716
qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op);
717
ret = qm_mb_nolock(qm, &mailbox);
718
if (!ret && op)
719
memcpy(xqc, tmp_xqc, size);
720
721
mutex_unlock(&qm->mailbox_lock);
722
723
return ret;
724
}
725
726
static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
727
{
728
u64 doorbell;
729
730
doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
731
((u64)index << QM_DB_INDEX_SHIFT_V1) |
732
((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
733
734
writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
735
}
736
737
static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
738
{
739
void __iomem *io_base = qm->io_base;
740
u16 randata = 0;
741
u64 doorbell;
742
743
if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
744
io_base = qm->db_io_base + (u64)qn * qm->db_interval +
745
QM_DOORBELL_SQ_CQ_BASE_V2;
746
else
747
io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
748
749
doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
750
((u64)randata << QM_DB_RAND_SHIFT_V2) |
751
((u64)index << QM_DB_INDEX_SHIFT_V2) |
752
((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
753
754
writeq(doorbell, io_base);
755
}
756
757
static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
758
{
759
dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
760
qn, cmd, index);
761
762
qm->ops->qm_db(qm, qn, cmd, index, priority);
763
}
764
765
static void qm_disable_clock_gate(struct hisi_qm *qm)
766
{
767
u32 val;
768
769
/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
770
if (qm->ver < QM_HW_V3)
771
return;
772
773
val = readl(qm->io_base + QM_PM_CTRL);
774
val |= QM_IDLE_DISABLE;
775
writel(val, qm->io_base + QM_PM_CTRL);
776
}
777
778
static int qm_dev_mem_reset(struct hisi_qm *qm)
779
{
780
u32 val;
781
782
writel(0x1, qm->io_base + QM_MEM_START_INIT);
783
return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
784
val & BIT(0), POLL_PERIOD,
785
POLL_TIMEOUT);
786
}
787
788
/**
789
* hisi_qm_get_hw_info() - Get device information.
790
* @qm: The qm which want to get information.
791
* @info_table: Array for storing device information.
792
* @index: Index in info_table.
793
* @is_read: Whether read from reg, 0: not support read from reg.
794
*
795
* This function returns device information the caller needs.
796
*/
797
u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
798
const struct hisi_qm_cap_info *info_table,
799
u32 index, bool is_read)
800
{
801
u32 val;
802
803
switch (qm->ver) {
804
case QM_HW_V1:
805
return info_table[index].v1_val;
806
case QM_HW_V2:
807
return info_table[index].v2_val;
808
default:
809
if (!is_read)
810
return info_table[index].v3_val;
811
812
val = readl(qm->io_base + info_table[index].offset);
813
return (val >> info_table[index].shift) & info_table[index].mask;
814
}
815
}
816
EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
817
818
u32 hisi_qm_get_cap_value(struct hisi_qm *qm,
819
const struct hisi_qm_cap_query_info *info_table,
820
u32 index, bool is_read)
821
{
822
u32 val;
823
824
switch (qm->ver) {
825
case QM_HW_V1:
826
return info_table[index].v1_val;
827
case QM_HW_V2:
828
return info_table[index].v2_val;
829
default:
830
if (!is_read)
831
return info_table[index].v3_val;
832
833
val = readl(qm->io_base + info_table[index].offset);
834
return val;
835
}
836
}
837
EXPORT_SYMBOL_GPL(hisi_qm_get_cap_value);
838
839
static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
840
u16 *high_bits, enum qm_basic_type type)
841
{
842
u32 depth;
843
844
depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
845
*low_bits = depth & QM_XQ_DEPTH_MASK;
846
*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
847
}
848
849
int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs,
850
u32 dev_algs_size)
851
{
852
struct device *dev = &qm->pdev->dev;
853
char *algs, *ptr;
854
int i;
855
856
if (!qm->uacce)
857
return 0;
858
859
if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) {
860
dev_err(dev, "algs size %u is equal or larger than %d.\n",
861
dev_algs_size, QM_DEV_ALG_MAX_LEN);
862
return -EINVAL;
863
}
864
865
algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN, GFP_KERNEL);
866
if (!algs)
867
return -ENOMEM;
868
869
for (i = 0; i < dev_algs_size; i++)
870
if (alg_msk & dev_algs[i].alg_msk)
871
strcat(algs, dev_algs[i].alg);
872
873
ptr = strrchr(algs, '\n');
874
if (ptr)
875
*ptr = '\0';
876
877
qm->uacce->algs = algs;
878
879
return 0;
880
}
881
EXPORT_SYMBOL_GPL(hisi_qm_set_algs);
882
883
static u32 qm_get_irq_num(struct hisi_qm *qm)
884
{
885
if (qm->fun_type == QM_HW_PF)
886
return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
887
888
return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
889
}
890
891
static int qm_pm_get_sync(struct hisi_qm *qm)
892
{
893
struct device *dev = &qm->pdev->dev;
894
int ret;
895
896
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
897
return 0;
898
899
ret = pm_runtime_resume_and_get(dev);
900
if (ret < 0) {
901
dev_err(dev, "failed to get_sync(%d).\n", ret);
902
return ret;
903
}
904
905
return 0;
906
}
907
908
static void qm_pm_put_sync(struct hisi_qm *qm)
909
{
910
struct device *dev = &qm->pdev->dev;
911
912
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
913
return;
914
915
pm_runtime_put_autosuspend(dev);
916
}
917
918
static void qm_cq_head_update(struct hisi_qp *qp)
919
{
920
if (qp->qp_status.cq_head == qp->cq_depth - 1) {
921
qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
922
qp->qp_status.cq_head = 0;
923
} else {
924
qp->qp_status.cq_head++;
925
}
926
}
927
928
static void qm_poll_req_cb(struct hisi_qp *qp)
929
{
930
struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
931
struct hisi_qm *qm = qp->qm;
932
933
while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
934
dma_rmb();
935
qp->req_cb(qp, qp->sqe + qm->sqe_size *
936
le16_to_cpu(cqe->sq_head));
937
qm_cq_head_update(qp);
938
cqe = qp->cqe + qp->qp_status.cq_head;
939
qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
940
qp->qp_status.cq_head, 0);
941
atomic_dec(&qp->qp_status.used);
942
943
cond_resched();
944
}
945
946
/* set c_flag */
947
qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
948
}
949
950
static void qm_work_process(struct work_struct *work)
951
{
952
struct hisi_qm_poll_data *poll_data =
953
container_of(work, struct hisi_qm_poll_data, work);
954
struct hisi_qm *qm = poll_data->qm;
955
u16 eqe_num = poll_data->eqe_num;
956
struct hisi_qp *qp;
957
int i;
958
959
for (i = eqe_num - 1; i >= 0; i--) {
960
qp = &qm->qp_array[poll_data->qp_finish_id[i]];
961
if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
962
continue;
963
964
if (qp->event_cb) {
965
qp->event_cb(qp);
966
continue;
967
}
968
969
if (likely(qp->req_cb))
970
qm_poll_req_cb(qp);
971
}
972
}
973
974
static void qm_get_complete_eqe_num(struct hisi_qm *qm)
975
{
976
struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
977
struct hisi_qm_poll_data *poll_data = NULL;
978
u16 eq_depth = qm->eq_depth;
979
u16 cqn, eqe_num = 0;
980
981
if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) {
982
atomic64_inc(&qm->debug.dfx.err_irq_cnt);
983
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
984
return;
985
}
986
987
cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
988
if (unlikely(cqn >= qm->qp_num))
989
return;
990
poll_data = &qm->poll_data[cqn];
991
992
while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
993
cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
994
poll_data->qp_finish_id[eqe_num] = cqn;
995
eqe_num++;
996
997
if (qm->status.eq_head == eq_depth - 1) {
998
qm->status.eqc_phase = !qm->status.eqc_phase;
999
eqe = qm->eqe;
1000
qm->status.eq_head = 0;
1001
} else {
1002
eqe++;
1003
qm->status.eq_head++;
1004
}
1005
1006
if (eqe_num == (eq_depth >> 1) - 1)
1007
break;
1008
}
1009
1010
poll_data->eqe_num = eqe_num;
1011
queue_work(qm->wq, &poll_data->work);
1012
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
1013
}
1014
1015
static irqreturn_t qm_eq_irq(int irq, void *data)
1016
{
1017
struct hisi_qm *qm = data;
1018
1019
/* Get qp id of completed tasks and re-enable the interrupt */
1020
qm_get_complete_eqe_num(qm);
1021
1022
return IRQ_HANDLED;
1023
}
1024
1025
static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
1026
{
1027
struct hisi_qm *qm = data;
1028
u32 val;
1029
1030
val = readl(qm->io_base + QM_IFC_INT_STATUS);
1031
val &= QM_IFC_INT_STATUS_MASK;
1032
if (!val)
1033
return IRQ_NONE;
1034
1035
if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
1036
dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
1037
return IRQ_HANDLED;
1038
}
1039
1040
schedule_work(&qm->cmd_process);
1041
1042
return IRQ_HANDLED;
1043
}
1044
1045
static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
1046
{
1047
u32 *addr;
1048
1049
if (qp->is_in_kernel)
1050
return;
1051
1052
addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
1053
*addr = 1;
1054
1055
/* make sure setup is completed */
1056
smp_wmb();
1057
}
1058
1059
static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
1060
{
1061
struct hisi_qp *qp = &qm->qp_array[qp_id];
1062
1063
qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
1064
hisi_qm_stop_qp(qp);
1065
qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
1066
}
1067
1068
static void qm_reset_function(struct hisi_qm *qm)
1069
{
1070
struct device *dev = &qm->pdev->dev;
1071
int ret;
1072
1073
if (qm_check_dev_error(qm))
1074
return;
1075
1076
ret = qm_reset_prepare_ready(qm);
1077
if (ret) {
1078
dev_err(dev, "reset function not ready\n");
1079
return;
1080
}
1081
1082
ret = hisi_qm_stop(qm, QM_DOWN);
1083
if (ret) {
1084
dev_err(dev, "failed to stop qm when reset function\n");
1085
goto clear_bit;
1086
}
1087
1088
ret = hisi_qm_start(qm);
1089
if (ret)
1090
dev_err(dev, "failed to start qm when reset function\n");
1091
1092
clear_bit:
1093
qm_reset_bit_clear(qm);
1094
}
1095
1096
static irqreturn_t qm_aeq_thread(int irq, void *data)
1097
{
1098
struct hisi_qm *qm = data;
1099
struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1100
u16 aeq_depth = qm->aeq_depth;
1101
u32 type, qp_id;
1102
1103
atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1104
1105
while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1106
type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) &
1107
QM_AEQE_TYPE_MASK;
1108
qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1109
1110
switch (type) {
1111
case QM_EQ_OVERFLOW:
1112
dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1113
qm_reset_function(qm);
1114
return IRQ_HANDLED;
1115
case QM_CQ_OVERFLOW:
1116
dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1117
qp_id);
1118
fallthrough;
1119
case QM_CQE_ERROR:
1120
qm_disable_qp(qm, qp_id);
1121
break;
1122
default:
1123
dev_err(&qm->pdev->dev, "unknown error type %u\n",
1124
type);
1125
break;
1126
}
1127
1128
if (qm->status.aeq_head == aeq_depth - 1) {
1129
qm->status.aeqc_phase = !qm->status.aeqc_phase;
1130
aeqe = qm->aeqe;
1131
qm->status.aeq_head = 0;
1132
} else {
1133
aeqe++;
1134
qm->status.aeq_head++;
1135
}
1136
}
1137
1138
qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1139
1140
return IRQ_HANDLED;
1141
}
1142
1143
static void qm_init_qp_status(struct hisi_qp *qp)
1144
{
1145
struct hisi_qp_status *qp_status = &qp->qp_status;
1146
1147
qp_status->sq_tail = 0;
1148
qp_status->cq_head = 0;
1149
qp_status->cqc_phase = true;
1150
atomic_set(&qp_status->used, 0);
1151
}
1152
1153
static void qm_init_prefetch(struct hisi_qm *qm)
1154
{
1155
struct device *dev = &qm->pdev->dev;
1156
u32 page_type = 0x0;
1157
1158
if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1159
return;
1160
1161
switch (PAGE_SIZE) {
1162
case SZ_4K:
1163
page_type = 0x0;
1164
break;
1165
case SZ_16K:
1166
page_type = 0x1;
1167
break;
1168
case SZ_64K:
1169
page_type = 0x2;
1170
break;
1171
default:
1172
dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1173
PAGE_SIZE);
1174
}
1175
1176
writel(page_type, qm->io_base + QM_PAGE_SIZE);
1177
}
1178
1179
/*
1180
* acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1181
* is the expected qos calculated.
1182
* the formula:
1183
* IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1184
*
1185
* IR_b * (2 ^ IR_u) * 8000
1186
* IR(Mbps) = -------------------------
1187
* Tick * (2 ^ IR_s)
1188
*/
1189
static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1190
{
1191
return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1192
(QM_QOS_TICK * (1 << cir_s));
1193
}
1194
1195
static u32 acc_shaper_calc_cbs_s(u32 ir)
1196
{
1197
int table_size = ARRAY_SIZE(shaper_cbs_s);
1198
int i;
1199
1200
for (i = 0; i < table_size; i++) {
1201
if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1202
return shaper_cbs_s[i].val;
1203
}
1204
1205
return QM_SHAPER_MIN_CBS_S;
1206
}
1207
1208
static u32 acc_shaper_calc_cir_s(u32 ir)
1209
{
1210
int table_size = ARRAY_SIZE(shaper_cir_s);
1211
int i;
1212
1213
for (i = 0; i < table_size; i++) {
1214
if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1215
return shaper_cir_s[i].val;
1216
}
1217
1218
return 0;
1219
}
1220
1221
static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1222
{
1223
u32 cir_b, cir_u, cir_s, ir_calc;
1224
u32 error_rate;
1225
1226
factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1227
cir_s = acc_shaper_calc_cir_s(ir);
1228
1229
for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1230
for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1231
ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1232
1233
error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1234
if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1235
factor->cir_b = cir_b;
1236
factor->cir_u = cir_u;
1237
factor->cir_s = cir_s;
1238
return 0;
1239
}
1240
}
1241
}
1242
1243
return -EINVAL;
1244
}
1245
1246
static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1247
u32 number, struct qm_shaper_factor *factor)
1248
{
1249
u64 tmp = 0;
1250
1251
if (number > 0) {
1252
switch (type) {
1253
case SQC_VFT:
1254
if (qm->ver == QM_HW_V1) {
1255
tmp = QM_SQC_VFT_BUF_SIZE |
1256
QM_SQC_VFT_SQC_SIZE |
1257
QM_SQC_VFT_INDEX_NUMBER |
1258
QM_SQC_VFT_VALID |
1259
(u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1260
} else {
1261
tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1262
QM_SQC_VFT_VALID |
1263
(u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1264
}
1265
break;
1266
case CQC_VFT:
1267
if (qm->ver == QM_HW_V1) {
1268
tmp = QM_CQC_VFT_BUF_SIZE |
1269
QM_CQC_VFT_SQC_SIZE |
1270
QM_CQC_VFT_INDEX_NUMBER |
1271
QM_CQC_VFT_VALID;
1272
} else {
1273
tmp = QM_CQC_VFT_VALID;
1274
}
1275
break;
1276
case SHAPER_VFT:
1277
if (factor) {
1278
tmp = factor->cir_b |
1279
(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1280
(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1281
(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1282
(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1283
}
1284
break;
1285
}
1286
}
1287
1288
writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1289
writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1290
}
1291
1292
static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1293
u32 fun_num, u32 base, u32 number)
1294
{
1295
struct qm_shaper_factor *factor = NULL;
1296
unsigned int val;
1297
int ret;
1298
1299
if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1300
factor = &qm->factor[fun_num];
1301
1302
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1303
val & BIT(0), POLL_PERIOD,
1304
POLL_TIMEOUT);
1305
if (ret)
1306
return ret;
1307
1308
writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1309
writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1310
if (type == SHAPER_VFT)
1311
fun_num |= base << QM_SHAPER_VFT_OFFSET;
1312
1313
writel(fun_num, qm->io_base + QM_VFT_CFG);
1314
1315
qm_vft_data_cfg(qm, type, base, number, factor);
1316
1317
writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1318
writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1319
1320
return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1321
val & BIT(0), POLL_PERIOD,
1322
POLL_TIMEOUT);
1323
}
1324
1325
static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1326
{
1327
u32 qos = qm->factor[fun_num].func_qos;
1328
int ret, i;
1329
1330
ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1331
if (ret) {
1332
dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1333
return ret;
1334
}
1335
writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1336
for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1337
/* The base number of queue reuse for different alg type */
1338
ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1339
if (ret)
1340
return ret;
1341
}
1342
1343
return 0;
1344
}
1345
1346
/* The config should be conducted after qm_dev_mem_reset() */
1347
static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1348
u32 number)
1349
{
1350
int ret, i;
1351
1352
for (i = SQC_VFT; i <= CQC_VFT; i++) {
1353
ret = qm_set_vft_common(qm, i, fun_num, base, number);
1354
if (ret)
1355
return ret;
1356
}
1357
1358
/* init default shaper qos val */
1359
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1360
ret = qm_shaper_init_vft(qm, fun_num);
1361
if (ret)
1362
goto back_sqc_cqc;
1363
}
1364
1365
return 0;
1366
back_sqc_cqc:
1367
for (i = SQC_VFT; i <= CQC_VFT; i++)
1368
qm_set_vft_common(qm, i, fun_num, 0, 0);
1369
1370
return ret;
1371
}
1372
1373
static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1374
{
1375
u64 sqc_vft;
1376
int ret;
1377
1378
ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1379
if (ret)
1380
return ret;
1381
1382
sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1383
((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1384
*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1385
*number = (QM_SQC_VFT_NUM_MASK_V2 &
1386
(sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1387
1388
return 0;
1389
}
1390
1391
static void qm_hw_error_init_v1(struct hisi_qm *qm)
1392
{
1393
writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1394
}
1395
1396
static void qm_hw_error_cfg(struct hisi_qm *qm)
1397
{
1398
struct hisi_qm_err_info *err_info = &qm->err_info;
1399
1400
qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1401
/* clear QM hw residual error source */
1402
writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1403
1404
/* configure error type */
1405
writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1406
writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1407
writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1408
writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1409
}
1410
1411
static void qm_hw_error_init_v2(struct hisi_qm *qm)
1412
{
1413
u32 irq_unmask;
1414
1415
qm_hw_error_cfg(qm);
1416
1417
irq_unmask = ~qm->error_mask;
1418
irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1419
writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1420
}
1421
1422
static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1423
{
1424
u32 irq_mask = qm->error_mask;
1425
1426
irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1427
writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1428
}
1429
1430
static void qm_hw_error_init_v3(struct hisi_qm *qm)
1431
{
1432
u32 irq_unmask;
1433
1434
qm_hw_error_cfg(qm);
1435
1436
/* enable close master ooo when hardware error happened */
1437
writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1438
1439
irq_unmask = ~qm->error_mask;
1440
irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1441
writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1442
}
1443
1444
static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1445
{
1446
u32 irq_mask = qm->error_mask;
1447
1448
irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1449
writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1450
1451
/* disable close master ooo when hardware error happened */
1452
writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1453
}
1454
1455
static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1456
{
1457
const struct hisi_qm_hw_error *err;
1458
struct device *dev = &qm->pdev->dev;
1459
u32 reg_val, type, vf_num, qp_id;
1460
int i;
1461
1462
for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1463
err = &qm_hw_error[i];
1464
if (!(err->int_msk & error_status))
1465
continue;
1466
1467
dev_err(dev, "%s [error status=0x%x] found\n",
1468
err->msg, err->int_msk);
1469
1470
if (err->int_msk & QM_DB_TIMEOUT) {
1471
reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1472
type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1473
QM_DB_TIMEOUT_TYPE_SHIFT;
1474
vf_num = reg_val & QM_DB_TIMEOUT_VF;
1475
qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT;
1476
dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n",
1477
qm_db_timeout[type], vf_num, qp_id);
1478
} else if (err->int_msk & QM_OF_FIFO_OF) {
1479
reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1480
type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1481
QM_FIFO_OVERFLOW_TYPE_SHIFT;
1482
vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1483
qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT;
1484
if (type < ARRAY_SIZE(qm_fifo_overflow))
1485
dev_err(dev, "qm %s fifo overflow in function %u qp %u\n",
1486
qm_fifo_overflow[type], vf_num, qp_id);
1487
else
1488
dev_err(dev, "unknown error type\n");
1489
} else if (err->int_msk & QM_AXI_RRESP_ERR) {
1490
reg_val = readl(qm->io_base + QM_ABNORMAL_INF02);
1491
if (reg_val & QM_AXI_POISON_ERR)
1492
dev_err(dev, "qm axi poison error happened\n");
1493
}
1494
}
1495
}
1496
1497
static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1498
{
1499
u32 error_status;
1500
1501
error_status = qm_get_hw_error_status(qm);
1502
if (error_status & qm->error_mask) {
1503
if (error_status & QM_ECC_MBIT)
1504
qm->err_status.is_qm_ecc_mbit = true;
1505
1506
qm_log_hw_error(qm, error_status);
1507
if (error_status & qm->err_info.qm_reset_mask) {
1508
/* Disable the same error reporting until device is recovered. */
1509
writel(qm->err_info.nfe & (~error_status),
1510
qm->io_base + QM_RAS_NFE_ENABLE);
1511
return ACC_ERR_NEED_RESET;
1512
}
1513
1514
/* Clear error source if not need reset. */
1515
writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1516
writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1517
writel(qm->err_info.ce, qm->io_base + QM_RAS_CE_ENABLE);
1518
}
1519
1520
return ACC_ERR_RECOVERED;
1521
}
1522
1523
static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1524
{
1525
struct qm_mailbox mailbox;
1526
int ret;
1527
1528
qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1529
mutex_lock(&qm->mailbox_lock);
1530
ret = qm_mb_nolock(qm, &mailbox);
1531
if (ret)
1532
goto err_unlock;
1533
1534
*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1535
((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1536
1537
err_unlock:
1538
mutex_unlock(&qm->mailbox_lock);
1539
return ret;
1540
}
1541
1542
static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1543
{
1544
u32 val;
1545
1546
if (qm->fun_type == QM_HW_PF)
1547
writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1548
1549
val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1550
val |= QM_IFC_INT_SOURCE_MASK;
1551
writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1552
}
1553
1554
static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1555
{
1556
struct device *dev = &qm->pdev->dev;
1557
enum qm_ifc_cmd cmd;
1558
int ret;
1559
1560
ret = qm->ops->get_ifc(qm, &cmd, NULL, vf_id);
1561
if (ret) {
1562
dev_err(dev, "failed to get command from VF(%u)!\n", vf_id);
1563
return;
1564
}
1565
1566
switch (cmd) {
1567
case QM_VF_PREPARE_FAIL:
1568
dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1569
break;
1570
case QM_VF_START_FAIL:
1571
dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1572
break;
1573
case QM_VF_PREPARE_DONE:
1574
case QM_VF_START_DONE:
1575
break;
1576
default:
1577
dev_err(dev, "unsupported command(0x%x) sent by VF(%u)!\n", cmd, vf_id);
1578
break;
1579
}
1580
}
1581
1582
static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1583
{
1584
struct device *dev = &qm->pdev->dev;
1585
u32 vfs_num = qm->vfs_num;
1586
int cnt = 0;
1587
int ret = 0;
1588
u64 val;
1589
u32 i;
1590
1591
if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1592
return 0;
1593
1594
while (true) {
1595
val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1596
/* All VFs send command to PF, break */
1597
if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1598
break;
1599
1600
if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1601
ret = -EBUSY;
1602
break;
1603
}
1604
1605
msleep(QM_WAIT_DST_ACK);
1606
}
1607
1608
/* PF check VFs msg */
1609
for (i = 1; i <= vfs_num; i++) {
1610
if (val & BIT(i))
1611
qm_handle_vf_msg(qm, i);
1612
else
1613
dev_err(dev, "VF(%u) not ping PF!\n", i);
1614
}
1615
1616
/* PF clear interrupt to ack VFs */
1617
qm_clear_cmd_interrupt(qm, val);
1618
1619
return ret;
1620
}
1621
1622
static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1623
{
1624
u32 val;
1625
1626
val = readl(qm->io_base + QM_IFC_INT_CFG);
1627
val &= ~QM_IFC_SEND_ALL_VFS;
1628
val |= fun_num;
1629
writel(val, qm->io_base + QM_IFC_INT_CFG);
1630
1631
val = readl(qm->io_base + QM_IFC_INT_SET_P);
1632
val |= QM_IFC_INT_SET_MASK;
1633
writel(val, qm->io_base + QM_IFC_INT_SET_P);
1634
}
1635
1636
static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1637
{
1638
u32 val;
1639
1640
val = readl(qm->io_base + QM_IFC_INT_SET_V);
1641
val |= QM_IFC_INT_SET_MASK;
1642
writel(val, qm->io_base + QM_IFC_INT_SET_V);
1643
}
1644
1645
static int qm_ping_single_vf(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num)
1646
{
1647
struct device *dev = &qm->pdev->dev;
1648
int cnt = 0;
1649
u64 val;
1650
int ret;
1651
1652
ret = qm->ops->set_ifc_begin(qm, cmd, data, fun_num);
1653
if (ret) {
1654
dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1655
goto err_unlock;
1656
}
1657
1658
qm_trigger_vf_interrupt(qm, fun_num);
1659
while (true) {
1660
msleep(QM_WAIT_DST_ACK);
1661
val = readq(qm->io_base + QM_IFC_READY_STATUS);
1662
/* if VF respond, PF notifies VF successfully. */
1663
if (!(val & BIT(fun_num)))
1664
goto err_unlock;
1665
1666
if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1667
dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1668
ret = -ETIMEDOUT;
1669
break;
1670
}
1671
}
1672
1673
err_unlock:
1674
qm->ops->set_ifc_end(qm);
1675
return ret;
1676
}
1677
1678
static int qm_ping_all_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd)
1679
{
1680
struct device *dev = &qm->pdev->dev;
1681
u32 vfs_num = qm->vfs_num;
1682
u64 val = 0;
1683
int cnt = 0;
1684
int ret;
1685
u32 i;
1686
1687
ret = qm->ops->set_ifc_begin(qm, cmd, 0, QM_MB_PING_ALL_VFS);
1688
if (ret) {
1689
dev_err(dev, "failed to send command(0x%x) to all vfs!\n", cmd);
1690
qm->ops->set_ifc_end(qm);
1691
return ret;
1692
}
1693
1694
qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1695
while (true) {
1696
msleep(QM_WAIT_DST_ACK);
1697
val = readq(qm->io_base + QM_IFC_READY_STATUS);
1698
/* If all VFs acked, PF notifies VFs successfully. */
1699
if (!(val & GENMASK(vfs_num, 1))) {
1700
qm->ops->set_ifc_end(qm);
1701
return 0;
1702
}
1703
1704
if (++cnt > QM_MAX_PF_WAIT_COUNT)
1705
break;
1706
}
1707
1708
qm->ops->set_ifc_end(qm);
1709
1710
/* Check which vf respond timeout. */
1711
for (i = 1; i <= vfs_num; i++) {
1712
if (val & BIT(i))
1713
dev_err(dev, "failed to get response from VF(%u)!\n", i);
1714
}
1715
1716
return -ETIMEDOUT;
1717
}
1718
1719
static int qm_ping_pf(struct hisi_qm *qm, enum qm_ifc_cmd cmd)
1720
{
1721
int cnt = 0;
1722
u32 val;
1723
int ret;
1724
1725
ret = qm->ops->set_ifc_begin(qm, cmd, 0, 0);
1726
if (ret) {
1727
dev_err(&qm->pdev->dev, "failed to send command(0x%x) to PF!\n", cmd);
1728
goto unlock;
1729
}
1730
1731
qm_trigger_pf_interrupt(qm);
1732
/* Waiting for PF response */
1733
while (true) {
1734
msleep(QM_WAIT_DST_ACK);
1735
val = readl(qm->io_base + QM_IFC_INT_SET_V);
1736
if (!(val & QM_IFC_INT_STATUS_MASK))
1737
break;
1738
1739
if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1740
ret = -ETIMEDOUT;
1741
break;
1742
}
1743
}
1744
1745
unlock:
1746
qm->ops->set_ifc_end(qm);
1747
1748
return ret;
1749
}
1750
1751
static int qm_drain_qm(struct hisi_qm *qm)
1752
{
1753
return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0);
1754
}
1755
1756
static int qm_stop_qp(struct hisi_qp *qp)
1757
{
1758
return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1759
}
1760
1761
static int qm_set_msi(struct hisi_qm *qm, bool set)
1762
{
1763
struct pci_dev *pdev = qm->pdev;
1764
1765
if (set) {
1766
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1767
0);
1768
} else {
1769
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1770
ACC_PEH_MSI_DISABLE);
1771
if (qm->err_status.is_qm_ecc_mbit ||
1772
qm->err_status.is_dev_ecc_mbit)
1773
return 0;
1774
1775
mdelay(1);
1776
if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1777
return -EFAULT;
1778
}
1779
1780
return 0;
1781
}
1782
1783
static void qm_wait_msi_finish(struct hisi_qm *qm)
1784
{
1785
struct pci_dev *pdev = qm->pdev;
1786
u32 cmd = ~0;
1787
int cnt = 0;
1788
u32 val;
1789
int ret;
1790
1791
while (true) {
1792
pci_read_config_dword(pdev, pdev->msi_cap +
1793
PCI_MSI_PENDING_64, &cmd);
1794
if (!cmd)
1795
break;
1796
1797
if (++cnt > MAX_WAIT_COUNTS) {
1798
pci_warn(pdev, "failed to empty MSI PENDING!\n");
1799
break;
1800
}
1801
1802
udelay(1);
1803
}
1804
1805
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1806
val, !(val & QM_PEH_DFX_MASK),
1807
POLL_PERIOD, POLL_TIMEOUT);
1808
if (ret)
1809
pci_warn(pdev, "failed to empty PEH MSI!\n");
1810
1811
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1812
val, !(val & QM_PEH_MSI_FINISH_MASK),
1813
POLL_PERIOD, POLL_TIMEOUT);
1814
if (ret)
1815
pci_warn(pdev, "failed to finish MSI operation!\n");
1816
}
1817
1818
static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1819
{
1820
struct pci_dev *pdev = qm->pdev;
1821
int ret = -ETIMEDOUT;
1822
u32 cmd, i;
1823
1824
pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1825
if (set)
1826
cmd |= QM_MSI_CAP_ENABLE;
1827
else
1828
cmd &= ~QM_MSI_CAP_ENABLE;
1829
1830
pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1831
if (set) {
1832
for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1833
pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1834
if (cmd & QM_MSI_CAP_ENABLE)
1835
return 0;
1836
1837
udelay(1);
1838
}
1839
} else {
1840
udelay(WAIT_PERIOD_US_MIN);
1841
qm_wait_msi_finish(qm);
1842
ret = 0;
1843
}
1844
1845
return ret;
1846
}
1847
1848
static int qm_set_ifc_begin_v3(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num)
1849
{
1850
struct qm_mailbox mailbox;
1851
u64 msg;
1852
1853
msg = cmd | (u64)data << QM_IFC_DATA_SHIFT;
1854
1855
qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, msg, fun_num, 0);
1856
mutex_lock(&qm->mailbox_lock);
1857
return qm_mb_nolock(qm, &mailbox);
1858
}
1859
1860
static void qm_set_ifc_end_v3(struct hisi_qm *qm)
1861
{
1862
mutex_unlock(&qm->mailbox_lock);
1863
}
1864
1865
static int qm_get_ifc_v3(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num)
1866
{
1867
u64 msg;
1868
int ret;
1869
1870
ret = qm_get_mb_cmd(qm, &msg, fun_num);
1871
if (ret)
1872
return ret;
1873
1874
*cmd = msg & QM_IFC_CMD_MASK;
1875
1876
if (data)
1877
*data = msg >> QM_IFC_DATA_SHIFT;
1878
1879
return 0;
1880
}
1881
1882
static int qm_set_ifc_begin_v4(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num)
1883
{
1884
uintptr_t offset;
1885
u64 msg;
1886
1887
if (qm->fun_type == QM_HW_PF)
1888
offset = QM_PF2VF_PF_W;
1889
else
1890
offset = QM_VF2PF_VF_W;
1891
1892
msg = cmd | (u64)data << QM_IFC_DATA_SHIFT;
1893
1894
mutex_lock(&qm->ifc_lock);
1895
writeq(msg, qm->io_base + offset);
1896
1897
return 0;
1898
}
1899
1900
static void qm_set_ifc_end_v4(struct hisi_qm *qm)
1901
{
1902
mutex_unlock(&qm->ifc_lock);
1903
}
1904
1905
static u64 qm_get_ifc_pf(struct hisi_qm *qm, u32 fun_num)
1906
{
1907
uintptr_t offset;
1908
1909
offset = QM_VF2PF_PF_R + QM_VF2PF_REG_SIZE * fun_num;
1910
1911
return (u64)readl(qm->io_base + offset);
1912
}
1913
1914
static u64 qm_get_ifc_vf(struct hisi_qm *qm)
1915
{
1916
return readq(qm->io_base + QM_PF2VF_VF_R);
1917
}
1918
1919
static int qm_get_ifc_v4(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num)
1920
{
1921
u64 msg;
1922
1923
if (qm->fun_type == QM_HW_PF)
1924
msg = qm_get_ifc_pf(qm, fun_num);
1925
else
1926
msg = qm_get_ifc_vf(qm);
1927
1928
*cmd = msg & QM_IFC_CMD_MASK;
1929
1930
if (data)
1931
*data = msg >> QM_IFC_DATA_SHIFT;
1932
1933
return 0;
1934
}
1935
1936
static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1937
.qm_db = qm_db_v1,
1938
.hw_error_init = qm_hw_error_init_v1,
1939
.set_msi = qm_set_msi,
1940
};
1941
1942
static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1943
.get_vft = qm_get_vft_v2,
1944
.qm_db = qm_db_v2,
1945
.hw_error_init = qm_hw_error_init_v2,
1946
.hw_error_uninit = qm_hw_error_uninit_v2,
1947
.hw_error_handle = qm_hw_error_handle_v2,
1948
.set_msi = qm_set_msi,
1949
};
1950
1951
static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1952
.get_vft = qm_get_vft_v2,
1953
.qm_db = qm_db_v2,
1954
.hw_error_init = qm_hw_error_init_v3,
1955
.hw_error_uninit = qm_hw_error_uninit_v3,
1956
.hw_error_handle = qm_hw_error_handle_v2,
1957
.set_msi = qm_set_msi_v3,
1958
.set_ifc_begin = qm_set_ifc_begin_v3,
1959
.set_ifc_end = qm_set_ifc_end_v3,
1960
.get_ifc = qm_get_ifc_v3,
1961
};
1962
1963
static const struct hisi_qm_hw_ops qm_hw_ops_v4 = {
1964
.get_vft = qm_get_vft_v2,
1965
.qm_db = qm_db_v2,
1966
.hw_error_init = qm_hw_error_init_v3,
1967
.hw_error_uninit = qm_hw_error_uninit_v3,
1968
.hw_error_handle = qm_hw_error_handle_v2,
1969
.set_msi = qm_set_msi_v3,
1970
.set_ifc_begin = qm_set_ifc_begin_v4,
1971
.set_ifc_end = qm_set_ifc_end_v4,
1972
.get_ifc = qm_get_ifc_v4,
1973
};
1974
1975
static void *qm_get_avail_sqe(struct hisi_qp *qp)
1976
{
1977
struct hisi_qp_status *qp_status = &qp->qp_status;
1978
u16 sq_tail = qp_status->sq_tail;
1979
1980
if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1981
return NULL;
1982
1983
return qp->sqe + sq_tail * qp->qm->sqe_size;
1984
}
1985
1986
static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1987
{
1988
u64 *addr;
1989
1990
/* Use last 64 bits of DUS to reset status. */
1991
addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1992
*addr = 0;
1993
}
1994
1995
static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1996
{
1997
struct device *dev = &qm->pdev->dev;
1998
struct hisi_qp *qp;
1999
int qp_id;
2000
2001
if (atomic_read(&qm->status.flags) == QM_STOP) {
2002
dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n");
2003
return ERR_PTR(-EPERM);
2004
}
2005
2006
if (qm->qp_in_used == qm->qp_num) {
2007
dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2008
qm->qp_num);
2009
atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2010
return ERR_PTR(-EBUSY);
2011
}
2012
2013
qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
2014
if (qp_id < 0) {
2015
dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2016
qm->qp_num);
2017
atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2018
return ERR_PTR(-EBUSY);
2019
}
2020
2021
qp = &qm->qp_array[qp_id];
2022
hisi_qm_unset_hw_reset(qp);
2023
memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
2024
2025
qp->event_cb = NULL;
2026
qp->req_cb = NULL;
2027
qp->qp_id = qp_id;
2028
qp->alg_type = alg_type;
2029
qp->is_in_kernel = true;
2030
qm->qp_in_used++;
2031
2032
return qp;
2033
}
2034
2035
/**
2036
* hisi_qm_create_qp() - Create a queue pair from qm.
2037
* @qm: The qm we create a qp from.
2038
* @alg_type: Accelerator specific algorithm type in sqc.
2039
*
2040
* Return created qp, negative error code if failed.
2041
*/
2042
static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
2043
{
2044
struct hisi_qp *qp;
2045
int ret;
2046
2047
ret = qm_pm_get_sync(qm);
2048
if (ret)
2049
return ERR_PTR(ret);
2050
2051
down_write(&qm->qps_lock);
2052
qp = qm_create_qp_nolock(qm, alg_type);
2053
up_write(&qm->qps_lock);
2054
2055
if (IS_ERR(qp))
2056
qm_pm_put_sync(qm);
2057
2058
return qp;
2059
}
2060
2061
/**
2062
* hisi_qm_release_qp() - Release a qp back to its qm.
2063
* @qp: The qp we want to release.
2064
*
2065
* This function releases the resource of a qp.
2066
*/
2067
static void hisi_qm_release_qp(struct hisi_qp *qp)
2068
{
2069
struct hisi_qm *qm = qp->qm;
2070
2071
down_write(&qm->qps_lock);
2072
2073
qm->qp_in_used--;
2074
idr_remove(&qm->qp_idr, qp->qp_id);
2075
2076
up_write(&qm->qps_lock);
2077
2078
qm_pm_put_sync(qm);
2079
}
2080
2081
static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2082
{
2083
struct hisi_qm *qm = qp->qm;
2084
enum qm_hw_ver ver = qm->ver;
2085
struct qm_sqc sqc = {0};
2086
2087
if (ver == QM_HW_V1) {
2088
sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
2089
sqc.w8 = cpu_to_le16(qp->sq_depth - 1);
2090
} else {
2091
sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
2092
sqc.w8 = 0; /* rand_qc */
2093
}
2094
sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
2095
sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma));
2096
sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma));
2097
sqc.cq_num = cpu_to_le16(qp_id);
2098
sqc.pasid = cpu_to_le16(pasid);
2099
2100
if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2101
sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
2102
QM_QC_PASID_ENABLE_SHIFT);
2103
2104
return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0);
2105
}
2106
2107
static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2108
{
2109
struct hisi_qm *qm = qp->qm;
2110
enum qm_hw_ver ver = qm->ver;
2111
struct qm_cqc cqc = {0};
2112
2113
if (ver == QM_HW_V1) {
2114
cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE));
2115
cqc.w8 = cpu_to_le16(qp->cq_depth - 1);
2116
} else {
2117
cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
2118
cqc.w8 = 0; /* rand_qc */
2119
}
2120
/*
2121
* Enable request finishing interrupts defaultly.
2122
* So, there will be some interrupts until disabling
2123
* this.
2124
*/
2125
cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2126
cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma));
2127
cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma));
2128
cqc.pasid = cpu_to_le16(pasid);
2129
2130
if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2131
cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2132
2133
return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0);
2134
}
2135
2136
static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2137
{
2138
int ret;
2139
2140
qm_init_qp_status(qp);
2141
2142
ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2143
if (ret)
2144
return ret;
2145
2146
return qm_cq_ctx_cfg(qp, qp_id, pasid);
2147
}
2148
2149
static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2150
{
2151
struct hisi_qm *qm = qp->qm;
2152
struct device *dev = &qm->pdev->dev;
2153
int qp_id = qp->qp_id;
2154
u32 pasid = arg;
2155
int ret;
2156
2157
if (atomic_read(&qm->status.flags) == QM_STOP) {
2158
dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n");
2159
return -EPERM;
2160
}
2161
2162
ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2163
if (ret)
2164
return ret;
2165
2166
atomic_set(&qp->qp_status.flags, QP_START);
2167
dev_dbg(dev, "queue %d started\n", qp_id);
2168
2169
return 0;
2170
}
2171
2172
/**
2173
* hisi_qm_start_qp() - Start a qp into running.
2174
* @qp: The qp we want to start to run.
2175
* @arg: Accelerator specific argument.
2176
*
2177
* After this function, qp can receive request from user. Return 0 if
2178
* successful, negative error code if failed.
2179
*/
2180
int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2181
{
2182
struct hisi_qm *qm = qp->qm;
2183
int ret;
2184
2185
down_write(&qm->qps_lock);
2186
ret = qm_start_qp_nolock(qp, arg);
2187
up_write(&qm->qps_lock);
2188
2189
return ret;
2190
}
2191
EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2192
2193
/**
2194
* qp_stop_fail_cb() - call request cb.
2195
* @qp: stopped failed qp.
2196
*
2197
* Callback function should be called whether task completed or not.
2198
*/
2199
static void qp_stop_fail_cb(struct hisi_qp *qp)
2200
{
2201
int qp_used = atomic_read(&qp->qp_status.used);
2202
u16 cur_tail = qp->qp_status.sq_tail;
2203
u16 sq_depth = qp->sq_depth;
2204
u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2205
struct hisi_qm *qm = qp->qm;
2206
u16 pos;
2207
int i;
2208
2209
for (i = 0; i < qp_used; i++) {
2210
pos = (i + cur_head) % sq_depth;
2211
qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2212
atomic_dec(&qp->qp_status.used);
2213
}
2214
}
2215
2216
static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id)
2217
{
2218
struct device *dev = &qm->pdev->dev;
2219
struct qm_sqc sqc;
2220
struct qm_cqc cqc;
2221
int ret, i = 0;
2222
2223
while (++i) {
2224
ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1);
2225
if (ret) {
2226
dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2227
*state = QM_DUMP_SQC_FAIL;
2228
return ret;
2229
}
2230
2231
ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1);
2232
if (ret) {
2233
dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2234
*state = QM_DUMP_CQC_FAIL;
2235
return ret;
2236
}
2237
2238
if ((sqc.tail == cqc.tail) &&
2239
(QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2240
break;
2241
2242
if (i == MAX_WAIT_COUNTS) {
2243
dev_err(dev, "Fail to empty queue %u!\n", qp_id);
2244
*state = QM_STOP_QUEUE_FAIL;
2245
return -ETIMEDOUT;
2246
}
2247
2248
usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2249
}
2250
2251
return 0;
2252
}
2253
2254
/**
2255
* qm_drain_qp() - Drain a qp.
2256
* @qp: The qp we want to drain.
2257
*
2258
* If the device does not support stopping queue by sending mailbox,
2259
* determine whether the queue is cleared by judging the tail pointers of
2260
* sq and cq.
2261
*/
2262
static int qm_drain_qp(struct hisi_qp *qp)
2263
{
2264
struct hisi_qm *qm = qp->qm;
2265
u32 state = 0;
2266
int ret;
2267
2268
/* No need to judge if master OOO is blocked. */
2269
if (qm_check_dev_error(qm))
2270
return 0;
2271
2272
/* HW V3 supports drain qp by device */
2273
if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2274
ret = qm_stop_qp(qp);
2275
if (ret) {
2276
dev_err(&qm->pdev->dev, "Failed to stop qp!\n");
2277
state = QM_STOP_QUEUE_FAIL;
2278
goto set_dev_state;
2279
}
2280
return ret;
2281
}
2282
2283
ret = qm_wait_qp_empty(qm, &state, qp->qp_id);
2284
if (ret)
2285
goto set_dev_state;
2286
2287
return 0;
2288
2289
set_dev_state:
2290
if (qm->debug.dev_dfx.dev_timeout)
2291
qm->debug.dev_dfx.dev_state = state;
2292
2293
return ret;
2294
}
2295
2296
static void qm_stop_qp_nolock(struct hisi_qp *qp)
2297
{
2298
struct hisi_qm *qm = qp->qm;
2299
struct device *dev = &qm->pdev->dev;
2300
int ret;
2301
2302
/*
2303
* It is allowed to stop and release qp when reset, If the qp is
2304
* stopped when reset but still want to be released then, the
2305
* is_resetting flag should be set negative so that this qp will not
2306
* be restarted after reset.
2307
*/
2308
if (atomic_read(&qp->qp_status.flags) != QP_START) {
2309
qp->is_resetting = false;
2310
return;
2311
}
2312
2313
atomic_set(&qp->qp_status.flags, QP_STOP);
2314
2315
/* V3 supports direct stop function when FLR prepare */
2316
if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) {
2317
ret = qm_drain_qp(qp);
2318
if (ret)
2319
dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id);
2320
}
2321
2322
flush_workqueue(qm->wq);
2323
if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2324
qp_stop_fail_cb(qp);
2325
2326
dev_dbg(dev, "stop queue %u!", qp->qp_id);
2327
}
2328
2329
/**
2330
* hisi_qm_stop_qp() - Stop a qp in qm.
2331
* @qp: The qp we want to stop.
2332
*
2333
* This function is reverse of hisi_qm_start_qp.
2334
*/
2335
void hisi_qm_stop_qp(struct hisi_qp *qp)
2336
{
2337
down_write(&qp->qm->qps_lock);
2338
qm_stop_qp_nolock(qp);
2339
up_write(&qp->qm->qps_lock);
2340
}
2341
EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2342
2343
/**
2344
* hisi_qp_send() - Queue up a task in the hardware queue.
2345
* @qp: The qp in which to put the message.
2346
* @msg: The message.
2347
*
2348
* This function will return -EBUSY if qp is currently full, and -EAGAIN
2349
* if qp related qm is resetting.
2350
*
2351
* Note: This function may run with qm_irq_thread and ACC reset at same time.
2352
* It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2353
* reset may happen, we have no lock here considering performance. This
2354
* causes current qm_db sending fail or can not receive sended sqe. QM
2355
* sync/async receive function should handle the error sqe. ACC reset
2356
* done function should clear used sqe to 0.
2357
*/
2358
int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2359
{
2360
struct hisi_qp_status *qp_status = &qp->qp_status;
2361
u16 sq_tail = qp_status->sq_tail;
2362
u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2363
void *sqe = qm_get_avail_sqe(qp);
2364
2365
if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2366
atomic_read(&qp->qm->status.flags) == QM_STOP ||
2367
qp->is_resetting)) {
2368
dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2369
return -EAGAIN;
2370
}
2371
2372
if (!sqe)
2373
return -EBUSY;
2374
2375
memcpy(sqe, msg, qp->qm->sqe_size);
2376
2377
qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2378
atomic_inc(&qp->qp_status.used);
2379
qp_status->sq_tail = sq_tail_next;
2380
2381
return 0;
2382
}
2383
EXPORT_SYMBOL_GPL(hisi_qp_send);
2384
2385
static void hisi_qm_cache_wb(struct hisi_qm *qm)
2386
{
2387
unsigned int val;
2388
2389
if (qm->ver == QM_HW_V1)
2390
return;
2391
2392
writel(0x1, qm->io_base + QM_CACHE_WB_START);
2393
if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2394
val, val & BIT(0), POLL_PERIOD,
2395
POLL_TIMEOUT))
2396
dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2397
}
2398
2399
static void qm_qp_event_notifier(struct hisi_qp *qp)
2400
{
2401
wake_up_interruptible(&qp->uacce_q->wait);
2402
}
2403
2404
/* This function returns free number of qp in qm. */
2405
static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2406
{
2407
struct hisi_qm *qm = uacce->priv;
2408
int ret;
2409
2410
down_read(&qm->qps_lock);
2411
ret = qm->qp_num - qm->qp_in_used;
2412
up_read(&qm->qps_lock);
2413
2414
return ret;
2415
}
2416
2417
static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2418
{
2419
int i;
2420
2421
for (i = 0; i < qm->qp_num; i++)
2422
qm_set_qp_disable(&qm->qp_array[i], offset);
2423
}
2424
2425
static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2426
unsigned long arg,
2427
struct uacce_queue *q)
2428
{
2429
struct hisi_qm *qm = uacce->priv;
2430
struct hisi_qp *qp;
2431
u8 alg_type = 0;
2432
2433
qp = hisi_qm_create_qp(qm, alg_type);
2434
if (IS_ERR(qp))
2435
return PTR_ERR(qp);
2436
2437
q->priv = qp;
2438
q->uacce = uacce;
2439
qp->uacce_q = q;
2440
qp->event_cb = qm_qp_event_notifier;
2441
qp->pasid = arg;
2442
qp->is_in_kernel = false;
2443
2444
return 0;
2445
}
2446
2447
static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2448
{
2449
struct hisi_qp *qp = q->priv;
2450
2451
hisi_qm_release_qp(qp);
2452
}
2453
2454
/* map sq/cq/doorbell to user space */
2455
static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2456
struct vm_area_struct *vma,
2457
struct uacce_qfile_region *qfr)
2458
{
2459
struct hisi_qp *qp = q->priv;
2460
struct hisi_qm *qm = qp->qm;
2461
resource_size_t phys_base = qm->db_phys_base +
2462
qp->qp_id * qm->db_interval;
2463
size_t sz = vma->vm_end - vma->vm_start;
2464
struct pci_dev *pdev = qm->pdev;
2465
struct device *dev = &pdev->dev;
2466
unsigned long vm_pgoff;
2467
int ret;
2468
2469
switch (qfr->type) {
2470
case UACCE_QFRT_MMIO:
2471
if (qm->ver == QM_HW_V1) {
2472
if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2473
return -EINVAL;
2474
} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2475
if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2476
QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2477
return -EINVAL;
2478
} else {
2479
if (sz > qm->db_interval)
2480
return -EINVAL;
2481
}
2482
2483
vm_flags_set(vma, VM_IO);
2484
2485
return remap_pfn_range(vma, vma->vm_start,
2486
phys_base >> PAGE_SHIFT,
2487
sz, pgprot_noncached(vma->vm_page_prot));
2488
case UACCE_QFRT_DUS:
2489
if (sz != qp->qdma.size)
2490
return -EINVAL;
2491
2492
/*
2493
* dma_mmap_coherent() requires vm_pgoff as 0
2494
* restore vm_pfoff to initial value for mmap()
2495
*/
2496
vm_pgoff = vma->vm_pgoff;
2497
vma->vm_pgoff = 0;
2498
ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2499
qp->qdma.dma, sz);
2500
vma->vm_pgoff = vm_pgoff;
2501
return ret;
2502
2503
default:
2504
return -EINVAL;
2505
}
2506
}
2507
2508
static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2509
{
2510
struct hisi_qp *qp = q->priv;
2511
2512
return hisi_qm_start_qp(qp, qp->pasid);
2513
}
2514
2515
static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2516
{
2517
struct hisi_qp *qp = q->priv;
2518
struct hisi_qm *qm = qp->qm;
2519
struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx;
2520
u32 i = 0;
2521
2522
hisi_qm_stop_qp(qp);
2523
2524
if (!dev_dfx->dev_timeout || !dev_dfx->dev_state)
2525
return;
2526
2527
/*
2528
* After the queue fails to be stopped,
2529
* wait for a period of time before releasing the queue.
2530
*/
2531
while (++i) {
2532
msleep(WAIT_PERIOD);
2533
2534
/* Since dev_timeout maybe modified, check i >= dev_timeout */
2535
if (i >= dev_dfx->dev_timeout) {
2536
dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n",
2537
qp->qp_id, dev_dfx->dev_state);
2538
dev_dfx->dev_state = QM_FINISH_WAIT;
2539
break;
2540
}
2541
}
2542
}
2543
2544
static int hisi_qm_is_q_updated(struct uacce_queue *q)
2545
{
2546
struct hisi_qp *qp = q->priv;
2547
struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2548
int updated = 0;
2549
2550
while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2551
/* make sure to read data from memory */
2552
dma_rmb();
2553
qm_cq_head_update(qp);
2554
cqe = qp->cqe + qp->qp_status.cq_head;
2555
updated = 1;
2556
}
2557
2558
return updated;
2559
}
2560
2561
static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2562
{
2563
struct hisi_qm *qm = q->uacce->priv;
2564
struct hisi_qp *qp = q->priv;
2565
2566
down_write(&qm->qps_lock);
2567
qp->alg_type = type;
2568
up_write(&qm->qps_lock);
2569
}
2570
2571
static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2572
unsigned long arg)
2573
{
2574
struct hisi_qp *qp = q->priv;
2575
struct hisi_qp_info qp_info;
2576
struct hisi_qp_ctx qp_ctx;
2577
2578
if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2579
if (copy_from_user(&qp_ctx, (void __user *)arg,
2580
sizeof(struct hisi_qp_ctx)))
2581
return -EFAULT;
2582
2583
if (qp_ctx.qc_type > QM_MAX_QC_TYPE)
2584
return -EINVAL;
2585
2586
qm_set_sqctype(q, qp_ctx.qc_type);
2587
qp_ctx.id = qp->qp_id;
2588
2589
if (copy_to_user((void __user *)arg, &qp_ctx,
2590
sizeof(struct hisi_qp_ctx)))
2591
return -EFAULT;
2592
2593
return 0;
2594
} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2595
if (copy_from_user(&qp_info, (void __user *)arg,
2596
sizeof(struct hisi_qp_info)))
2597
return -EFAULT;
2598
2599
qp_info.sqe_size = qp->qm->sqe_size;
2600
qp_info.sq_depth = qp->sq_depth;
2601
qp_info.cq_depth = qp->cq_depth;
2602
2603
if (copy_to_user((void __user *)arg, &qp_info,
2604
sizeof(struct hisi_qp_info)))
2605
return -EFAULT;
2606
2607
return 0;
2608
}
2609
2610
return -EINVAL;
2611
}
2612
2613
/**
2614
* qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2615
* according to user's configuration of error threshold.
2616
* @qm: the uacce device
2617
*/
2618
static int qm_hw_err_isolate(struct hisi_qm *qm)
2619
{
2620
struct qm_hw_err *err, *tmp, *hw_err;
2621
struct qm_err_isolate *isolate;
2622
u32 count = 0;
2623
2624
isolate = &qm->isolate_data;
2625
2626
#define SECONDS_PER_HOUR 3600
2627
2628
/* All the hw errs are processed by PF driver */
2629
if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2630
return 0;
2631
2632
hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2633
if (!hw_err)
2634
return -ENOMEM;
2635
2636
/*
2637
* Time-stamp every slot AER error. Then check the AER error log when the
2638
* next device AER error occurred. if the device slot AER error count exceeds
2639
* the setting error threshold in one hour, the isolated state will be set
2640
* to true. And the AER error logs that exceed one hour will be cleared.
2641
*/
2642
mutex_lock(&isolate->isolate_lock);
2643
hw_err->timestamp = jiffies;
2644
list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2645
if ((hw_err->timestamp - err->timestamp) / HZ >
2646
SECONDS_PER_HOUR) {
2647
list_del(&err->list);
2648
kfree(err);
2649
} else {
2650
count++;
2651
}
2652
}
2653
list_add(&hw_err->list, &isolate->qm_hw_errs);
2654
mutex_unlock(&isolate->isolate_lock);
2655
2656
if (count >= isolate->err_threshold)
2657
isolate->is_isolate = true;
2658
2659
return 0;
2660
}
2661
2662
static void qm_hw_err_destroy(struct hisi_qm *qm)
2663
{
2664
struct qm_hw_err *err, *tmp;
2665
2666
mutex_lock(&qm->isolate_data.isolate_lock);
2667
list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2668
list_del(&err->list);
2669
kfree(err);
2670
}
2671
mutex_unlock(&qm->isolate_data.isolate_lock);
2672
}
2673
2674
static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2675
{
2676
struct hisi_qm *qm = uacce->priv;
2677
struct hisi_qm *pf_qm;
2678
2679
if (uacce->is_vf)
2680
pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2681
else
2682
pf_qm = qm;
2683
2684
return pf_qm->isolate_data.is_isolate ?
2685
UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2686
}
2687
2688
static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2689
{
2690
struct hisi_qm *qm = uacce->priv;
2691
2692
/* Must be set by PF */
2693
if (uacce->is_vf)
2694
return -EPERM;
2695
2696
if (qm->isolate_data.is_isolate)
2697
return -EPERM;
2698
2699
qm->isolate_data.err_threshold = num;
2700
2701
/* After the policy is updated, need to reset the hardware err list */
2702
qm_hw_err_destroy(qm);
2703
2704
return 0;
2705
}
2706
2707
static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2708
{
2709
struct hisi_qm *qm = uacce->priv;
2710
struct hisi_qm *pf_qm;
2711
2712
if (uacce->is_vf) {
2713
pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2714
return pf_qm->isolate_data.err_threshold;
2715
}
2716
2717
return qm->isolate_data.err_threshold;
2718
}
2719
2720
static const struct uacce_ops uacce_qm_ops = {
2721
.get_available_instances = hisi_qm_get_available_instances,
2722
.get_queue = hisi_qm_uacce_get_queue,
2723
.put_queue = hisi_qm_uacce_put_queue,
2724
.start_queue = hisi_qm_uacce_start_queue,
2725
.stop_queue = hisi_qm_uacce_stop_queue,
2726
.mmap = hisi_qm_uacce_mmap,
2727
.ioctl = hisi_qm_uacce_ioctl,
2728
.is_q_updated = hisi_qm_is_q_updated,
2729
.get_isolate_state = hisi_qm_get_isolate_state,
2730
.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2731
.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2732
};
2733
2734
static void qm_remove_uacce(struct hisi_qm *qm)
2735
{
2736
struct uacce_device *uacce = qm->uacce;
2737
2738
if (qm->use_sva) {
2739
qm_hw_err_destroy(qm);
2740
uacce_remove(uacce);
2741
qm->uacce = NULL;
2742
}
2743
}
2744
2745
static int qm_alloc_uacce(struct hisi_qm *qm)
2746
{
2747
struct pci_dev *pdev = qm->pdev;
2748
struct uacce_device *uacce;
2749
unsigned long mmio_page_nr;
2750
unsigned long dus_page_nr;
2751
u16 sq_depth, cq_depth;
2752
struct uacce_interface interface = {
2753
.flags = UACCE_DEV_SVA,
2754
.ops = &uacce_qm_ops,
2755
};
2756
int ret;
2757
2758
ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2759
sizeof(interface.name));
2760
if (ret < 0)
2761
return -ENAMETOOLONG;
2762
2763
uacce = uacce_alloc(&pdev->dev, &interface);
2764
if (IS_ERR(uacce))
2765
return PTR_ERR(uacce);
2766
2767
if (uacce->flags & UACCE_DEV_SVA) {
2768
qm->use_sva = true;
2769
} else {
2770
/* only consider sva case */
2771
qm_remove_uacce(qm);
2772
return -EINVAL;
2773
}
2774
2775
uacce->is_vf = pdev->is_virtfn;
2776
uacce->priv = qm;
2777
2778
if (qm->ver == QM_HW_V1)
2779
uacce->api_ver = HISI_QM_API_VER_BASE;
2780
else if (qm->ver == QM_HW_V2)
2781
uacce->api_ver = HISI_QM_API_VER2_BASE;
2782
else
2783
uacce->api_ver = HISI_QM_API_VER3_BASE;
2784
2785
if (qm->ver == QM_HW_V1)
2786
mmio_page_nr = QM_DOORBELL_PAGE_NR;
2787
else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2788
mmio_page_nr = QM_DOORBELL_PAGE_NR +
2789
QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2790
else
2791
mmio_page_nr = qm->db_interval / PAGE_SIZE;
2792
2793
qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2794
2795
/* Add one more page for device or qp status */
2796
dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2797
sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >>
2798
PAGE_SHIFT;
2799
2800
uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2801
uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr;
2802
2803
qm->uacce = uacce;
2804
INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2805
mutex_init(&qm->isolate_data.isolate_lock);
2806
2807
return 0;
2808
}
2809
2810
/**
2811
* qm_frozen() - Try to froze QM to cut continuous queue request. If
2812
* there is user on the QM, return failure without doing anything.
2813
* @qm: The qm needed to be fronzen.
2814
*
2815
* This function frozes QM, then we can do SRIOV disabling.
2816
*/
2817
static int qm_frozen(struct hisi_qm *qm)
2818
{
2819
if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2820
return 0;
2821
2822
down_write(&qm->qps_lock);
2823
2824
if (!qm->qp_in_used) {
2825
qm->qp_in_used = qm->qp_num;
2826
up_write(&qm->qps_lock);
2827
set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2828
return 0;
2829
}
2830
2831
up_write(&qm->qps_lock);
2832
2833
return -EBUSY;
2834
}
2835
2836
static int qm_try_frozen_vfs(struct pci_dev *pdev,
2837
struct hisi_qm_list *qm_list)
2838
{
2839
struct hisi_qm *qm, *vf_qm;
2840
struct pci_dev *dev;
2841
int ret = 0;
2842
2843
if (!qm_list || !pdev)
2844
return -EINVAL;
2845
2846
/* Try to frozen all the VFs as disable SRIOV */
2847
mutex_lock(&qm_list->lock);
2848
list_for_each_entry(qm, &qm_list->list, list) {
2849
dev = qm->pdev;
2850
if (dev == pdev)
2851
continue;
2852
if (pci_physfn(dev) == pdev) {
2853
vf_qm = pci_get_drvdata(dev);
2854
ret = qm_frozen(vf_qm);
2855
if (ret)
2856
goto frozen_fail;
2857
}
2858
}
2859
2860
frozen_fail:
2861
mutex_unlock(&qm_list->lock);
2862
2863
return ret;
2864
}
2865
2866
/**
2867
* hisi_qm_wait_task_finish() - Wait until the task is finished
2868
* when removing the driver.
2869
* @qm: The qm needed to wait for the task to finish.
2870
* @qm_list: The list of all available devices.
2871
*/
2872
void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2873
{
2874
while (qm_frozen(qm) ||
2875
((qm->fun_type == QM_HW_PF) &&
2876
qm_try_frozen_vfs(qm->pdev, qm_list))) {
2877
msleep(WAIT_PERIOD);
2878
}
2879
2880
while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2881
test_bit(QM_RESETTING, &qm->misc_ctl))
2882
msleep(WAIT_PERIOD);
2883
2884
if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2885
flush_work(&qm->cmd_process);
2886
2887
udelay(REMOVE_WAIT_DELAY);
2888
}
2889
EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2890
2891
static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2892
{
2893
struct device *dev = &qm->pdev->dev;
2894
struct qm_dma *qdma;
2895
int i;
2896
2897
for (i = num - 1; i >= 0; i--) {
2898
qdma = &qm->qp_array[i].qdma;
2899
dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2900
kfree(qm->poll_data[i].qp_finish_id);
2901
}
2902
2903
kfree(qm->poll_data);
2904
kfree(qm->qp_array);
2905
}
2906
2907
static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2908
u16 sq_depth, u16 cq_depth)
2909
{
2910
struct device *dev = &qm->pdev->dev;
2911
size_t off = qm->sqe_size * sq_depth;
2912
struct hisi_qp *qp;
2913
int ret = -ENOMEM;
2914
2915
qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2916
GFP_KERNEL);
2917
if (!qm->poll_data[id].qp_finish_id)
2918
return -ENOMEM;
2919
2920
qp = &qm->qp_array[id];
2921
qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2922
GFP_KERNEL);
2923
if (!qp->qdma.va)
2924
goto err_free_qp_finish_id;
2925
2926
qp->sqe = qp->qdma.va;
2927
qp->sqe_dma = qp->qdma.dma;
2928
qp->cqe = qp->qdma.va + off;
2929
qp->cqe_dma = qp->qdma.dma + off;
2930
qp->qdma.size = dma_size;
2931
qp->sq_depth = sq_depth;
2932
qp->cq_depth = cq_depth;
2933
qp->qm = qm;
2934
qp->qp_id = id;
2935
2936
return 0;
2937
2938
err_free_qp_finish_id:
2939
kfree(qm->poll_data[id].qp_finish_id);
2940
return ret;
2941
}
2942
2943
static void hisi_qm_pre_init(struct hisi_qm *qm)
2944
{
2945
struct pci_dev *pdev = qm->pdev;
2946
2947
if (qm->ver == QM_HW_V1)
2948
qm->ops = &qm_hw_ops_v1;
2949
else if (qm->ver == QM_HW_V2)
2950
qm->ops = &qm_hw_ops_v2;
2951
else if (qm->ver == QM_HW_V3)
2952
qm->ops = &qm_hw_ops_v3;
2953
else
2954
qm->ops = &qm_hw_ops_v4;
2955
2956
pci_set_drvdata(pdev, qm);
2957
mutex_init(&qm->mailbox_lock);
2958
mutex_init(&qm->ifc_lock);
2959
init_rwsem(&qm->qps_lock);
2960
qm->qp_in_used = 0;
2961
if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2962
if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2963
dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2964
}
2965
}
2966
2967
static void qm_cmd_uninit(struct hisi_qm *qm)
2968
{
2969
u32 val;
2970
2971
if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2972
return;
2973
2974
val = readl(qm->io_base + QM_IFC_INT_MASK);
2975
val |= QM_IFC_INT_DISABLE;
2976
writel(val, qm->io_base + QM_IFC_INT_MASK);
2977
}
2978
2979
static void qm_cmd_init(struct hisi_qm *qm)
2980
{
2981
u32 val;
2982
2983
if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2984
return;
2985
2986
/* Clear communication interrupt source */
2987
qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2988
2989
/* Enable pf to vf communication reg. */
2990
val = readl(qm->io_base + QM_IFC_INT_MASK);
2991
val &= ~QM_IFC_INT_DISABLE;
2992
writel(val, qm->io_base + QM_IFC_INT_MASK);
2993
}
2994
2995
static void qm_put_pci_res(struct hisi_qm *qm)
2996
{
2997
struct pci_dev *pdev = qm->pdev;
2998
2999
if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
3000
iounmap(qm->db_io_base);
3001
3002
iounmap(qm->io_base);
3003
pci_release_mem_regions(pdev);
3004
}
3005
3006
static void hisi_qm_pci_uninit(struct hisi_qm *qm)
3007
{
3008
struct pci_dev *pdev = qm->pdev;
3009
3010
pci_free_irq_vectors(pdev);
3011
qm_put_pci_res(qm);
3012
pci_disable_device(pdev);
3013
}
3014
3015
static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
3016
{
3017
if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
3018
writel(state, qm->io_base + QM_VF_STATE);
3019
}
3020
3021
static void hisi_qm_unint_work(struct hisi_qm *qm)
3022
{
3023
destroy_workqueue(qm->wq);
3024
}
3025
3026
static void hisi_qm_free_rsv_buf(struct hisi_qm *qm)
3027
{
3028
struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma;
3029
struct device *dev = &qm->pdev->dev;
3030
3031
dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma);
3032
}
3033
3034
static void hisi_qm_memory_uninit(struct hisi_qm *qm)
3035
{
3036
struct device *dev = &qm->pdev->dev;
3037
3038
hisi_qp_memory_uninit(qm, qm->qp_num);
3039
hisi_qm_free_rsv_buf(qm);
3040
if (qm->qdma.va) {
3041
hisi_qm_cache_wb(qm);
3042
dma_free_coherent(dev, qm->qdma.size,
3043
qm->qdma.va, qm->qdma.dma);
3044
}
3045
3046
idr_destroy(&qm->qp_idr);
3047
3048
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3049
kfree(qm->factor);
3050
}
3051
3052
/**
3053
* hisi_qm_uninit() - Uninitialize qm.
3054
* @qm: The qm needed uninit.
3055
*
3056
* This function uninits qm related device resources.
3057
*/
3058
void hisi_qm_uninit(struct hisi_qm *qm)
3059
{
3060
qm_cmd_uninit(qm);
3061
hisi_qm_unint_work(qm);
3062
3063
down_write(&qm->qps_lock);
3064
hisi_qm_memory_uninit(qm);
3065
hisi_qm_set_state(qm, QM_NOT_READY);
3066
up_write(&qm->qps_lock);
3067
3068
qm_remove_uacce(qm);
3069
qm_irqs_unregister(qm);
3070
hisi_qm_pci_uninit(qm);
3071
}
3072
EXPORT_SYMBOL_GPL(hisi_qm_uninit);
3073
3074
/**
3075
* hisi_qm_get_vft() - Get vft from a qm.
3076
* @qm: The qm we want to get its vft.
3077
* @base: The base number of queue in vft.
3078
* @number: The number of queues in vft.
3079
*
3080
* We can allocate multiple queues to a qm by configuring virtual function
3081
* table. We get related configures by this function. Normally, we call this
3082
* function in VF driver to get the queue information.
3083
*
3084
* qm hw v1 does not support this interface.
3085
*/
3086
static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
3087
{
3088
if (!base || !number)
3089
return -EINVAL;
3090
3091
if (!qm->ops->get_vft) {
3092
dev_err(&qm->pdev->dev, "Don't support vft read!\n");
3093
return -EINVAL;
3094
}
3095
3096
return qm->ops->get_vft(qm, base, number);
3097
}
3098
3099
/**
3100
* hisi_qm_set_vft() - Set vft to a qm.
3101
* @qm: The qm we want to set its vft.
3102
* @fun_num: The function number.
3103
* @base: The base number of queue in vft.
3104
* @number: The number of queues in vft.
3105
*
3106
* This function is alway called in PF driver, it is used to assign queues
3107
* among PF and VFs.
3108
*
3109
* Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
3110
* Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
3111
* (VF function number 0x2)
3112
*/
3113
static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3114
u32 number)
3115
{
3116
u32 max_q_num = qm->ctrl_qp_num;
3117
3118
if (base >= max_q_num || number > max_q_num ||
3119
(base + number) > max_q_num)
3120
return -EINVAL;
3121
3122
return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3123
}
3124
3125
static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3126
{
3127
struct hisi_qm_status *status = &qm->status;
3128
3129
status->eq_head = 0;
3130
status->aeq_head = 0;
3131
status->eqc_phase = true;
3132
status->aeqc_phase = true;
3133
}
3134
3135
static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
3136
{
3137
/* Clear eq/aeq interrupt source */
3138
qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
3139
qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
3140
3141
writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3142
writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3143
}
3144
3145
static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
3146
{
3147
writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3148
writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3149
}
3150
3151
static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3152
{
3153
struct qm_eqc eqc = {0};
3154
3155
eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3156
eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3157
if (qm->ver == QM_HW_V1)
3158
eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3159
eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3160
3161
return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0);
3162
}
3163
3164
static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3165
{
3166
struct qm_aeqc aeqc = {0};
3167
3168
aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3169
aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3170
aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3171
3172
return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0);
3173
}
3174
3175
static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3176
{
3177
struct device *dev = &qm->pdev->dev;
3178
int ret;
3179
3180
qm_init_eq_aeq_status(qm);
3181
3182
ret = qm_eq_ctx_cfg(qm);
3183
if (ret) {
3184
dev_err(dev, "Set eqc failed!\n");
3185
return ret;
3186
}
3187
3188
return qm_aeq_ctx_cfg(qm);
3189
}
3190
3191
static int __hisi_qm_start(struct hisi_qm *qm)
3192
{
3193
int ret;
3194
3195
WARN_ON(!qm->qdma.va);
3196
3197
if (qm->fun_type == QM_HW_PF) {
3198
ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3199
if (ret)
3200
return ret;
3201
}
3202
3203
ret = qm_eq_aeq_ctx_cfg(qm);
3204
if (ret)
3205
return ret;
3206
3207
ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3208
if (ret)
3209
return ret;
3210
3211
ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3212
if (ret)
3213
return ret;
3214
3215
qm_init_prefetch(qm);
3216
qm_enable_eq_aeq_interrupts(qm);
3217
3218
return 0;
3219
}
3220
3221
/**
3222
* hisi_qm_start() - start qm
3223
* @qm: The qm to be started.
3224
*
3225
* This function starts a qm, then we can allocate qp from this qm.
3226
*/
3227
int hisi_qm_start(struct hisi_qm *qm)
3228
{
3229
struct device *dev = &qm->pdev->dev;
3230
int ret = 0;
3231
3232
down_write(&qm->qps_lock);
3233
3234
dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3235
3236
if (!qm->qp_num) {
3237
dev_err(dev, "qp_num should not be 0\n");
3238
ret = -EINVAL;
3239
goto err_unlock;
3240
}
3241
3242
ret = __hisi_qm_start(qm);
3243
if (ret)
3244
goto err_unlock;
3245
3246
atomic_set(&qm->status.flags, QM_WORK);
3247
hisi_qm_set_state(qm, QM_READY);
3248
3249
err_unlock:
3250
up_write(&qm->qps_lock);
3251
return ret;
3252
}
3253
EXPORT_SYMBOL_GPL(hisi_qm_start);
3254
3255
static int qm_restart(struct hisi_qm *qm)
3256
{
3257
struct device *dev = &qm->pdev->dev;
3258
struct hisi_qp *qp;
3259
int ret, i;
3260
3261
ret = hisi_qm_start(qm);
3262
if (ret < 0)
3263
return ret;
3264
3265
down_write(&qm->qps_lock);
3266
for (i = 0; i < qm->qp_num; i++) {
3267
qp = &qm->qp_array[i];
3268
if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3269
qp->is_resetting == true) {
3270
ret = qm_start_qp_nolock(qp, 0);
3271
if (ret < 0) {
3272
dev_err(dev, "Failed to start qp%d!\n", i);
3273
3274
up_write(&qm->qps_lock);
3275
return ret;
3276
}
3277
qp->is_resetting = false;
3278
}
3279
}
3280
up_write(&qm->qps_lock);
3281
3282
return 0;
3283
}
3284
3285
/* Stop started qps in reset flow */
3286
static void qm_stop_started_qp(struct hisi_qm *qm)
3287
{
3288
struct hisi_qp *qp;
3289
int i;
3290
3291
for (i = 0; i < qm->qp_num; i++) {
3292
qp = &qm->qp_array[i];
3293
if (atomic_read(&qp->qp_status.flags) == QP_START) {
3294
qp->is_resetting = true;
3295
qm_stop_qp_nolock(qp);
3296
}
3297
}
3298
}
3299
3300
/**
3301
* qm_clear_queues() - Clear all queues memory in a qm.
3302
* @qm: The qm in which the queues will be cleared.
3303
*
3304
* This function clears all queues memory in a qm. Reset of accelerator can
3305
* use this to clear queues.
3306
*/
3307
static void qm_clear_queues(struct hisi_qm *qm)
3308
{
3309
struct hisi_qp *qp;
3310
int i;
3311
3312
for (i = 0; i < qm->qp_num; i++) {
3313
qp = &qm->qp_array[i];
3314
if (qp->is_in_kernel && qp->is_resetting)
3315
memset(qp->qdma.va, 0, qp->qdma.size);
3316
}
3317
3318
memset(qm->qdma.va, 0, qm->qdma.size);
3319
}
3320
3321
/**
3322
* hisi_qm_stop() - Stop a qm.
3323
* @qm: The qm which will be stopped.
3324
* @r: The reason to stop qm.
3325
*
3326
* This function stops qm and its qps, then qm can not accept request.
3327
* Related resources are not released at this state, we can use hisi_qm_start
3328
* to let qm start again.
3329
*/
3330
int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3331
{
3332
struct device *dev = &qm->pdev->dev;
3333
int ret = 0;
3334
3335
down_write(&qm->qps_lock);
3336
3337
if (atomic_read(&qm->status.flags) == QM_STOP)
3338
goto err_unlock;
3339
3340
/* Stop all the request sending at first. */
3341
atomic_set(&qm->status.flags, QM_STOP);
3342
qm->status.stop_reason = r;
3343
3344
if (qm->status.stop_reason != QM_NORMAL) {
3345
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3346
/*
3347
* When performing soft reset, the hardware will no longer
3348
* do tasks, and the tasks in the device will be flushed
3349
* out directly since the master ooo is closed.
3350
*/
3351
if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) &&
3352
r != QM_SOFT_RESET) {
3353
ret = qm_drain_qm(qm);
3354
if (ret) {
3355
dev_err(dev, "failed to drain qm!\n");
3356
goto err_unlock;
3357
}
3358
}
3359
3360
qm_stop_started_qp(qm);
3361
3362
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3363
}
3364
3365
qm_disable_eq_aeq_interrupts(qm);
3366
if (qm->fun_type == QM_HW_PF) {
3367
ret = hisi_qm_set_vft(qm, 0, 0, 0);
3368
if (ret < 0) {
3369
dev_err(dev, "Failed to set vft!\n");
3370
ret = -EBUSY;
3371
goto err_unlock;
3372
}
3373
}
3374
3375
qm_clear_queues(qm);
3376
qm->status.stop_reason = QM_NORMAL;
3377
3378
err_unlock:
3379
up_write(&qm->qps_lock);
3380
return ret;
3381
}
3382
EXPORT_SYMBOL_GPL(hisi_qm_stop);
3383
3384
static void qm_hw_error_init(struct hisi_qm *qm)
3385
{
3386
if (!qm->ops->hw_error_init) {
3387
dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3388
return;
3389
}
3390
3391
qm->ops->hw_error_init(qm);
3392
}
3393
3394
static void qm_hw_error_uninit(struct hisi_qm *qm)
3395
{
3396
if (!qm->ops->hw_error_uninit) {
3397
dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3398
return;
3399
}
3400
3401
qm->ops->hw_error_uninit(qm);
3402
}
3403
3404
static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3405
{
3406
if (!qm->ops->hw_error_handle) {
3407
dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3408
return ACC_ERR_NONE;
3409
}
3410
3411
return qm->ops->hw_error_handle(qm);
3412
}
3413
3414
/**
3415
* hisi_qm_dev_err_init() - Initialize device error configuration.
3416
* @qm: The qm for which we want to do error initialization.
3417
*
3418
* Initialize QM and device error related configuration.
3419
*/
3420
void hisi_qm_dev_err_init(struct hisi_qm *qm)
3421
{
3422
if (qm->fun_type == QM_HW_VF)
3423
return;
3424
3425
qm_hw_error_init(qm);
3426
3427
if (!qm->err_ini->hw_err_enable) {
3428
dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3429
return;
3430
}
3431
qm->err_ini->hw_err_enable(qm);
3432
}
3433
EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3434
3435
/**
3436
* hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3437
* @qm: The qm for which we want to do error uninitialization.
3438
*
3439
* Uninitialize QM and device error related configuration.
3440
*/
3441
void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3442
{
3443
if (qm->fun_type == QM_HW_VF)
3444
return;
3445
3446
qm_hw_error_uninit(qm);
3447
3448
if (!qm->err_ini->hw_err_disable) {
3449
dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3450
return;
3451
}
3452
qm->err_ini->hw_err_disable(qm);
3453
}
3454
EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3455
3456
/**
3457
* hisi_qm_free_qps() - free multiple queue pairs.
3458
* @qps: The queue pairs need to be freed.
3459
* @qp_num: The num of queue pairs.
3460
*/
3461
void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3462
{
3463
int i;
3464
3465
if (!qps || qp_num <= 0)
3466
return;
3467
3468
for (i = qp_num - 1; i >= 0; i--)
3469
hisi_qm_release_qp(qps[i]);
3470
}
3471
EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3472
3473
static void free_list(struct list_head *head)
3474
{
3475
struct hisi_qm_resource *res, *tmp;
3476
3477
list_for_each_entry_safe(res, tmp, head, list) {
3478
list_del(&res->list);
3479
kfree(res);
3480
}
3481
}
3482
3483
static int hisi_qm_sort_devices(int node, struct list_head *head,
3484
struct hisi_qm_list *qm_list)
3485
{
3486
struct hisi_qm_resource *res, *tmp;
3487
struct hisi_qm *qm;
3488
struct list_head *n;
3489
struct device *dev;
3490
int dev_node;
3491
3492
list_for_each_entry(qm, &qm_list->list, list) {
3493
dev = &qm->pdev->dev;
3494
3495
dev_node = dev_to_node(dev);
3496
if (dev_node < 0)
3497
dev_node = 0;
3498
3499
res = kzalloc(sizeof(*res), GFP_KERNEL);
3500
if (!res)
3501
return -ENOMEM;
3502
3503
res->qm = qm;
3504
res->distance = node_distance(dev_node, node);
3505
n = head;
3506
list_for_each_entry(tmp, head, list) {
3507
if (res->distance < tmp->distance) {
3508
n = &tmp->list;
3509
break;
3510
}
3511
}
3512
list_add_tail(&res->list, n);
3513
}
3514
3515
return 0;
3516
}
3517
3518
/**
3519
* hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3520
* @qm_list: The list of all available devices.
3521
* @qp_num: The number of queue pairs need created.
3522
* @alg_type: The algorithm type.
3523
* @node: The numa node.
3524
* @qps: The queue pairs need created.
3525
*
3526
* This function will sort all available device according to numa distance.
3527
* Then try to create all queue pairs from one device, if all devices do
3528
* not meet the requirements will return error.
3529
*/
3530
int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3531
u8 alg_type, int node, struct hisi_qp **qps)
3532
{
3533
struct hisi_qm_resource *tmp;
3534
int ret = -ENODEV;
3535
LIST_HEAD(head);
3536
int i;
3537
3538
if (!qps || !qm_list || qp_num <= 0)
3539
return -EINVAL;
3540
3541
mutex_lock(&qm_list->lock);
3542
if (hisi_qm_sort_devices(node, &head, qm_list)) {
3543
mutex_unlock(&qm_list->lock);
3544
goto err;
3545
}
3546
3547
list_for_each_entry(tmp, &head, list) {
3548
for (i = 0; i < qp_num; i++) {
3549
qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3550
if (IS_ERR(qps[i])) {
3551
hisi_qm_free_qps(qps, i);
3552
break;
3553
}
3554
}
3555
3556
if (i == qp_num) {
3557
ret = 0;
3558
break;
3559
}
3560
}
3561
3562
mutex_unlock(&qm_list->lock);
3563
if (ret)
3564
pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3565
node, alg_type, qp_num);
3566
3567
err:
3568
free_list(&head);
3569
return ret;
3570
}
3571
EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3572
3573
static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3574
{
3575
u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3576
u32 max_qp_num = qm->max_qp_num;
3577
u32 q_base = qm->qp_num;
3578
int ret;
3579
3580
if (!num_vfs)
3581
return -EINVAL;
3582
3583
vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3584
3585
/* If vfs_q_num is less than num_vfs, return error. */
3586
if (vfs_q_num < num_vfs)
3587
return -EINVAL;
3588
3589
q_num = vfs_q_num / num_vfs;
3590
remain_q_num = vfs_q_num % num_vfs;
3591
3592
for (i = num_vfs; i > 0; i--) {
3593
/*
3594
* if q_num + remain_q_num > max_qp_num in last vf, divide the
3595
* remaining queues equally.
3596
*/
3597
if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3598
act_q_num = q_num + remain_q_num;
3599
remain_q_num = 0;
3600
} else if (remain_q_num > 0) {
3601
act_q_num = q_num + 1;
3602
remain_q_num--;
3603
} else {
3604
act_q_num = q_num;
3605
}
3606
3607
act_q_num = min(act_q_num, max_qp_num);
3608
ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3609
if (ret) {
3610
for (j = num_vfs; j > i; j--)
3611
hisi_qm_set_vft(qm, j, 0, 0);
3612
return ret;
3613
}
3614
q_base += act_q_num;
3615
}
3616
3617
return 0;
3618
}
3619
3620
static int qm_clear_vft_config(struct hisi_qm *qm)
3621
{
3622
int ret;
3623
u32 i;
3624
3625
for (i = 1; i <= qm->vfs_num; i++) {
3626
ret = hisi_qm_set_vft(qm, i, 0, 0);
3627
if (ret)
3628
return ret;
3629
}
3630
qm->vfs_num = 0;
3631
3632
return 0;
3633
}
3634
3635
static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3636
{
3637
struct device *dev = &qm->pdev->dev;
3638
u32 ir = qos * QM_QOS_RATE;
3639
int ret, total_vfs, i;
3640
3641
total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3642
if (fun_index > total_vfs)
3643
return -EINVAL;
3644
3645
qm->factor[fun_index].func_qos = qos;
3646
3647
ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3648
if (ret) {
3649
dev_err(dev, "failed to calculate shaper parameter!\n");
3650
return -EINVAL;
3651
}
3652
3653
for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3654
/* The base number of queue reuse for different alg type */
3655
ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3656
if (ret) {
3657
dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3658
return -EINVAL;
3659
}
3660
}
3661
3662
return 0;
3663
}
3664
3665
static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3666
{
3667
u64 cir_u = 0, cir_b = 0, cir_s = 0;
3668
u64 shaper_vft, ir_calc, ir;
3669
unsigned int val;
3670
u32 error_rate;
3671
int ret;
3672
3673
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3674
val & BIT(0), POLL_PERIOD,
3675
POLL_TIMEOUT);
3676
if (ret)
3677
return 0;
3678
3679
writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3680
writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3681
writel(fun_index, qm->io_base + QM_VFT_CFG);
3682
3683
writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3684
writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3685
3686
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3687
val & BIT(0), POLL_PERIOD,
3688
POLL_TIMEOUT);
3689
if (ret)
3690
return 0;
3691
3692
shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3693
((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3694
3695
cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3696
cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3697
cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3698
3699
cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3700
cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3701
3702
ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3703
3704
ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3705
3706
error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3707
if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3708
pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3709
return 0;
3710
}
3711
3712
return ir;
3713
}
3714
3715
static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3716
{
3717
struct device *dev = &qm->pdev->dev;
3718
u32 qos;
3719
int ret;
3720
3721
qos = qm_get_shaper_vft_qos(qm, fun_num);
3722
if (!qos) {
3723
dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3724
return;
3725
}
3726
3727
ret = qm_ping_single_vf(qm, QM_PF_SET_QOS, qos, fun_num);
3728
if (ret)
3729
dev_err(dev, "failed to send command(0x%x) to VF(%u)!\n", QM_PF_SET_QOS, fun_num);
3730
}
3731
3732
static int qm_vf_read_qos(struct hisi_qm *qm)
3733
{
3734
int cnt = 0;
3735
int ret = -EINVAL;
3736
3737
/* reset mailbox qos val */
3738
qm->mb_qos = 0;
3739
3740
/* vf ping pf to get function qos */
3741
ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3742
if (ret) {
3743
pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3744
return ret;
3745
}
3746
3747
while (true) {
3748
msleep(QM_WAIT_DST_ACK);
3749
if (qm->mb_qos)
3750
break;
3751
3752
if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3753
pci_err(qm->pdev, "PF ping VF timeout!\n");
3754
return -ETIMEDOUT;
3755
}
3756
}
3757
3758
return ret;
3759
}
3760
3761
static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3762
size_t count, loff_t *pos)
3763
{
3764
struct hisi_qm *qm = filp->private_data;
3765
char tbuf[QM_DBG_READ_LEN];
3766
u32 qos_val, ir;
3767
int ret;
3768
3769
ret = hisi_qm_get_dfx_access(qm);
3770
if (ret)
3771
return ret;
3772
3773
/* Mailbox and reset cannot be operated at the same time */
3774
if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3775
pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3776
ret = -EAGAIN;
3777
goto err_put_dfx_access;
3778
}
3779
3780
if (qm->fun_type == QM_HW_PF) {
3781
ir = qm_get_shaper_vft_qos(qm, 0);
3782
} else {
3783
ret = qm_vf_read_qos(qm);
3784
if (ret)
3785
goto err_get_status;
3786
ir = qm->mb_qos;
3787
}
3788
3789
qos_val = ir / QM_QOS_RATE;
3790
ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3791
3792
ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3793
3794
err_get_status:
3795
clear_bit(QM_RESETTING, &qm->misc_ctl);
3796
err_put_dfx_access:
3797
hisi_qm_put_dfx_access(qm);
3798
return ret;
3799
}
3800
3801
static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3802
unsigned long *val,
3803
unsigned int *fun_index)
3804
{
3805
const struct bus_type *bus_type = qm->pdev->dev.bus;
3806
char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3807
char val_buf[QM_DBG_READ_LEN] = {0};
3808
struct pci_dev *pdev;
3809
struct device *dev;
3810
int ret;
3811
3812
ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3813
if (ret != QM_QOS_PARAM_NUM)
3814
return -EINVAL;
3815
3816
ret = kstrtoul(val_buf, 10, val);
3817
if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3818
pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3819
return -EINVAL;
3820
}
3821
3822
dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3823
if (!dev) {
3824
pci_err(qm->pdev, "input pci bdf number is error!\n");
3825
return -ENODEV;
3826
}
3827
3828
pdev = container_of(dev, struct pci_dev, dev);
3829
3830
*fun_index = pdev->devfn;
3831
3832
return 0;
3833
}
3834
3835
static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3836
size_t count, loff_t *pos)
3837
{
3838
struct hisi_qm *qm = filp->private_data;
3839
char tbuf[QM_DBG_READ_LEN];
3840
unsigned int fun_index;
3841
unsigned long val;
3842
int len, ret;
3843
3844
if (*pos != 0)
3845
return 0;
3846
3847
if (count >= QM_DBG_READ_LEN)
3848
return -ENOSPC;
3849
3850
len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3851
if (len < 0)
3852
return len;
3853
3854
tbuf[len] = '\0';
3855
ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3856
if (ret)
3857
return ret;
3858
3859
/* Mailbox and reset cannot be operated at the same time */
3860
if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3861
pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3862
return -EAGAIN;
3863
}
3864
3865
ret = qm_pm_get_sync(qm);
3866
if (ret) {
3867
ret = -EINVAL;
3868
goto err_get_status;
3869
}
3870
3871
ret = qm_func_shaper_enable(qm, fun_index, val);
3872
if (ret) {
3873
pci_err(qm->pdev, "failed to enable function shaper!\n");
3874
ret = -EINVAL;
3875
goto err_put_sync;
3876
}
3877
3878
pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3879
fun_index, val);
3880
ret = count;
3881
3882
err_put_sync:
3883
qm_pm_put_sync(qm);
3884
err_get_status:
3885
clear_bit(QM_RESETTING, &qm->misc_ctl);
3886
return ret;
3887
}
3888
3889
static const struct file_operations qm_algqos_fops = {
3890
.owner = THIS_MODULE,
3891
.open = simple_open,
3892
.read = qm_algqos_read,
3893
.write = qm_algqos_write,
3894
};
3895
3896
/**
3897
* hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3898
* @qm: The qm for which we want to add debugfs files.
3899
*
3900
* Create function qos debugfs files, VF ping PF to get function qos.
3901
*/
3902
void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3903
{
3904
if (qm->fun_type == QM_HW_PF)
3905
debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3906
qm, &qm_algqos_fops);
3907
else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3908
debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3909
qm, &qm_algqos_fops);
3910
}
3911
3912
static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3913
{
3914
int i;
3915
3916
for (i = 1; i <= total_func; i++)
3917
qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3918
}
3919
3920
/**
3921
* hisi_qm_sriov_enable() - enable virtual functions
3922
* @pdev: the PCIe device
3923
* @max_vfs: the number of virtual functions to enable
3924
*
3925
* Returns the number of enabled VFs. If there are VFs enabled already or
3926
* max_vfs is more than the total number of device can be enabled, returns
3927
* failure.
3928
*/
3929
int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3930
{
3931
struct hisi_qm *qm = pci_get_drvdata(pdev);
3932
int pre_existing_vfs, num_vfs, total_vfs, ret;
3933
3934
ret = qm_pm_get_sync(qm);
3935
if (ret)
3936
return ret;
3937
3938
total_vfs = pci_sriov_get_totalvfs(pdev);
3939
pre_existing_vfs = pci_num_vf(pdev);
3940
if (pre_existing_vfs) {
3941
pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3942
pre_existing_vfs);
3943
goto err_put_sync;
3944
}
3945
3946
if (max_vfs > total_vfs) {
3947
pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3948
ret = -ERANGE;
3949
goto err_put_sync;
3950
}
3951
3952
num_vfs = max_vfs;
3953
3954
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3955
hisi_qm_init_vf_qos(qm, num_vfs);
3956
3957
ret = qm_vf_q_assign(qm, num_vfs);
3958
if (ret) {
3959
pci_err(pdev, "Can't assign queues for VF!\n");
3960
goto err_put_sync;
3961
}
3962
3963
ret = pci_enable_sriov(pdev, num_vfs);
3964
if (ret) {
3965
pci_err(pdev, "Can't enable VF!\n");
3966
qm_clear_vft_config(qm);
3967
goto err_put_sync;
3968
}
3969
qm->vfs_num = num_vfs;
3970
3971
pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3972
3973
return num_vfs;
3974
3975
err_put_sync:
3976
qm_pm_put_sync(qm);
3977
return ret;
3978
}
3979
EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3980
3981
/**
3982
* hisi_qm_sriov_disable - disable virtual functions
3983
* @pdev: the PCI device.
3984
* @is_frozen: true when all the VFs are frozen.
3985
*
3986
* Return failure if there are VFs assigned already or VF is in used.
3987
*/
3988
int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3989
{
3990
struct hisi_qm *qm = pci_get_drvdata(pdev);
3991
3992
if (pci_vfs_assigned(pdev)) {
3993
pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3994
return -EPERM;
3995
}
3996
3997
/* While VF is in used, SRIOV cannot be disabled. */
3998
if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3999
pci_err(pdev, "Task is using its VF!\n");
4000
return -EBUSY;
4001
}
4002
4003
pci_disable_sriov(pdev);
4004
4005
qm->vfs_num = 0;
4006
qm_pm_put_sync(qm);
4007
4008
return qm_clear_vft_config(qm);
4009
}
4010
EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
4011
4012
/**
4013
* hisi_qm_sriov_configure - configure the number of VFs
4014
* @pdev: The PCI device
4015
* @num_vfs: The number of VFs need enabled
4016
*
4017
* Enable SR-IOV according to num_vfs, 0 means disable.
4018
*/
4019
int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
4020
{
4021
if (num_vfs == 0)
4022
return hisi_qm_sriov_disable(pdev, false);
4023
else
4024
return hisi_qm_sriov_enable(pdev, num_vfs);
4025
}
4026
EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
4027
4028
static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
4029
{
4030
if (!qm->err_ini->get_err_result) {
4031
dev_err(&qm->pdev->dev, "Device doesn't support reset!\n");
4032
return ACC_ERR_NONE;
4033
}
4034
4035
return qm->err_ini->get_err_result(qm);
4036
}
4037
4038
static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
4039
{
4040
enum acc_err_result qm_ret, dev_ret;
4041
4042
/* log qm error */
4043
qm_ret = qm_hw_error_handle(qm);
4044
4045
/* log device error */
4046
dev_ret = qm_dev_err_handle(qm);
4047
4048
return (qm_ret == ACC_ERR_NEED_RESET ||
4049
dev_ret == ACC_ERR_NEED_RESET) ?
4050
ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
4051
}
4052
4053
/**
4054
* hisi_qm_dev_err_detected() - Get device and qm error status then log it.
4055
* @pdev: The PCI device which need report error.
4056
* @state: The connectivity between CPU and device.
4057
*
4058
* We register this function into PCIe AER handlers, It will report device or
4059
* qm hardware error status when error occur.
4060
*/
4061
pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
4062
pci_channel_state_t state)
4063
{
4064
struct hisi_qm *qm = pci_get_drvdata(pdev);
4065
enum acc_err_result ret;
4066
4067
if (pdev->is_virtfn)
4068
return PCI_ERS_RESULT_NONE;
4069
4070
pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
4071
if (state == pci_channel_io_perm_failure)
4072
return PCI_ERS_RESULT_DISCONNECT;
4073
4074
ret = qm_process_dev_error(qm);
4075
if (ret == ACC_ERR_NEED_RESET)
4076
return PCI_ERS_RESULT_NEED_RESET;
4077
4078
return PCI_ERS_RESULT_RECOVERED;
4079
}
4080
EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4081
4082
static int qm_check_req_recv(struct hisi_qm *qm)
4083
{
4084
struct pci_dev *pdev = qm->pdev;
4085
int ret;
4086
u32 val;
4087
4088
if (qm->ver >= QM_HW_V3)
4089
return 0;
4090
4091
writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4092
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4093
(val == ACC_VENDOR_ID_VALUE),
4094
POLL_PERIOD, POLL_TIMEOUT);
4095
if (ret) {
4096
dev_err(&pdev->dev, "Fails to read QM reg!\n");
4097
return ret;
4098
}
4099
4100
writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4101
ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4102
(val == PCI_VENDOR_ID_HUAWEI),
4103
POLL_PERIOD, POLL_TIMEOUT);
4104
if (ret)
4105
dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4106
4107
return ret;
4108
}
4109
4110
static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4111
{
4112
struct pci_dev *pdev = qm->pdev;
4113
u16 cmd;
4114
int i;
4115
4116
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4117
if (set)
4118
cmd |= PCI_COMMAND_MEMORY;
4119
else
4120
cmd &= ~PCI_COMMAND_MEMORY;
4121
4122
pci_write_config_word(pdev, PCI_COMMAND, cmd);
4123
for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4124
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4125
if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4126
return 0;
4127
4128
udelay(1);
4129
}
4130
4131
return -ETIMEDOUT;
4132
}
4133
4134
static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4135
{
4136
struct pci_dev *pdev = qm->pdev;
4137
u16 sriov_ctrl;
4138
int pos;
4139
int i;
4140
4141
/*
4142
* Since function qm_set_vf_mse is called only after SRIOV is enabled,
4143
* pci_find_ext_capability cannot return 0, pos does not need to be
4144
* checked.
4145
*/
4146
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4147
pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4148
if (set)
4149
sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4150
else
4151
sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4152
pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4153
4154
for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4155
pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4156
if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4157
ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4158
return 0;
4159
4160
udelay(1);
4161
}
4162
4163
return -ETIMEDOUT;
4164
}
4165
4166
static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4167
{
4168
u32 nfe_enb = 0;
4169
4170
/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4171
if (qm->ver >= QM_HW_V3)
4172
return;
4173
4174
if (!qm->err_status.is_dev_ecc_mbit &&
4175
qm->err_status.is_qm_ecc_mbit &&
4176
qm->err_ini->close_axi_master_ooo) {
4177
qm->err_ini->close_axi_master_ooo(qm);
4178
} else if (qm->err_status.is_dev_ecc_mbit &&
4179
!qm->err_status.is_qm_ecc_mbit &&
4180
!qm->err_ini->close_axi_master_ooo) {
4181
nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4182
writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4183
qm->io_base + QM_RAS_NFE_ENABLE);
4184
writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4185
}
4186
}
4187
4188
static int qm_vf_reset_prepare(struct hisi_qm *qm,
4189
enum qm_stop_reason stop_reason)
4190
{
4191
struct hisi_qm_list *qm_list = qm->qm_list;
4192
struct pci_dev *pdev = qm->pdev;
4193
struct pci_dev *virtfn;
4194
struct hisi_qm *vf_qm;
4195
int ret = 0;
4196
4197
mutex_lock(&qm_list->lock);
4198
list_for_each_entry(vf_qm, &qm_list->list, list) {
4199
virtfn = vf_qm->pdev;
4200
if (virtfn == pdev)
4201
continue;
4202
4203
if (pci_physfn(virtfn) == pdev) {
4204
/* save VFs PCIE BAR configuration */
4205
pci_save_state(virtfn);
4206
4207
ret = hisi_qm_stop(vf_qm, stop_reason);
4208
if (ret)
4209
goto stop_fail;
4210
}
4211
}
4212
4213
stop_fail:
4214
mutex_unlock(&qm_list->lock);
4215
return ret;
4216
}
4217
4218
static int qm_try_stop_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd,
4219
enum qm_stop_reason stop_reason)
4220
{
4221
struct pci_dev *pdev = qm->pdev;
4222
int ret;
4223
4224
if (!qm->vfs_num)
4225
return 0;
4226
4227
/* Kunpeng930 supports to notify VFs to stop before PF reset */
4228
if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4229
ret = qm_ping_all_vfs(qm, cmd);
4230
if (ret)
4231
pci_err(pdev, "failed to send command to all VFs before PF reset!\n");
4232
} else {
4233
ret = qm_vf_reset_prepare(qm, stop_reason);
4234
if (ret)
4235
pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4236
}
4237
4238
return ret;
4239
}
4240
4241
static int qm_controller_reset_prepare(struct hisi_qm *qm)
4242
{
4243
struct pci_dev *pdev = qm->pdev;
4244
int ret;
4245
4246
if (qm->err_ini->set_priv_status) {
4247
ret = qm->err_ini->set_priv_status(qm);
4248
if (ret)
4249
return ret;
4250
}
4251
4252
ret = qm_reset_prepare_ready(qm);
4253
if (ret) {
4254
pci_err(pdev, "Controller reset not ready!\n");
4255
return ret;
4256
}
4257
4258
qm_dev_ecc_mbit_handle(qm);
4259
4260
/* PF obtains the information of VF by querying the register. */
4261
qm_cmd_uninit(qm);
4262
4263
/* Whether VFs stop successfully, soft reset will continue. */
4264
ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4265
if (ret)
4266
pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4267
4268
ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4269
if (ret) {
4270
pci_err(pdev, "Fails to stop QM!\n");
4271
qm_reset_bit_clear(qm);
4272
return ret;
4273
}
4274
4275
if (qm->use_sva) {
4276
ret = qm_hw_err_isolate(qm);
4277
if (ret)
4278
pci_err(pdev, "failed to isolate hw err!\n");
4279
}
4280
4281
ret = qm_wait_vf_prepare_finish(qm);
4282
if (ret)
4283
pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4284
4285
clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4286
4287
return 0;
4288
}
4289
4290
static int qm_master_ooo_check(struct hisi_qm *qm)
4291
{
4292
u32 val;
4293
int ret;
4294
4295
/* Check the ooo register of the device before resetting the device. */
4296
writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4297
ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4298
val, (val == ACC_MASTER_TRANS_RETURN_RW),
4299
POLL_PERIOD, POLL_TIMEOUT);
4300
if (ret)
4301
pci_warn(qm->pdev, "Bus lock! Please reset system.\n");
4302
4303
return ret;
4304
}
4305
4306
static int qm_soft_reset_prepare(struct hisi_qm *qm)
4307
{
4308
struct pci_dev *pdev = qm->pdev;
4309
int ret;
4310
4311
/* Ensure all doorbells and mailboxes received by QM */
4312
ret = qm_check_req_recv(qm);
4313
if (ret)
4314
return ret;
4315
4316
if (qm->vfs_num) {
4317
ret = qm_set_vf_mse(qm, false);
4318
if (ret) {
4319
pci_err(pdev, "Fails to disable vf MSE bit.\n");
4320
return ret;
4321
}
4322
}
4323
4324
ret = qm->ops->set_msi(qm, false);
4325
if (ret) {
4326
pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4327
return ret;
4328
}
4329
4330
ret = qm_master_ooo_check(qm);
4331
if (ret)
4332
return ret;
4333
4334
if (qm->err_ini->close_sva_prefetch)
4335
qm->err_ini->close_sva_prefetch(qm);
4336
4337
ret = qm_set_pf_mse(qm, false);
4338
if (ret)
4339
pci_err(pdev, "Fails to disable pf MSE bit.\n");
4340
4341
return ret;
4342
}
4343
4344
static int qm_reset_device(struct hisi_qm *qm)
4345
{
4346
struct pci_dev *pdev = qm->pdev;
4347
4348
/* The reset related sub-control registers are not in PCI BAR */
4349
if (ACPI_HANDLE(&pdev->dev)) {
4350
unsigned long long value = 0;
4351
acpi_status s;
4352
4353
s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4354
qm->err_info.acpi_rst,
4355
NULL, &value);
4356
if (ACPI_FAILURE(s)) {
4357
pci_err(pdev, "NO controller reset method!\n");
4358
return -EIO;
4359
}
4360
4361
if (value) {
4362
pci_err(pdev, "Reset step %llu failed!\n", value);
4363
return -EIO;
4364
}
4365
4366
return 0;
4367
}
4368
4369
pci_err(pdev, "No reset method!\n");
4370
return -EINVAL;
4371
}
4372
4373
static int qm_soft_reset(struct hisi_qm *qm)
4374
{
4375
int ret;
4376
4377
ret = qm_soft_reset_prepare(qm);
4378
if (ret)
4379
return ret;
4380
4381
return qm_reset_device(qm);
4382
}
4383
4384
static int qm_vf_reset_done(struct hisi_qm *qm)
4385
{
4386
struct hisi_qm_list *qm_list = qm->qm_list;
4387
struct pci_dev *pdev = qm->pdev;
4388
struct pci_dev *virtfn;
4389
struct hisi_qm *vf_qm;
4390
int ret = 0;
4391
4392
mutex_lock(&qm_list->lock);
4393
list_for_each_entry(vf_qm, &qm_list->list, list) {
4394
virtfn = vf_qm->pdev;
4395
if (virtfn == pdev)
4396
continue;
4397
4398
if (pci_physfn(virtfn) == pdev) {
4399
/* enable VFs PCIE BAR configuration */
4400
pci_restore_state(virtfn);
4401
4402
ret = qm_restart(vf_qm);
4403
if (ret)
4404
goto restart_fail;
4405
}
4406
}
4407
4408
restart_fail:
4409
mutex_unlock(&qm_list->lock);
4410
return ret;
4411
}
4412
4413
static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd)
4414
{
4415
struct pci_dev *pdev = qm->pdev;
4416
int ret;
4417
4418
if (!qm->vfs_num)
4419
return 0;
4420
4421
ret = qm_vf_q_assign(qm, qm->vfs_num);
4422
if (ret) {
4423
pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4424
return ret;
4425
}
4426
4427
/* Kunpeng930 supports to notify VFs to start after PF reset. */
4428
if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4429
ret = qm_ping_all_vfs(qm, cmd);
4430
if (ret)
4431
pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4432
} else {
4433
ret = qm_vf_reset_done(qm);
4434
if (ret)
4435
pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4436
}
4437
4438
return ret;
4439
}
4440
4441
static int qm_dev_hw_init(struct hisi_qm *qm)
4442
{
4443
return qm->err_ini->hw_init(qm);
4444
}
4445
4446
static void qm_restart_prepare(struct hisi_qm *qm)
4447
{
4448
u32 value;
4449
4450
if (qm->err_ini->open_sva_prefetch)
4451
qm->err_ini->open_sva_prefetch(qm);
4452
4453
if (qm->ver >= QM_HW_V3)
4454
return;
4455
4456
if (!qm->err_status.is_qm_ecc_mbit &&
4457
!qm->err_status.is_dev_ecc_mbit)
4458
return;
4459
4460
/* temporarily close the OOO port used for PEH to write out MSI */
4461
value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4462
writel(value & ~qm->err_info.msi_wr_port,
4463
qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4464
4465
/* clear dev ecc 2bit error source if having */
4466
value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4467
if (value && qm->err_ini->clear_dev_hw_err_status)
4468
qm->err_ini->clear_dev_hw_err_status(qm, value);
4469
4470
/* clear QM ecc mbit error source */
4471
writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4472
4473
/* clear AM Reorder Buffer ecc mbit source */
4474
writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4475
}
4476
4477
static void qm_restart_done(struct hisi_qm *qm)
4478
{
4479
u32 value;
4480
4481
if (qm->ver >= QM_HW_V3)
4482
goto clear_flags;
4483
4484
if (!qm->err_status.is_qm_ecc_mbit &&
4485
!qm->err_status.is_dev_ecc_mbit)
4486
return;
4487
4488
/* open the OOO port for PEH to write out MSI */
4489
value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4490
value |= qm->err_info.msi_wr_port;
4491
writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4492
4493
clear_flags:
4494
qm->err_status.is_qm_ecc_mbit = false;
4495
qm->err_status.is_dev_ecc_mbit = false;
4496
}
4497
4498
static int qm_controller_reset_done(struct hisi_qm *qm)
4499
{
4500
struct pci_dev *pdev = qm->pdev;
4501
int ret;
4502
4503
ret = qm->ops->set_msi(qm, true);
4504
if (ret) {
4505
pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4506
return ret;
4507
}
4508
4509
ret = qm_set_pf_mse(qm, true);
4510
if (ret) {
4511
pci_err(pdev, "Fails to enable pf MSE bit!\n");
4512
return ret;
4513
}
4514
4515
if (qm->vfs_num) {
4516
ret = qm_set_vf_mse(qm, true);
4517
if (ret) {
4518
pci_err(pdev, "Fails to enable vf MSE bit!\n");
4519
return ret;
4520
}
4521
}
4522
4523
ret = qm_dev_hw_init(qm);
4524
if (ret) {
4525
pci_err(pdev, "Failed to init device\n");
4526
return ret;
4527
}
4528
4529
qm_restart_prepare(qm);
4530
hisi_qm_dev_err_init(qm);
4531
if (qm->err_ini->open_axi_master_ooo)
4532
qm->err_ini->open_axi_master_ooo(qm);
4533
4534
ret = qm_dev_mem_reset(qm);
4535
if (ret) {
4536
pci_err(pdev, "failed to reset device memory\n");
4537
return ret;
4538
}
4539
4540
ret = qm_restart(qm);
4541
if (ret) {
4542
pci_err(pdev, "Failed to start QM!\n");
4543
return ret;
4544
}
4545
4546
ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4547
if (ret)
4548
pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4549
4550
ret = qm_wait_vf_prepare_finish(qm);
4551
if (ret)
4552
pci_err(pdev, "failed to start by vfs in soft reset!\n");
4553
4554
qm_cmd_init(qm);
4555
qm_restart_done(qm);
4556
4557
qm_reset_bit_clear(qm);
4558
4559
return 0;
4560
}
4561
4562
static int qm_controller_reset(struct hisi_qm *qm)
4563
{
4564
struct pci_dev *pdev = qm->pdev;
4565
int ret;
4566
4567
pci_info(pdev, "Controller resetting...\n");
4568
4569
ret = qm_controller_reset_prepare(qm);
4570
if (ret) {
4571
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4572
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4573
clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4574
return ret;
4575
}
4576
4577
hisi_qm_show_last_dfx_regs(qm);
4578
if (qm->err_ini->show_last_dfx_regs)
4579
qm->err_ini->show_last_dfx_regs(qm);
4580
4581
ret = qm_soft_reset(qm);
4582
if (ret)
4583
goto err_reset;
4584
4585
ret = qm_controller_reset_done(qm);
4586
if (ret)
4587
goto err_reset;
4588
4589
pci_info(pdev, "Controller reset complete\n");
4590
4591
return 0;
4592
4593
err_reset:
4594
pci_err(pdev, "Controller reset failed (%d)\n", ret);
4595
qm_reset_bit_clear(qm);
4596
4597
/* if resetting fails, isolate the device */
4598
if (qm->use_sva)
4599
qm->isolate_data.is_isolate = true;
4600
return ret;
4601
}
4602
4603
/**
4604
* hisi_qm_dev_slot_reset() - slot reset
4605
* @pdev: the PCIe device
4606
*
4607
* This function offers QM relate PCIe device reset interface. Drivers which
4608
* use QM can use this function as slot_reset in its struct pci_error_handlers.
4609
*/
4610
pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4611
{
4612
struct hisi_qm *qm = pci_get_drvdata(pdev);
4613
int ret;
4614
4615
if (pdev->is_virtfn)
4616
return PCI_ERS_RESULT_RECOVERED;
4617
4618
/* reset pcie device controller */
4619
ret = qm_controller_reset(qm);
4620
if (ret) {
4621
pci_err(pdev, "Controller reset failed (%d)\n", ret);
4622
return PCI_ERS_RESULT_DISCONNECT;
4623
}
4624
4625
return PCI_ERS_RESULT_RECOVERED;
4626
}
4627
EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4628
4629
void hisi_qm_reset_prepare(struct pci_dev *pdev)
4630
{
4631
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4632
struct hisi_qm *qm = pci_get_drvdata(pdev);
4633
u32 delay = 0;
4634
int ret;
4635
4636
hisi_qm_dev_err_uninit(pf_qm);
4637
4638
/*
4639
* Check whether there is an ECC mbit error, If it occurs, need to
4640
* wait for soft reset to fix it.
4641
*/
4642
while (qm_check_dev_error(qm)) {
4643
msleep(++delay);
4644
if (delay > QM_RESET_WAIT_TIMEOUT)
4645
return;
4646
}
4647
4648
ret = qm_reset_prepare_ready(qm);
4649
if (ret) {
4650
pci_err(pdev, "FLR not ready!\n");
4651
return;
4652
}
4653
4654
/* PF obtains the information of VF by querying the register. */
4655
if (qm->fun_type == QM_HW_PF)
4656
qm_cmd_uninit(qm);
4657
4658
ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4659
if (ret)
4660
pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4661
4662
ret = hisi_qm_stop(qm, QM_DOWN);
4663
if (ret) {
4664
pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4665
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4666
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4667
return;
4668
}
4669
4670
ret = qm_wait_vf_prepare_finish(qm);
4671
if (ret)
4672
pci_err(pdev, "failed to stop by vfs in FLR!\n");
4673
4674
pci_info(pdev, "FLR resetting...\n");
4675
}
4676
EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4677
4678
static bool qm_flr_reset_complete(struct pci_dev *pdev)
4679
{
4680
struct pci_dev *pf_pdev = pci_physfn(pdev);
4681
struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4682
u32 id;
4683
4684
pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4685
if (id == QM_PCI_COMMAND_INVALID) {
4686
pci_err(pdev, "Device can not be used!\n");
4687
return false;
4688
}
4689
4690
return true;
4691
}
4692
4693
void hisi_qm_reset_done(struct pci_dev *pdev)
4694
{
4695
struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4696
struct hisi_qm *qm = pci_get_drvdata(pdev);
4697
int ret;
4698
4699
if (qm->fun_type == QM_HW_PF) {
4700
ret = qm_dev_hw_init(qm);
4701
if (ret) {
4702
pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4703
goto flr_done;
4704
}
4705
}
4706
4707
hisi_qm_dev_err_init(pf_qm);
4708
4709
ret = qm_restart(qm);
4710
if (ret) {
4711
pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4712
goto flr_done;
4713
}
4714
4715
ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4716
if (ret)
4717
pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4718
4719
ret = qm_wait_vf_prepare_finish(qm);
4720
if (ret)
4721
pci_err(pdev, "failed to start by vfs in FLR!\n");
4722
4723
flr_done:
4724
if (qm->fun_type == QM_HW_PF)
4725
qm_cmd_init(qm);
4726
4727
if (qm_flr_reset_complete(pdev))
4728
pci_info(pdev, "FLR reset complete\n");
4729
4730
qm_reset_bit_clear(qm);
4731
}
4732
EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4733
4734
static irqreturn_t qm_abnormal_irq(int irq, void *data)
4735
{
4736
struct hisi_qm *qm = data;
4737
enum acc_err_result ret;
4738
4739
atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4740
ret = qm_process_dev_error(qm);
4741
if (ret == ACC_ERR_NEED_RESET &&
4742
!test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4743
!test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4744
schedule_work(&qm->rst_work);
4745
4746
return IRQ_HANDLED;
4747
}
4748
4749
/**
4750
* hisi_qm_dev_shutdown() - Shutdown device.
4751
* @pdev: The device will be shutdown.
4752
*
4753
* This function will stop qm when OS shutdown or rebooting.
4754
*/
4755
void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4756
{
4757
struct hisi_qm *qm = pci_get_drvdata(pdev);
4758
int ret;
4759
4760
ret = hisi_qm_stop(qm, QM_DOWN);
4761
if (ret)
4762
dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4763
4764
hisi_qm_cache_wb(qm);
4765
}
4766
EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4767
4768
static void hisi_qm_controller_reset(struct work_struct *rst_work)
4769
{
4770
struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4771
int ret;
4772
4773
ret = qm_pm_get_sync(qm);
4774
if (ret) {
4775
clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4776
return;
4777
}
4778
4779
/* reset pcie device controller */
4780
ret = qm_controller_reset(qm);
4781
if (ret)
4782
dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4783
4784
qm_pm_put_sync(qm);
4785
}
4786
4787
static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4788
enum qm_stop_reason stop_reason)
4789
{
4790
enum qm_ifc_cmd cmd = QM_VF_PREPARE_DONE;
4791
struct pci_dev *pdev = qm->pdev;
4792
int ret;
4793
4794
ret = qm_reset_prepare_ready(qm);
4795
if (ret) {
4796
dev_err(&pdev->dev, "reset prepare not ready!\n");
4797
atomic_set(&qm->status.flags, QM_STOP);
4798
cmd = QM_VF_PREPARE_FAIL;
4799
goto err_prepare;
4800
}
4801
4802
ret = hisi_qm_stop(qm, stop_reason);
4803
if (ret) {
4804
dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4805
atomic_set(&qm->status.flags, QM_STOP);
4806
cmd = QM_VF_PREPARE_FAIL;
4807
goto err_prepare;
4808
} else {
4809
goto out;
4810
}
4811
4812
err_prepare:
4813
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4814
hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4815
out:
4816
pci_save_state(pdev);
4817
ret = qm_ping_pf(qm, cmd);
4818
if (ret)
4819
dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4820
}
4821
4822
static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4823
{
4824
enum qm_ifc_cmd cmd = QM_VF_START_DONE;
4825
struct pci_dev *pdev = qm->pdev;
4826
int ret;
4827
4828
pci_restore_state(pdev);
4829
ret = hisi_qm_start(qm);
4830
if (ret) {
4831
dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4832
cmd = QM_VF_START_FAIL;
4833
}
4834
4835
qm_cmd_init(qm);
4836
ret = qm_ping_pf(qm, cmd);
4837
if (ret)
4838
dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4839
4840
qm_reset_bit_clear(qm);
4841
}
4842
4843
static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4844
{
4845
struct device *dev = &qm->pdev->dev;
4846
u32 val, cmd;
4847
int ret;
4848
4849
/* Wait for reset to finish */
4850
ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4851
val == BIT(0), QM_VF_RESET_WAIT_US,
4852
QM_VF_RESET_WAIT_TIMEOUT_US);
4853
/* hardware completion status should be available by this time */
4854
if (ret) {
4855
dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4856
return -ETIMEDOUT;
4857
}
4858
4859
/*
4860
* Whether message is got successfully,
4861
* VF needs to ack PF by clearing the interrupt.
4862
*/
4863
ret = qm->ops->get_ifc(qm, &cmd, NULL, 0);
4864
qm_clear_cmd_interrupt(qm, 0);
4865
if (ret) {
4866
dev_err(dev, "failed to get command from PF in reset done!\n");
4867
return ret;
4868
}
4869
4870
if (cmd != QM_PF_RESET_DONE) {
4871
dev_err(dev, "the command(0x%x) is not reset done!\n", cmd);
4872
ret = -EINVAL;
4873
}
4874
4875
return ret;
4876
}
4877
4878
static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4879
enum qm_stop_reason stop_reason)
4880
{
4881
struct device *dev = &qm->pdev->dev;
4882
int ret;
4883
4884
dev_info(dev, "device reset start...\n");
4885
4886
/* The message is obtained by querying the register during resetting */
4887
qm_cmd_uninit(qm);
4888
qm_pf_reset_vf_prepare(qm, stop_reason);
4889
4890
ret = qm_wait_pf_reset_finish(qm);
4891
if (ret)
4892
goto err_get_status;
4893
4894
qm_pf_reset_vf_done(qm);
4895
4896
dev_info(dev, "device reset done.\n");
4897
4898
return;
4899
4900
err_get_status:
4901
qm_cmd_init(qm);
4902
qm_reset_bit_clear(qm);
4903
}
4904
4905
static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4906
{
4907
struct device *dev = &qm->pdev->dev;
4908
enum qm_ifc_cmd cmd;
4909
u32 data;
4910
int ret;
4911
4912
/*
4913
* Get the msg from source by sending mailbox. Whether message is got
4914
* successfully, destination needs to ack source by clearing the interrupt.
4915
*/
4916
ret = qm->ops->get_ifc(qm, &cmd, &data, fun_num);
4917
qm_clear_cmd_interrupt(qm, BIT(fun_num));
4918
if (ret) {
4919
dev_err(dev, "failed to get command from source!\n");
4920
return;
4921
}
4922
4923
switch (cmd) {
4924
case QM_PF_FLR_PREPARE:
4925
qm_pf_reset_vf_process(qm, QM_DOWN);
4926
break;
4927
case QM_PF_SRST_PREPARE:
4928
qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4929
break;
4930
case QM_VF_GET_QOS:
4931
qm_vf_get_qos(qm, fun_num);
4932
break;
4933
case QM_PF_SET_QOS:
4934
qm->mb_qos = data;
4935
break;
4936
default:
4937
dev_err(dev, "unsupported command(0x%x) sent by function(%u)!\n", cmd, fun_num);
4938
break;
4939
}
4940
}
4941
4942
static void qm_cmd_process(struct work_struct *cmd_process)
4943
{
4944
struct hisi_qm *qm = container_of(cmd_process,
4945
struct hisi_qm, cmd_process);
4946
u32 vfs_num = qm->vfs_num;
4947
u64 val;
4948
u32 i;
4949
4950
if (qm->fun_type == QM_HW_PF) {
4951
val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4952
if (!val)
4953
return;
4954
4955
for (i = 1; i <= vfs_num; i++) {
4956
if (val & BIT(i))
4957
qm_handle_cmd_msg(qm, i);
4958
}
4959
4960
return;
4961
}
4962
4963
qm_handle_cmd_msg(qm, 0);
4964
}
4965
4966
/**
4967
* hisi_qm_alg_register() - Register alg to crypto.
4968
* @qm: The qm needs add.
4969
* @qm_list: The qm list.
4970
* @guard: Guard of qp_num.
4971
*
4972
* Register algorithm to crypto when the function is satisfy guard.
4973
*/
4974
int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4975
{
4976
struct device *dev = &qm->pdev->dev;
4977
4978
if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4979
dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4980
return 0;
4981
}
4982
4983
if (qm->qp_num < guard) {
4984
dev_info(dev, "qp_num is less than task need.\n");
4985
return 0;
4986
}
4987
4988
return qm_list->register_to_crypto(qm);
4989
}
4990
EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4991
4992
/**
4993
* hisi_qm_alg_unregister() - Unregister alg from crypto.
4994
* @qm: The qm needs delete.
4995
* @qm_list: The qm list.
4996
* @guard: Guard of qp_num.
4997
*
4998
* Unregister algorithm from crypto when the last function is satisfy guard.
4999
*/
5000
void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
5001
{
5002
if (qm->ver <= QM_HW_V2 && qm->use_sva)
5003
return;
5004
5005
if (qm->qp_num < guard)
5006
return;
5007
5008
qm_list->unregister_from_crypto(qm);
5009
}
5010
EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
5011
5012
static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
5013
{
5014
struct pci_dev *pdev = qm->pdev;
5015
u32 irq_vector, val;
5016
5017
if (qm->fun_type == QM_HW_VF)
5018
return;
5019
5020
val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val;
5021
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
5022
return;
5023
5024
irq_vector = val & QM_IRQ_VECTOR_MASK;
5025
free_irq(pci_irq_vector(pdev, irq_vector), qm);
5026
}
5027
5028
static int qm_register_abnormal_irq(struct hisi_qm *qm)
5029
{
5030
struct pci_dev *pdev = qm->pdev;
5031
u32 irq_vector, val;
5032
int ret;
5033
5034
if (qm->fun_type == QM_HW_VF)
5035
return 0;
5036
5037
val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val;
5038
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
5039
return 0;
5040
5041
irq_vector = val & QM_IRQ_VECTOR_MASK;
5042
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
5043
if (ret)
5044
dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
5045
5046
return ret;
5047
}
5048
5049
static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
5050
{
5051
struct pci_dev *pdev = qm->pdev;
5052
u32 irq_vector, val;
5053
5054
val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val;
5055
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5056
return;
5057
5058
irq_vector = val & QM_IRQ_VECTOR_MASK;
5059
free_irq(pci_irq_vector(pdev, irq_vector), qm);
5060
}
5061
5062
static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
5063
{
5064
struct pci_dev *pdev = qm->pdev;
5065
u32 irq_vector, val;
5066
int ret;
5067
5068
val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val;
5069
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5070
return 0;
5071
5072
irq_vector = val & QM_IRQ_VECTOR_MASK;
5073
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
5074
if (ret)
5075
dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
5076
5077
return ret;
5078
}
5079
5080
static void qm_unregister_aeq_irq(struct hisi_qm *qm)
5081
{
5082
struct pci_dev *pdev = qm->pdev;
5083
u32 irq_vector, val;
5084
5085
val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val;
5086
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5087
return;
5088
5089
irq_vector = val & QM_IRQ_VECTOR_MASK;
5090
free_irq(pci_irq_vector(pdev, irq_vector), qm);
5091
}
5092
5093
static int qm_register_aeq_irq(struct hisi_qm *qm)
5094
{
5095
struct pci_dev *pdev = qm->pdev;
5096
u32 irq_vector, val;
5097
int ret;
5098
5099
val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val;
5100
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5101
return 0;
5102
5103
irq_vector = val & QM_IRQ_VECTOR_MASK;
5104
ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
5105
qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
5106
if (ret)
5107
dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5108
5109
return ret;
5110
}
5111
5112
static void qm_unregister_eq_irq(struct hisi_qm *qm)
5113
{
5114
struct pci_dev *pdev = qm->pdev;
5115
u32 irq_vector, val;
5116
5117
val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val;
5118
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5119
return;
5120
5121
irq_vector = val & QM_IRQ_VECTOR_MASK;
5122
free_irq(pci_irq_vector(pdev, irq_vector), qm);
5123
}
5124
5125
static int qm_register_eq_irq(struct hisi_qm *qm)
5126
{
5127
struct pci_dev *pdev = qm->pdev;
5128
u32 irq_vector, val;
5129
int ret;
5130
5131
val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val;
5132
if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5133
return 0;
5134
5135
irq_vector = val & QM_IRQ_VECTOR_MASK;
5136
ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
5137
if (ret)
5138
dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5139
5140
return ret;
5141
}
5142
5143
static void qm_irqs_unregister(struct hisi_qm *qm)
5144
{
5145
qm_unregister_mb_cmd_irq(qm);
5146
qm_unregister_abnormal_irq(qm);
5147
qm_unregister_aeq_irq(qm);
5148
qm_unregister_eq_irq(qm);
5149
}
5150
5151
static int qm_irqs_register(struct hisi_qm *qm)
5152
{
5153
int ret;
5154
5155
ret = qm_register_eq_irq(qm);
5156
if (ret)
5157
return ret;
5158
5159
ret = qm_register_aeq_irq(qm);
5160
if (ret)
5161
goto free_eq_irq;
5162
5163
ret = qm_register_abnormal_irq(qm);
5164
if (ret)
5165
goto free_aeq_irq;
5166
5167
ret = qm_register_mb_cmd_irq(qm);
5168
if (ret)
5169
goto free_abnormal_irq;
5170
5171
return 0;
5172
5173
free_abnormal_irq:
5174
qm_unregister_abnormal_irq(qm);
5175
free_aeq_irq:
5176
qm_unregister_aeq_irq(qm);
5177
free_eq_irq:
5178
qm_unregister_eq_irq(qm);
5179
return ret;
5180
}
5181
5182
static int qm_get_qp_num(struct hisi_qm *qm)
5183
{
5184
struct device *dev = &qm->pdev->dev;
5185
bool is_db_isolation;
5186
5187
/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5188
if (qm->fun_type == QM_HW_VF) {
5189
if (qm->ver != QM_HW_V1)
5190
/* v2 starts to support get vft by mailbox */
5191
return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5192
5193
return 0;
5194
}
5195
5196
is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5197
qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5198
qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5199
QM_FUNC_MAX_QP_CAP, is_db_isolation);
5200
5201
if (qm->qp_num <= qm->max_qp_num)
5202
return 0;
5203
5204
if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
5205
/* Check whether the set qp number is valid */
5206
dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
5207
qm->qp_num, qm->max_qp_num);
5208
return -EINVAL;
5209
}
5210
5211
dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
5212
qm->qp_num, qm->max_qp_num);
5213
qm->qp_num = qm->max_qp_num;
5214
qm->debug.curr_qm_qp_num = qm->qp_num;
5215
5216
return 0;
5217
}
5218
5219
static int qm_pre_store_caps(struct hisi_qm *qm)
5220
{
5221
struct hisi_qm_cap_record *qm_cap;
5222
struct pci_dev *pdev = qm->pdev;
5223
size_t i, size;
5224
5225
size = ARRAY_SIZE(qm_cap_query_info);
5226
qm_cap = devm_kcalloc(&pdev->dev, sizeof(*qm_cap), size, GFP_KERNEL);
5227
if (!qm_cap)
5228
return -ENOMEM;
5229
5230
for (i = 0; i < size; i++) {
5231
qm_cap[i].type = qm_cap_query_info[i].type;
5232
qm_cap[i].name = qm_cap_query_info[i].name;
5233
qm_cap[i].cap_val = hisi_qm_get_cap_value(qm, qm_cap_query_info,
5234
i, qm->cap_ver);
5235
}
5236
5237
qm->cap_tables.qm_cap_table = qm_cap;
5238
qm->cap_tables.qm_cap_size = size;
5239
5240
return 0;
5241
}
5242
5243
static int qm_get_hw_caps(struct hisi_qm *qm)
5244
{
5245
const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5246
qm_cap_info_pf : qm_cap_info_vf;
5247
u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5248
ARRAY_SIZE(qm_cap_info_vf);
5249
u32 val, i;
5250
5251
/* Doorbell isolate register is a independent register. */
5252
val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5253
if (val)
5254
set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5255
5256
if (qm->ver >= QM_HW_V3) {
5257
val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5258
qm->cap_ver = val & QM_CAPBILITY_VERSION;
5259
}
5260
5261
/* Get PF/VF common capbility */
5262
for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5263
val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5264
if (val)
5265
set_bit(qm_cap_info_comm[i].type, &qm->caps);
5266
}
5267
5268
/* Get PF/VF different capbility */
5269
for (i = 0; i < size; i++) {
5270
val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5271
if (val)
5272
set_bit(cap_info[i].type, &qm->caps);
5273
}
5274
5275
/* Fetch and save the value of qm capability registers */
5276
return qm_pre_store_caps(qm);
5277
}
5278
5279
static void qm_get_version(struct hisi_qm *qm)
5280
{
5281
struct pci_dev *pdev = qm->pdev;
5282
u32 sub_version_id;
5283
5284
qm->ver = pdev->revision;
5285
5286
if (pdev->revision == QM_HW_V3) {
5287
sub_version_id = readl(qm->io_base + QM_SUB_VERSION_ID);
5288
if (sub_version_id)
5289
qm->ver = sub_version_id;
5290
}
5291
}
5292
5293
static int qm_get_pci_res(struct hisi_qm *qm)
5294
{
5295
struct pci_dev *pdev = qm->pdev;
5296
struct device *dev = &pdev->dev;
5297
int ret;
5298
5299
ret = pci_request_mem_regions(pdev, qm->dev_name);
5300
if (ret < 0) {
5301
dev_err(dev, "Failed to request mem regions!\n");
5302
return ret;
5303
}
5304
5305
qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5306
qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5307
if (!qm->io_base) {
5308
ret = -EIO;
5309
goto err_request_mem_regions;
5310
}
5311
5312
qm_get_version(qm);
5313
5314
ret = qm_get_hw_caps(qm);
5315
if (ret)
5316
goto err_ioremap;
5317
5318
if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5319
qm->db_interval = QM_QP_DB_INTERVAL;
5320
qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5321
qm->db_io_base = ioremap(qm->db_phys_base,
5322
pci_resource_len(pdev, PCI_BAR_4));
5323
if (!qm->db_io_base) {
5324
ret = -EIO;
5325
goto err_ioremap;
5326
}
5327
} else {
5328
qm->db_phys_base = qm->phys_base;
5329
qm->db_io_base = qm->io_base;
5330
qm->db_interval = 0;
5331
}
5332
5333
hisi_qm_pre_init(qm);
5334
ret = qm_get_qp_num(qm);
5335
if (ret)
5336
goto err_db_ioremap;
5337
5338
return 0;
5339
5340
err_db_ioremap:
5341
if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5342
iounmap(qm->db_io_base);
5343
err_ioremap:
5344
iounmap(qm->io_base);
5345
err_request_mem_regions:
5346
pci_release_mem_regions(pdev);
5347
return ret;
5348
}
5349
5350
static int qm_clear_device(struct hisi_qm *qm)
5351
{
5352
acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev);
5353
int ret;
5354
5355
if (qm->fun_type == QM_HW_VF)
5356
return 0;
5357
5358
/* Device does not support reset, return */
5359
if (!qm->err_ini->err_info_init)
5360
return 0;
5361
qm->err_ini->err_info_init(qm);
5362
5363
if (!handle)
5364
return 0;
5365
5366
/* No reset method, return */
5367
if (!acpi_has_method(handle, qm->err_info.acpi_rst))
5368
return 0;
5369
5370
ret = qm_master_ooo_check(qm);
5371
if (ret) {
5372
writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5373
return ret;
5374
}
5375
5376
if (qm->err_ini->set_priv_status) {
5377
ret = qm->err_ini->set_priv_status(qm);
5378
if (ret) {
5379
writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5380
return ret;
5381
}
5382
}
5383
5384
return qm_reset_device(qm);
5385
}
5386
5387
static int hisi_qm_pci_init(struct hisi_qm *qm)
5388
{
5389
struct pci_dev *pdev = qm->pdev;
5390
struct device *dev = &pdev->dev;
5391
unsigned int num_vec;
5392
int ret;
5393
5394
ret = pci_enable_device_mem(pdev);
5395
if (ret < 0) {
5396
dev_err(dev, "Failed to enable device mem!\n");
5397
return ret;
5398
}
5399
5400
ret = qm_get_pci_res(qm);
5401
if (ret)
5402
goto err_disable_pcidev;
5403
5404
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5405
if (ret < 0)
5406
goto err_get_pci_res;
5407
pci_set_master(pdev);
5408
5409
num_vec = qm_get_irq_num(qm);
5410
ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5411
if (ret < 0) {
5412
dev_err(dev, "Failed to enable MSI vectors!\n");
5413
goto err_get_pci_res;
5414
}
5415
5416
ret = qm_clear_device(qm);
5417
if (ret)
5418
goto err_free_vectors;
5419
5420
return 0;
5421
5422
err_free_vectors:
5423
pci_free_irq_vectors(pdev);
5424
err_get_pci_res:
5425
qm_put_pci_res(qm);
5426
err_disable_pcidev:
5427
pci_disable_device(pdev);
5428
return ret;
5429
}
5430
5431
static int hisi_qm_init_work(struct hisi_qm *qm)
5432
{
5433
int i;
5434
5435
for (i = 0; i < qm->qp_num; i++)
5436
INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5437
5438
if (qm->fun_type == QM_HW_PF)
5439
INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5440
5441
if (qm->ver > QM_HW_V2)
5442
INIT_WORK(&qm->cmd_process, qm_cmd_process);
5443
5444
qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5445
WQ_UNBOUND, num_online_cpus(),
5446
pci_name(qm->pdev));
5447
if (!qm->wq) {
5448
pci_err(qm->pdev, "failed to alloc workqueue!\n");
5449
return -ENOMEM;
5450
}
5451
5452
return 0;
5453
}
5454
5455
static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5456
{
5457
struct device *dev = &qm->pdev->dev;
5458
u16 sq_depth, cq_depth;
5459
size_t qp_dma_size;
5460
int i, ret;
5461
5462
qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5463
if (!qm->qp_array)
5464
return -ENOMEM;
5465
5466
qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5467
if (!qm->poll_data) {
5468
kfree(qm->qp_array);
5469
return -ENOMEM;
5470
}
5471
5472
qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5473
5474
/* one more page for device or qp statuses */
5475
qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5476
qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5477
for (i = 0; i < qm->qp_num; i++) {
5478
qm->poll_data[i].qm = qm;
5479
ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5480
if (ret)
5481
goto err_init_qp_mem;
5482
5483
dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5484
}
5485
5486
return 0;
5487
err_init_qp_mem:
5488
hisi_qp_memory_uninit(qm, i);
5489
5490
return ret;
5491
}
5492
5493
static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm)
5494
{
5495
struct qm_rsv_buf *xqc_buf = &qm->xqc_buf;
5496
struct qm_dma *xqc_dma = &xqc_buf->qcdma;
5497
struct device *dev = &qm->pdev->dev;
5498
size_t off = 0;
5499
5500
#define QM_XQC_BUF_INIT(xqc_buf, type) do { \
5501
(xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \
5502
(xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \
5503
off += QMC_ALIGN(sizeof(struct qm_##type)); \
5504
} while (0)
5505
5506
xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) +
5507
QMC_ALIGN(sizeof(struct qm_aeqc)) +
5508
QMC_ALIGN(sizeof(struct qm_sqc)) +
5509
QMC_ALIGN(sizeof(struct qm_cqc));
5510
xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size,
5511
&xqc_dma->dma, GFP_KERNEL);
5512
if (!xqc_dma->va)
5513
return -ENOMEM;
5514
5515
QM_XQC_BUF_INIT(xqc_buf, eqc);
5516
QM_XQC_BUF_INIT(xqc_buf, aeqc);
5517
QM_XQC_BUF_INIT(xqc_buf, sqc);
5518
QM_XQC_BUF_INIT(xqc_buf, cqc);
5519
5520
return 0;
5521
}
5522
5523
static int hisi_qm_memory_init(struct hisi_qm *qm)
5524
{
5525
struct device *dev = &qm->pdev->dev;
5526
int ret, total_func;
5527
size_t off = 0;
5528
5529
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5530
total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5531
qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5532
if (!qm->factor)
5533
return -ENOMEM;
5534
5535
/* Only the PF value needs to be initialized */
5536
qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5537
}
5538
5539
#define QM_INIT_BUF(qm, type, num) do { \
5540
(qm)->type = ((qm)->qdma.va + (off)); \
5541
(qm)->type##_dma = (qm)->qdma.dma + (off); \
5542
off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5543
} while (0)
5544
5545
idr_init(&qm->qp_idr);
5546
qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5547
qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5548
QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5549
QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5550
QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5551
qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5552
GFP_ATOMIC);
5553
dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5554
if (!qm->qdma.va) {
5555
ret = -ENOMEM;
5556
goto err_destroy_idr;
5557
}
5558
5559
QM_INIT_BUF(qm, eqe, qm->eq_depth);
5560
QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5561
QM_INIT_BUF(qm, sqc, qm->qp_num);
5562
QM_INIT_BUF(qm, cqc, qm->qp_num);
5563
5564
ret = hisi_qm_alloc_rsv_buf(qm);
5565
if (ret)
5566
goto err_free_qdma;
5567
5568
ret = hisi_qp_alloc_memory(qm);
5569
if (ret)
5570
goto err_free_reserve_buf;
5571
5572
return 0;
5573
5574
err_free_reserve_buf:
5575
hisi_qm_free_rsv_buf(qm);
5576
err_free_qdma:
5577
dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5578
err_destroy_idr:
5579
idr_destroy(&qm->qp_idr);
5580
if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5581
kfree(qm->factor);
5582
5583
return ret;
5584
}
5585
5586
/**
5587
* hisi_qm_init() - Initialize configures about qm.
5588
* @qm: The qm needing init.
5589
*
5590
* This function init qm, then we can call hisi_qm_start to put qm into work.
5591
*/
5592
int hisi_qm_init(struct hisi_qm *qm)
5593
{
5594
struct pci_dev *pdev = qm->pdev;
5595
struct device *dev = &pdev->dev;
5596
int ret;
5597
5598
ret = hisi_qm_pci_init(qm);
5599
if (ret)
5600
return ret;
5601
5602
ret = qm_irqs_register(qm);
5603
if (ret)
5604
goto err_pci_init;
5605
5606
if (qm->fun_type == QM_HW_PF) {
5607
/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5608
writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5609
qm_disable_clock_gate(qm);
5610
ret = qm_dev_mem_reset(qm);
5611
if (ret) {
5612
dev_err(dev, "failed to reset device memory\n");
5613
goto err_irq_register;
5614
}
5615
}
5616
5617
if (qm->mode == UACCE_MODE_SVA) {
5618
ret = qm_alloc_uacce(qm);
5619
if (ret < 0)
5620
dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5621
}
5622
5623
ret = hisi_qm_memory_init(qm);
5624
if (ret)
5625
goto err_alloc_uacce;
5626
5627
ret = hisi_qm_init_work(qm);
5628
if (ret)
5629
goto err_free_qm_memory;
5630
5631
qm_cmd_init(qm);
5632
5633
return 0;
5634
5635
err_free_qm_memory:
5636
hisi_qm_memory_uninit(qm);
5637
err_alloc_uacce:
5638
qm_remove_uacce(qm);
5639
err_irq_register:
5640
qm_irqs_unregister(qm);
5641
err_pci_init:
5642
hisi_qm_pci_uninit(qm);
5643
return ret;
5644
}
5645
EXPORT_SYMBOL_GPL(hisi_qm_init);
5646
5647
/**
5648
* hisi_qm_get_dfx_access() - Try to get dfx access.
5649
* @qm: pointer to accelerator device.
5650
*
5651
* Try to get dfx access, then user can get message.
5652
*
5653
* If device is in suspended, return failure, otherwise
5654
* bump up the runtime PM usage counter.
5655
*/
5656
int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5657
{
5658
struct device *dev = &qm->pdev->dev;
5659
5660
if (pm_runtime_suspended(dev)) {
5661
dev_info(dev, "can not read/write - device in suspended.\n");
5662
return -EAGAIN;
5663
}
5664
5665
return qm_pm_get_sync(qm);
5666
}
5667
EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5668
5669
/**
5670
* hisi_qm_put_dfx_access() - Put dfx access.
5671
* @qm: pointer to accelerator device.
5672
*
5673
* Put dfx access, drop runtime PM usage counter.
5674
*/
5675
void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5676
{
5677
qm_pm_put_sync(qm);
5678
}
5679
EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5680
5681
/**
5682
* hisi_qm_pm_init() - Initialize qm runtime PM.
5683
* @qm: pointer to accelerator device.
5684
*
5685
* Function that initialize qm runtime PM.
5686
*/
5687
void hisi_qm_pm_init(struct hisi_qm *qm)
5688
{
5689
struct device *dev = &qm->pdev->dev;
5690
5691
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5692
return;
5693
5694
pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5695
pm_runtime_use_autosuspend(dev);
5696
pm_runtime_put_noidle(dev);
5697
}
5698
EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5699
5700
/**
5701
* hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5702
* @qm: pointer to accelerator device.
5703
*
5704
* Function that uninitialize qm runtime PM.
5705
*/
5706
void hisi_qm_pm_uninit(struct hisi_qm *qm)
5707
{
5708
struct device *dev = &qm->pdev->dev;
5709
5710
if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5711
return;
5712
5713
pm_runtime_get_noresume(dev);
5714
pm_runtime_dont_use_autosuspend(dev);
5715
}
5716
EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5717
5718
static int qm_prepare_for_suspend(struct hisi_qm *qm)
5719
{
5720
struct pci_dev *pdev = qm->pdev;
5721
int ret;
5722
5723
ret = qm->ops->set_msi(qm, false);
5724
if (ret) {
5725
pci_err(pdev, "failed to disable MSI before suspending!\n");
5726
return ret;
5727
}
5728
5729
ret = qm_master_ooo_check(qm);
5730
if (ret)
5731
return ret;
5732
5733
if (qm->err_ini->set_priv_status) {
5734
ret = qm->err_ini->set_priv_status(qm);
5735
if (ret)
5736
return ret;
5737
}
5738
5739
ret = qm_set_pf_mse(qm, false);
5740
if (ret)
5741
pci_err(pdev, "failed to disable MSE before suspending!\n");
5742
5743
return ret;
5744
}
5745
5746
static int qm_rebuild_for_resume(struct hisi_qm *qm)
5747
{
5748
struct pci_dev *pdev = qm->pdev;
5749
int ret;
5750
5751
ret = qm_set_pf_mse(qm, true);
5752
if (ret) {
5753
pci_err(pdev, "failed to enable MSE after resuming!\n");
5754
return ret;
5755
}
5756
5757
ret = qm->ops->set_msi(qm, true);
5758
if (ret) {
5759
pci_err(pdev, "failed to enable MSI after resuming!\n");
5760
return ret;
5761
}
5762
5763
ret = qm_dev_hw_init(qm);
5764
if (ret) {
5765
pci_err(pdev, "failed to init device after resuming\n");
5766
return ret;
5767
}
5768
5769
qm_cmd_init(qm);
5770
hisi_qm_dev_err_init(qm);
5771
/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5772
writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5773
qm_disable_clock_gate(qm);
5774
ret = qm_dev_mem_reset(qm);
5775
if (ret)
5776
pci_err(pdev, "failed to reset device memory\n");
5777
5778
return ret;
5779
}
5780
5781
/**
5782
* hisi_qm_suspend() - Runtime suspend of given device.
5783
* @dev: device to suspend.
5784
*
5785
* Function that suspend the device.
5786
*/
5787
int hisi_qm_suspend(struct device *dev)
5788
{
5789
struct pci_dev *pdev = to_pci_dev(dev);
5790
struct hisi_qm *qm = pci_get_drvdata(pdev);
5791
int ret;
5792
5793
pci_info(pdev, "entering suspended state\n");
5794
5795
ret = hisi_qm_stop(qm, QM_NORMAL);
5796
if (ret) {
5797
pci_err(pdev, "failed to stop qm(%d)\n", ret);
5798
return ret;
5799
}
5800
5801
ret = qm_prepare_for_suspend(qm);
5802
if (ret)
5803
pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5804
5805
return ret;
5806
}
5807
EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5808
5809
/**
5810
* hisi_qm_resume() - Runtime resume of given device.
5811
* @dev: device to resume.
5812
*
5813
* Function that resume the device.
5814
*/
5815
int hisi_qm_resume(struct device *dev)
5816
{
5817
struct pci_dev *pdev = to_pci_dev(dev);
5818
struct hisi_qm *qm = pci_get_drvdata(pdev);
5819
int ret;
5820
5821
pci_info(pdev, "resuming from suspend state\n");
5822
5823
ret = qm_rebuild_for_resume(qm);
5824
if (ret) {
5825
pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5826
return ret;
5827
}
5828
5829
ret = hisi_qm_start(qm);
5830
if (ret) {
5831
if (qm_check_dev_error(qm)) {
5832
pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5833
return 0;
5834
}
5835
5836
pci_err(pdev, "failed to start qm(%d)!\n", ret);
5837
}
5838
5839
return ret;
5840
}
5841
EXPORT_SYMBOL_GPL(hisi_qm_resume);
5842
5843
MODULE_LICENSE("GPL v2");
5844
MODULE_AUTHOR("Zhou Wang <[email protected]>");
5845
MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5846
5847