Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/hisilicon/sec/sec_drv.c
26289 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Driver for the HiSilicon SEC units found on Hip06 Hip07
4
*
5
* Copyright (c) 2016-2017 HiSilicon Limited.
6
*/
7
#include <linux/acpi.h>
8
#include <linux/atomic.h>
9
#include <linux/delay.h>
10
#include <linux/dma-direction.h>
11
#include <linux/dma-mapping.h>
12
#include <linux/dmapool.h>
13
#include <linux/io.h>
14
#include <linux/iommu.h>
15
#include <linux/interrupt.h>
16
#include <linux/irq.h>
17
#include <linux/irqreturn.h>
18
#include <linux/mm.h>
19
#include <linux/module.h>
20
#include <linux/of.h>
21
#include <linux/platform_device.h>
22
#include <linux/slab.h>
23
24
#include "sec_drv.h"
25
26
#define SEC_QUEUE_AR_FROCE_ALLOC 0
27
#define SEC_QUEUE_AR_FROCE_NOALLOC 1
28
#define SEC_QUEUE_AR_FROCE_DIS 2
29
30
#define SEC_QUEUE_AW_FROCE_ALLOC 0
31
#define SEC_QUEUE_AW_FROCE_NOALLOC 1
32
#define SEC_QUEUE_AW_FROCE_DIS 2
33
34
/* SEC_ALGSUB registers */
35
#define SEC_ALGSUB_CLK_EN_REG 0x03b8
36
#define SEC_ALGSUB_CLK_DIS_REG 0x03bc
37
#define SEC_ALGSUB_CLK_ST_REG 0x535c
38
#define SEC_ALGSUB_RST_REQ_REG 0x0aa8
39
#define SEC_ALGSUB_RST_DREQ_REG 0x0aac
40
#define SEC_ALGSUB_RST_ST_REG 0x5a54
41
#define SEC_ALGSUB_RST_ST_IS_RST BIT(0)
42
43
#define SEC_ALGSUB_BUILD_RST_REQ_REG 0x0ab8
44
#define SEC_ALGSUB_BUILD_RST_DREQ_REG 0x0abc
45
#define SEC_ALGSUB_BUILD_RST_ST_REG 0x5a5c
46
#define SEC_ALGSUB_BUILD_RST_ST_IS_RST BIT(0)
47
48
#define SEC_SAA_BASE 0x00001000UL
49
50
/* SEC_SAA registers */
51
#define SEC_SAA_CTRL_REG(x) ((x) * SEC_SAA_ADDR_SIZE)
52
#define SEC_SAA_CTRL_GET_QM_EN BIT(0)
53
54
#define SEC_ST_INTMSK1_REG 0x0200
55
#define SEC_ST_RINT1_REG 0x0400
56
#define SEC_ST_INTSTS1_REG 0x0600
57
#define SEC_BD_MNG_STAT_REG 0x0800
58
#define SEC_PARSING_STAT_REG 0x0804
59
#define SEC_LOAD_TIME_OUT_CNT_REG 0x0808
60
#define SEC_CORE_WORK_TIME_OUT_CNT_REG 0x080c
61
#define SEC_BACK_TIME_OUT_CNT_REG 0x0810
62
#define SEC_BD1_PARSING_RD_TIME_OUT_CNT_REG 0x0814
63
#define SEC_BD1_PARSING_WR_TIME_OUT_CNT_REG 0x0818
64
#define SEC_BD2_PARSING_RD_TIME_OUT_CNT_REG 0x081c
65
#define SEC_BD2_PARSING_WR_TIME_OUT_CNT_REG 0x0820
66
#define SEC_SAA_ACC_REG 0x083c
67
#define SEC_BD_NUM_CNT_IN_SEC_REG 0x0858
68
#define SEC_LOAD_WORK_TIME_CNT_REG 0x0860
69
#define SEC_CORE_WORK_WORK_TIME_CNT_REG 0x0864
70
#define SEC_BACK_WORK_TIME_CNT_REG 0x0868
71
#define SEC_SAA_IDLE_TIME_CNT_REG 0x086c
72
#define SEC_SAA_CLK_CNT_REG 0x0870
73
74
/* SEC_COMMON registers */
75
#define SEC_CLK_EN_REG 0x0000
76
#define SEC_CTRL_REG 0x0004
77
78
#define SEC_COMMON_CNT_CLR_CE_REG 0x0008
79
#define SEC_COMMON_CNT_CLR_CE_CLEAR BIT(0)
80
#define SEC_COMMON_CNT_CLR_CE_SNAP_EN BIT(1)
81
82
#define SEC_SECURE_CTRL_REG 0x000c
83
#define SEC_AXI_CACHE_CFG_REG 0x0010
84
#define SEC_AXI_QOS_CFG_REG 0x0014
85
#define SEC_IPV4_MASK_TABLE_REG 0x0020
86
#define SEC_IPV6_MASK_TABLE_X_REG(x) (0x0024 + (x) * 4)
87
#define SEC_FSM_MAX_CNT_REG 0x0064
88
89
#define SEC_CTRL2_REG 0x0068
90
#define SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M GENMASK(3, 0)
91
#define SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S 0
92
#define SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M GENMASK(6, 4)
93
#define SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S 4
94
#define SEC_CTRL2_CLK_GATE_EN BIT(7)
95
#define SEC_CTRL2_ENDIAN_BD BIT(8)
96
#define SEC_CTRL2_ENDIAN_BD_TYPE BIT(9)
97
98
#define SEC_CNT_PRECISION_CFG_REG 0x006c
99
#define SEC_DEBUG_BD_CFG_REG 0x0070
100
#define SEC_DEBUG_BD_CFG_WB_NORMAL BIT(0)
101
#define SEC_DEBUG_BD_CFG_WB_EN BIT(1)
102
103
#define SEC_Q_SIGHT_SEL 0x0074
104
#define SEC_Q_SIGHT_HIS_CLR 0x0078
105
#define SEC_Q_VMID_CFG_REG(q) (0x0100 + (q) * 4)
106
#define SEC_Q_WEIGHT_CFG_REG(q) (0x200 + (q) * 4)
107
#define SEC_STAT_CLR_REG 0x0a00
108
#define SEC_SAA_IDLE_CNT_CLR_REG 0x0a04
109
#define SEC_QM_CPL_Q_IDBUF_DFX_CFG_REG 0x0b00
110
#define SEC_QM_CPL_Q_IDBUF_DFX_RESULT_REG 0x0b04
111
#define SEC_QM_BD_DFX_CFG_REG 0x0b08
112
#define SEC_QM_BD_DFX_RESULT_REG 0x0b0c
113
#define SEC_QM_BDID_DFX_RESULT_REG 0x0b10
114
#define SEC_QM_BD_DFIFO_STATUS_REG 0x0b14
115
#define SEC_QM_BD_DFX_CFG2_REG 0x0b1c
116
#define SEC_QM_BD_DFX_RESULT2_REG 0x0b20
117
#define SEC_QM_BD_IDFIFO_STATUS_REG 0x0b18
118
#define SEC_QM_BD_DFIFO_STATUS2_REG 0x0b28
119
#define SEC_QM_BD_IDFIFO_STATUS2_REG 0x0b2c
120
121
#define SEC_HASH_IPV4_MASK 0xfff00000
122
#define SEC_MAX_SAA_NUM 0xa
123
#define SEC_SAA_ADDR_SIZE 0x1000
124
125
#define SEC_Q_INIT_REG 0x0
126
#define SEC_Q_INIT_WO_STAT_CLEAR 0x2
127
#define SEC_Q_INIT_AND_STAT_CLEAR 0x3
128
129
#define SEC_Q_CFG_REG 0x8
130
#define SEC_Q_CFG_REORDER BIT(0)
131
132
#define SEC_Q_PROC_NUM_CFG_REG 0x10
133
#define SEC_QUEUE_ENB_REG 0x18
134
135
#define SEC_Q_DEPTH_CFG_REG 0x50
136
#define SEC_Q_DEPTH_CFG_DEPTH_M GENMASK(11, 0)
137
#define SEC_Q_DEPTH_CFG_DEPTH_S 0
138
139
#define SEC_Q_BASE_HADDR_REG 0x54
140
#define SEC_Q_BASE_LADDR_REG 0x58
141
#define SEC_Q_WR_PTR_REG 0x5c
142
#define SEC_Q_OUTORDER_BASE_HADDR_REG 0x60
143
#define SEC_Q_OUTORDER_BASE_LADDR_REG 0x64
144
#define SEC_Q_OUTORDER_RD_PTR_REG 0x68
145
#define SEC_Q_OT_TH_REG 0x6c
146
147
#define SEC_Q_ARUSER_CFG_REG 0x70
148
#define SEC_Q_ARUSER_CFG_FA BIT(0)
149
#define SEC_Q_ARUSER_CFG_FNA BIT(1)
150
#define SEC_Q_ARUSER_CFG_RINVLD BIT(2)
151
#define SEC_Q_ARUSER_CFG_PKG BIT(3)
152
153
#define SEC_Q_AWUSER_CFG_REG 0x74
154
#define SEC_Q_AWUSER_CFG_FA BIT(0)
155
#define SEC_Q_AWUSER_CFG_FNA BIT(1)
156
#define SEC_Q_AWUSER_CFG_PKG BIT(2)
157
158
#define SEC_Q_ERR_BASE_HADDR_REG 0x7c
159
#define SEC_Q_ERR_BASE_LADDR_REG 0x80
160
#define SEC_Q_CFG_VF_NUM_REG 0x84
161
#define SEC_Q_SOFT_PROC_PTR_REG 0x88
162
#define SEC_Q_FAIL_INT_MSK_REG 0x300
163
#define SEC_Q_FLOW_INT_MKS_REG 0x304
164
#define SEC_Q_FAIL_RINT_REG 0x400
165
#define SEC_Q_FLOW_RINT_REG 0x404
166
#define SEC_Q_FAIL_INT_STATUS_REG 0x500
167
#define SEC_Q_FLOW_INT_STATUS_REG 0x504
168
#define SEC_Q_STATUS_REG 0x600
169
#define SEC_Q_RD_PTR_REG 0x604
170
#define SEC_Q_PRO_PTR_REG 0x608
171
#define SEC_Q_OUTORDER_WR_PTR_REG 0x60c
172
#define SEC_Q_OT_CNT_STATUS_REG 0x610
173
#define SEC_Q_INORDER_BD_NUM_ST_REG 0x650
174
#define SEC_Q_INORDER_GET_FLAG_ST_REG 0x654
175
#define SEC_Q_INORDER_ADD_FLAG_ST_REG 0x658
176
#define SEC_Q_INORDER_TASK_INT_NUM_LEFT_ST_REG 0x65c
177
#define SEC_Q_RD_DONE_PTR_REG 0x660
178
#define SEC_Q_CPL_Q_BD_NUM_ST_REG 0x700
179
#define SEC_Q_CPL_Q_PTR_ST_REG 0x704
180
#define SEC_Q_CPL_Q_H_ADDR_ST_REG 0x708
181
#define SEC_Q_CPL_Q_L_ADDR_ST_REG 0x70c
182
#define SEC_Q_CPL_TASK_INT_NUM_LEFT_ST_REG 0x710
183
#define SEC_Q_WRR_ID_CHECK_REG 0x714
184
#define SEC_Q_CPLQ_FULL_CHECK_REG 0x718
185
#define SEC_Q_SUCCESS_BD_CNT_REG 0x800
186
#define SEC_Q_FAIL_BD_CNT_REG 0x804
187
#define SEC_Q_GET_BD_CNT_REG 0x808
188
#define SEC_Q_IVLD_CNT_REG 0x80c
189
#define SEC_Q_BD_PROC_GET_CNT_REG 0x810
190
#define SEC_Q_BD_PROC_DONE_CNT_REG 0x814
191
#define SEC_Q_LAT_CLR_REG 0x850
192
#define SEC_Q_PKT_LAT_MAX_REG 0x854
193
#define SEC_Q_PKT_LAT_AVG_REG 0x858
194
#define SEC_Q_PKT_LAT_MIN_REG 0x85c
195
#define SEC_Q_ID_CLR_CFG_REG 0x900
196
#define SEC_Q_1ST_BD_ERR_ID_REG 0x904
197
#define SEC_Q_1ST_AUTH_FAIL_ID_REG 0x908
198
#define SEC_Q_1ST_RD_ERR_ID_REG 0x90c
199
#define SEC_Q_1ST_ECC2_ERR_ID_REG 0x910
200
#define SEC_Q_1ST_IVLD_ID_REG 0x914
201
#define SEC_Q_1ST_BD_WR_ERR_ID_REG 0x918
202
#define SEC_Q_1ST_ERR_BD_WR_ERR_ID_REG 0x91c
203
#define SEC_Q_1ST_BD_MAC_WR_ERR_ID_REG 0x920
204
205
struct sec_debug_bd_info {
206
#define SEC_DEBUG_BD_INFO_SOFT_ERR_CHECK_M GENMASK(22, 0)
207
u32 soft_err_check;
208
#define SEC_DEBUG_BD_INFO_HARD_ERR_CHECK_M GENMASK(9, 0)
209
u32 hard_err_check;
210
u32 icv_mac1st_word;
211
#define SEC_DEBUG_BD_INFO_GET_ID_M GENMASK(19, 0)
212
u32 sec_get_id;
213
/* W4---W15 */
214
u32 reserv_left[12];
215
};
216
217
struct sec_out_bd_info {
218
#define SEC_OUT_BD_INFO_Q_ID_M GENMASK(11, 0)
219
#define SEC_OUT_BD_INFO_ECC_2BIT_ERR BIT(14)
220
u16 data;
221
};
222
223
#define SEC_MAX_DEVICES 8
224
static struct sec_dev_info *sec_devices[SEC_MAX_DEVICES];
225
static DEFINE_MUTEX(sec_id_lock);
226
227
static int sec_queue_map_io(struct sec_queue *queue)
228
{
229
struct device *dev = queue->dev_info->dev;
230
struct resource *res;
231
232
res = platform_get_resource(to_platform_device(dev),
233
IORESOURCE_MEM,
234
2 + queue->queue_id);
235
if (!res) {
236
dev_err(dev, "Failed to get queue %u memory resource\n",
237
queue->queue_id);
238
return -ENOMEM;
239
}
240
queue->regs = ioremap(res->start, resource_size(res));
241
if (!queue->regs)
242
return -ENOMEM;
243
244
return 0;
245
}
246
247
static void sec_queue_unmap_io(struct sec_queue *queue)
248
{
249
iounmap(queue->regs);
250
}
251
252
static int sec_queue_ar_pkgattr(struct sec_queue *queue, u32 ar_pkg)
253
{
254
void __iomem *addr = queue->regs + SEC_Q_ARUSER_CFG_REG;
255
u32 regval;
256
257
regval = readl_relaxed(addr);
258
if (ar_pkg)
259
regval |= SEC_Q_ARUSER_CFG_PKG;
260
else
261
regval &= ~SEC_Q_ARUSER_CFG_PKG;
262
writel_relaxed(regval, addr);
263
264
return 0;
265
}
266
267
static int sec_queue_aw_pkgattr(struct sec_queue *queue, u32 aw_pkg)
268
{
269
void __iomem *addr = queue->regs + SEC_Q_AWUSER_CFG_REG;
270
u32 regval;
271
272
regval = readl_relaxed(addr);
273
regval |= SEC_Q_AWUSER_CFG_PKG;
274
writel_relaxed(regval, addr);
275
276
return 0;
277
}
278
279
static int sec_clk_en(struct sec_dev_info *info)
280
{
281
void __iomem *base = info->regs[SEC_COMMON];
282
u32 i = 0;
283
284
writel_relaxed(0x7, base + SEC_ALGSUB_CLK_EN_REG);
285
do {
286
usleep_range(1000, 10000);
287
if ((readl_relaxed(base + SEC_ALGSUB_CLK_ST_REG) & 0x7) == 0x7)
288
return 0;
289
i++;
290
} while (i < 10);
291
dev_err(info->dev, "sec clock enable fail!\n");
292
293
return -EIO;
294
}
295
296
static int sec_clk_dis(struct sec_dev_info *info)
297
{
298
void __iomem *base = info->regs[SEC_COMMON];
299
u32 i = 0;
300
301
writel_relaxed(0x7, base + SEC_ALGSUB_CLK_DIS_REG);
302
do {
303
usleep_range(1000, 10000);
304
if ((readl_relaxed(base + SEC_ALGSUB_CLK_ST_REG) & 0x7) == 0)
305
return 0;
306
i++;
307
} while (i < 10);
308
dev_err(info->dev, "sec clock disable fail!\n");
309
310
return -EIO;
311
}
312
313
static int sec_reset_whole_module(struct sec_dev_info *info)
314
{
315
void __iomem *base = info->regs[SEC_COMMON];
316
bool is_reset, b_is_reset;
317
u32 i = 0;
318
319
writel_relaxed(1, base + SEC_ALGSUB_RST_REQ_REG);
320
writel_relaxed(1, base + SEC_ALGSUB_BUILD_RST_REQ_REG);
321
while (1) {
322
usleep_range(1000, 10000);
323
is_reset = readl_relaxed(base + SEC_ALGSUB_RST_ST_REG) &
324
SEC_ALGSUB_RST_ST_IS_RST;
325
b_is_reset = readl_relaxed(base + SEC_ALGSUB_BUILD_RST_ST_REG) &
326
SEC_ALGSUB_BUILD_RST_ST_IS_RST;
327
if (is_reset && b_is_reset)
328
break;
329
i++;
330
if (i > 10) {
331
dev_err(info->dev, "Reset req failed\n");
332
return -EIO;
333
}
334
}
335
336
i = 0;
337
writel_relaxed(1, base + SEC_ALGSUB_RST_DREQ_REG);
338
writel_relaxed(1, base + SEC_ALGSUB_BUILD_RST_DREQ_REG);
339
while (1) {
340
usleep_range(1000, 10000);
341
is_reset = readl_relaxed(base + SEC_ALGSUB_RST_ST_REG) &
342
SEC_ALGSUB_RST_ST_IS_RST;
343
b_is_reset = readl_relaxed(base + SEC_ALGSUB_BUILD_RST_ST_REG) &
344
SEC_ALGSUB_BUILD_RST_ST_IS_RST;
345
if (!is_reset && !b_is_reset)
346
break;
347
348
i++;
349
if (i > 10) {
350
dev_err(info->dev, "Reset dreq failed\n");
351
return -EIO;
352
}
353
}
354
355
return 0;
356
}
357
358
static void sec_bd_endian_little(struct sec_dev_info *info)
359
{
360
void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
361
u32 regval;
362
363
regval = readl_relaxed(addr);
364
regval &= ~(SEC_CTRL2_ENDIAN_BD | SEC_CTRL2_ENDIAN_BD_TYPE);
365
writel_relaxed(regval, addr);
366
}
367
368
/*
369
* sec_cache_config - configure optimum cache placement
370
*/
371
static void sec_cache_config(struct sec_dev_info *info)
372
{
373
struct iommu_domain *domain;
374
void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL_REG;
375
376
domain = iommu_get_domain_for_dev(info->dev);
377
378
/* Check that translation is occurring */
379
if (domain && (domain->type & __IOMMU_DOMAIN_PAGING))
380
writel_relaxed(0x44cf9e, addr);
381
else
382
writel_relaxed(0x4cfd9, addr);
383
}
384
385
static void sec_data_axiwr_otsd_cfg(struct sec_dev_info *info, u32 cfg)
386
{
387
void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
388
u32 regval;
389
390
regval = readl_relaxed(addr);
391
regval &= ~SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M;
392
regval |= (cfg << SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S) &
393
SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M;
394
writel_relaxed(regval, addr);
395
}
396
397
static void sec_data_axird_otsd_cfg(struct sec_dev_info *info, u32 cfg)
398
{
399
void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
400
u32 regval;
401
402
regval = readl_relaxed(addr);
403
regval &= ~SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M;
404
regval |= (cfg << SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S) &
405
SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M;
406
writel_relaxed(regval, addr);
407
}
408
409
static void sec_clk_gate_en(struct sec_dev_info *info, bool clkgate)
410
{
411
void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
412
u32 regval;
413
414
regval = readl_relaxed(addr);
415
if (clkgate)
416
regval |= SEC_CTRL2_CLK_GATE_EN;
417
else
418
regval &= ~SEC_CTRL2_CLK_GATE_EN;
419
writel_relaxed(regval, addr);
420
}
421
422
static void sec_comm_cnt_cfg(struct sec_dev_info *info, bool clr_ce)
423
{
424
void __iomem *addr = info->regs[SEC_SAA] + SEC_COMMON_CNT_CLR_CE_REG;
425
u32 regval;
426
427
regval = readl_relaxed(addr);
428
if (clr_ce)
429
regval |= SEC_COMMON_CNT_CLR_CE_CLEAR;
430
else
431
regval &= ~SEC_COMMON_CNT_CLR_CE_CLEAR;
432
writel_relaxed(regval, addr);
433
}
434
435
static void sec_commsnap_en(struct sec_dev_info *info, bool snap_en)
436
{
437
void __iomem *addr = info->regs[SEC_SAA] + SEC_COMMON_CNT_CLR_CE_REG;
438
u32 regval;
439
440
regval = readl_relaxed(addr);
441
if (snap_en)
442
regval |= SEC_COMMON_CNT_CLR_CE_SNAP_EN;
443
else
444
regval &= ~SEC_COMMON_CNT_CLR_CE_SNAP_EN;
445
writel_relaxed(regval, addr);
446
}
447
448
static void sec_ipv6_hashmask(struct sec_dev_info *info, u32 hash_mask[])
449
{
450
void __iomem *base = info->regs[SEC_SAA];
451
int i;
452
453
for (i = 0; i < 10; i++)
454
writel_relaxed(hash_mask[0],
455
base + SEC_IPV6_MASK_TABLE_X_REG(i));
456
}
457
458
static int sec_ipv4_hashmask(struct sec_dev_info *info, u32 hash_mask)
459
{
460
if (hash_mask & SEC_HASH_IPV4_MASK) {
461
dev_err(info->dev, "Sec Ipv4 Hash Mask Input Error!\n");
462
return -EINVAL;
463
}
464
465
writel_relaxed(hash_mask,
466
info->regs[SEC_SAA] + SEC_IPV4_MASK_TABLE_REG);
467
468
return 0;
469
}
470
471
static void sec_set_dbg_bd_cfg(struct sec_dev_info *info, u32 cfg)
472
{
473
void __iomem *addr = info->regs[SEC_SAA] + SEC_DEBUG_BD_CFG_REG;
474
u32 regval;
475
476
regval = readl_relaxed(addr);
477
/* Always disable write back of normal bd */
478
regval &= ~SEC_DEBUG_BD_CFG_WB_NORMAL;
479
480
if (cfg)
481
regval &= ~SEC_DEBUG_BD_CFG_WB_EN;
482
else
483
regval |= SEC_DEBUG_BD_CFG_WB_EN;
484
485
writel_relaxed(regval, addr);
486
}
487
488
static void sec_saa_getqm_en(struct sec_dev_info *info, u32 saa_indx, u32 en)
489
{
490
void __iomem *addr = info->regs[SEC_SAA] + SEC_SAA_BASE +
491
SEC_SAA_CTRL_REG(saa_indx);
492
u32 regval;
493
494
regval = readl_relaxed(addr);
495
if (en)
496
regval |= SEC_SAA_CTRL_GET_QM_EN;
497
else
498
regval &= ~SEC_SAA_CTRL_GET_QM_EN;
499
writel_relaxed(regval, addr);
500
}
501
502
static void sec_saa_int_mask(struct sec_dev_info *info, u32 saa_indx,
503
u32 saa_int_mask)
504
{
505
writel_relaxed(saa_int_mask,
506
info->regs[SEC_SAA] + SEC_SAA_BASE + SEC_ST_INTMSK1_REG +
507
saa_indx * SEC_SAA_ADDR_SIZE);
508
}
509
510
static void sec_streamid(struct sec_dev_info *info, int i)
511
{
512
#define SEC_SID 0x600
513
#define SEC_VMID 0
514
515
writel_relaxed((SEC_VMID | ((SEC_SID & 0xffff) << 8)),
516
info->regs[SEC_SAA] + SEC_Q_VMID_CFG_REG(i));
517
}
518
519
static void sec_queue_ar_alloc(struct sec_queue *queue, u32 alloc)
520
{
521
void __iomem *addr = queue->regs + SEC_Q_ARUSER_CFG_REG;
522
u32 regval;
523
524
regval = readl_relaxed(addr);
525
if (alloc == SEC_QUEUE_AR_FROCE_ALLOC) {
526
regval |= SEC_Q_ARUSER_CFG_FA;
527
regval &= ~SEC_Q_ARUSER_CFG_FNA;
528
} else {
529
regval &= ~SEC_Q_ARUSER_CFG_FA;
530
regval |= SEC_Q_ARUSER_CFG_FNA;
531
}
532
533
writel_relaxed(regval, addr);
534
}
535
536
static void sec_queue_aw_alloc(struct sec_queue *queue, u32 alloc)
537
{
538
void __iomem *addr = queue->regs + SEC_Q_AWUSER_CFG_REG;
539
u32 regval;
540
541
regval = readl_relaxed(addr);
542
if (alloc == SEC_QUEUE_AW_FROCE_ALLOC) {
543
regval |= SEC_Q_AWUSER_CFG_FA;
544
regval &= ~SEC_Q_AWUSER_CFG_FNA;
545
} else {
546
regval &= ~SEC_Q_AWUSER_CFG_FA;
547
regval |= SEC_Q_AWUSER_CFG_FNA;
548
}
549
550
writel_relaxed(regval, addr);
551
}
552
553
static void sec_queue_reorder(struct sec_queue *queue, bool reorder)
554
{
555
void __iomem *base = queue->regs;
556
u32 regval;
557
558
regval = readl_relaxed(base + SEC_Q_CFG_REG);
559
if (reorder)
560
regval |= SEC_Q_CFG_REORDER;
561
else
562
regval &= ~SEC_Q_CFG_REORDER;
563
writel_relaxed(regval, base + SEC_Q_CFG_REG);
564
}
565
566
static void sec_queue_depth(struct sec_queue *queue, u32 depth)
567
{
568
void __iomem *addr = queue->regs + SEC_Q_DEPTH_CFG_REG;
569
u32 regval;
570
571
regval = readl_relaxed(addr);
572
regval &= ~SEC_Q_DEPTH_CFG_DEPTH_M;
573
regval |= (depth << SEC_Q_DEPTH_CFG_DEPTH_S) & SEC_Q_DEPTH_CFG_DEPTH_M;
574
575
writel_relaxed(regval, addr);
576
}
577
578
static void sec_queue_cmdbase_addr(struct sec_queue *queue, u64 addr)
579
{
580
writel_relaxed(upper_32_bits(addr), queue->regs + SEC_Q_BASE_HADDR_REG);
581
writel_relaxed(lower_32_bits(addr), queue->regs + SEC_Q_BASE_LADDR_REG);
582
}
583
584
static void sec_queue_outorder_addr(struct sec_queue *queue, u64 addr)
585
{
586
writel_relaxed(upper_32_bits(addr),
587
queue->regs + SEC_Q_OUTORDER_BASE_HADDR_REG);
588
writel_relaxed(lower_32_bits(addr),
589
queue->regs + SEC_Q_OUTORDER_BASE_LADDR_REG);
590
}
591
592
static void sec_queue_errbase_addr(struct sec_queue *queue, u64 addr)
593
{
594
writel_relaxed(upper_32_bits(addr),
595
queue->regs + SEC_Q_ERR_BASE_HADDR_REG);
596
writel_relaxed(lower_32_bits(addr),
597
queue->regs + SEC_Q_ERR_BASE_LADDR_REG);
598
}
599
600
static void sec_queue_irq_disable(struct sec_queue *queue)
601
{
602
writel_relaxed((u32)~0, queue->regs + SEC_Q_FLOW_INT_MKS_REG);
603
}
604
605
static void sec_queue_irq_enable(struct sec_queue *queue)
606
{
607
writel_relaxed(0, queue->regs + SEC_Q_FLOW_INT_MKS_REG);
608
}
609
610
static void sec_queue_abn_irq_disable(struct sec_queue *queue)
611
{
612
writel_relaxed((u32)~0, queue->regs + SEC_Q_FAIL_INT_MSK_REG);
613
}
614
615
static void sec_queue_stop(struct sec_queue *queue)
616
{
617
disable_irq(queue->task_irq);
618
sec_queue_irq_disable(queue);
619
writel_relaxed(0x0, queue->regs + SEC_QUEUE_ENB_REG);
620
}
621
622
static void sec_queue_start(struct sec_queue *queue)
623
{
624
sec_queue_irq_enable(queue);
625
enable_irq(queue->task_irq);
626
queue->expected = 0;
627
writel_relaxed(SEC_Q_INIT_AND_STAT_CLEAR, queue->regs + SEC_Q_INIT_REG);
628
writel_relaxed(0x1, queue->regs + SEC_QUEUE_ENB_REG);
629
}
630
631
static struct sec_queue *sec_alloc_queue(struct sec_dev_info *info)
632
{
633
int i;
634
635
mutex_lock(&info->dev_lock);
636
637
/* Get the first idle queue in SEC device */
638
for (i = 0; i < SEC_Q_NUM; i++)
639
if (!info->queues[i].in_use) {
640
info->queues[i].in_use = true;
641
info->queues_in_use++;
642
mutex_unlock(&info->dev_lock);
643
644
return &info->queues[i];
645
}
646
mutex_unlock(&info->dev_lock);
647
648
return ERR_PTR(-ENODEV);
649
}
650
651
static int sec_queue_free(struct sec_queue *queue)
652
{
653
struct sec_dev_info *info = queue->dev_info;
654
655
if (queue->queue_id >= SEC_Q_NUM) {
656
dev_err(info->dev, "No queue %u\n", queue->queue_id);
657
return -ENODEV;
658
}
659
660
if (!queue->in_use) {
661
dev_err(info->dev, "Queue %u is idle\n", queue->queue_id);
662
return -ENODEV;
663
}
664
665
mutex_lock(&info->dev_lock);
666
queue->in_use = false;
667
info->queues_in_use--;
668
mutex_unlock(&info->dev_lock);
669
670
return 0;
671
}
672
673
static irqreturn_t sec_isr_handle_th(int irq, void *q)
674
{
675
sec_queue_irq_disable(q);
676
return IRQ_WAKE_THREAD;
677
}
678
679
static irqreturn_t sec_isr_handle(int irq, void *q)
680
{
681
struct sec_queue *queue = q;
682
struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
683
struct sec_queue_ring_cq *cq_ring = &queue->ring_cq;
684
struct sec_out_bd_info *outorder_msg;
685
struct sec_bd_info *msg;
686
u32 ooo_read, ooo_write;
687
void __iomem *base = queue->regs;
688
int q_id;
689
690
ooo_read = readl(base + SEC_Q_OUTORDER_RD_PTR_REG);
691
ooo_write = readl(base + SEC_Q_OUTORDER_WR_PTR_REG);
692
outorder_msg = cq_ring->vaddr + ooo_read;
693
q_id = outorder_msg->data & SEC_OUT_BD_INFO_Q_ID_M;
694
msg = msg_ring->vaddr + q_id;
695
696
while ((ooo_write != ooo_read) && msg->w0 & SEC_BD_W0_DONE) {
697
/*
698
* Must be before callback otherwise blocks adding other chained
699
* elements
700
*/
701
set_bit(q_id, queue->unprocessed);
702
if (q_id == queue->expected)
703
while (test_bit(queue->expected, queue->unprocessed)) {
704
clear_bit(queue->expected, queue->unprocessed);
705
msg = msg_ring->vaddr + queue->expected;
706
msg->w0 &= ~SEC_BD_W0_DONE;
707
msg_ring->callback(msg,
708
queue->shadow[queue->expected]);
709
queue->shadow[queue->expected] = NULL;
710
queue->expected = (queue->expected + 1) %
711
SEC_QUEUE_LEN;
712
atomic_dec(&msg_ring->used);
713
}
714
715
ooo_read = (ooo_read + 1) % SEC_QUEUE_LEN;
716
writel(ooo_read, base + SEC_Q_OUTORDER_RD_PTR_REG);
717
ooo_write = readl(base + SEC_Q_OUTORDER_WR_PTR_REG);
718
outorder_msg = cq_ring->vaddr + ooo_read;
719
q_id = outorder_msg->data & SEC_OUT_BD_INFO_Q_ID_M;
720
msg = msg_ring->vaddr + q_id;
721
}
722
723
sec_queue_irq_enable(queue);
724
725
return IRQ_HANDLED;
726
}
727
728
static int sec_queue_irq_init(struct sec_queue *queue)
729
{
730
struct sec_dev_info *info = queue->dev_info;
731
int irq = queue->task_irq;
732
int ret;
733
734
ret = request_threaded_irq(irq, sec_isr_handle_th, sec_isr_handle,
735
IRQF_TRIGGER_RISING, queue->name, queue);
736
if (ret) {
737
dev_err(info->dev, "request irq(%d) failed %d\n", irq, ret);
738
return ret;
739
}
740
disable_irq(irq);
741
742
return 0;
743
}
744
745
static int sec_queue_irq_uninit(struct sec_queue *queue)
746
{
747
free_irq(queue->task_irq, queue);
748
749
return 0;
750
}
751
752
static struct sec_dev_info *sec_device_get(void)
753
{
754
struct sec_dev_info *sec_dev = NULL;
755
struct sec_dev_info *this_sec_dev;
756
int least_busy_n = SEC_Q_NUM + 1;
757
int i;
758
759
/* Find which one is least busy and use that first */
760
for (i = 0; i < SEC_MAX_DEVICES; i++) {
761
this_sec_dev = sec_devices[i];
762
if (this_sec_dev &&
763
this_sec_dev->queues_in_use < least_busy_n) {
764
least_busy_n = this_sec_dev->queues_in_use;
765
sec_dev = this_sec_dev;
766
}
767
}
768
769
return sec_dev;
770
}
771
772
static struct sec_queue *sec_queue_alloc_start(struct sec_dev_info *info)
773
{
774
struct sec_queue *queue;
775
776
queue = sec_alloc_queue(info);
777
if (IS_ERR(queue)) {
778
dev_err(info->dev, "alloc sec queue failed! %ld\n",
779
PTR_ERR(queue));
780
return queue;
781
}
782
783
sec_queue_start(queue);
784
785
return queue;
786
}
787
788
/**
789
* sec_queue_alloc_start_safe - get a hw queue from appropriate instance
790
*
791
* This function does extremely simplistic load balancing. It does not take into
792
* account NUMA locality of the accelerator, or which cpu has requested the
793
* queue. Future work may focus on optimizing this in order to improve full
794
* machine throughput.
795
*/
796
struct sec_queue *sec_queue_alloc_start_safe(void)
797
{
798
struct sec_dev_info *info;
799
struct sec_queue *queue = ERR_PTR(-ENODEV);
800
801
mutex_lock(&sec_id_lock);
802
info = sec_device_get();
803
if (!info)
804
goto unlock;
805
806
queue = sec_queue_alloc_start(info);
807
808
unlock:
809
mutex_unlock(&sec_id_lock);
810
811
return queue;
812
}
813
814
/**
815
* sec_queue_stop_release() - free up a hw queue for reuse
816
* @queue: The queue we are done with.
817
*
818
* This will stop the current queue, terminanting any transactions
819
* that are inflight an return it to the pool of available hw queuess
820
*/
821
int sec_queue_stop_release(struct sec_queue *queue)
822
{
823
struct device *dev = queue->dev_info->dev;
824
int ret;
825
826
sec_queue_stop(queue);
827
828
ret = sec_queue_free(queue);
829
if (ret)
830
dev_err(dev, "Releasing queue failed %d\n", ret);
831
832
return ret;
833
}
834
835
/**
836
* sec_queue_empty() - Is this hardware queue currently empty.
837
* @queue: The queue to test
838
*
839
* We need to know if we have an empty queue for some of the chaining modes
840
* as if it is not empty we may need to hold the message in a software queue
841
* until the hw queue is drained.
842
*/
843
bool sec_queue_empty(struct sec_queue *queue)
844
{
845
struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
846
847
return !atomic_read(&msg_ring->used);
848
}
849
850
/**
851
* sec_queue_send() - queue up a single operation in the hw queue
852
* @queue: The queue in which to put the message
853
* @msg: The message
854
* @ctx: Context to be put in the shadow array and passed back to cb on result.
855
*
856
* This function will return -EAGAIN if the queue is currently full.
857
*/
858
int sec_queue_send(struct sec_queue *queue, struct sec_bd_info *msg, void *ctx)
859
{
860
struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
861
void __iomem *base = queue->regs;
862
u32 write, read;
863
864
mutex_lock(&msg_ring->lock);
865
read = readl(base + SEC_Q_RD_PTR_REG);
866
write = readl(base + SEC_Q_WR_PTR_REG);
867
if (write == read && atomic_read(&msg_ring->used) == SEC_QUEUE_LEN) {
868
mutex_unlock(&msg_ring->lock);
869
return -EAGAIN;
870
}
871
memcpy(msg_ring->vaddr + write, msg, sizeof(*msg));
872
queue->shadow[write] = ctx;
873
write = (write + 1) % SEC_QUEUE_LEN;
874
875
/* Ensure content updated before queue advance */
876
wmb();
877
writel(write, base + SEC_Q_WR_PTR_REG);
878
879
atomic_inc(&msg_ring->used);
880
mutex_unlock(&msg_ring->lock);
881
882
return 0;
883
}
884
885
bool sec_queue_can_enqueue(struct sec_queue *queue, int num)
886
{
887
struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
888
889
return SEC_QUEUE_LEN - atomic_read(&msg_ring->used) >= num;
890
}
891
892
static void sec_queue_hw_init(struct sec_queue *queue)
893
{
894
sec_queue_ar_alloc(queue, SEC_QUEUE_AR_FROCE_NOALLOC);
895
sec_queue_aw_alloc(queue, SEC_QUEUE_AW_FROCE_NOALLOC);
896
sec_queue_ar_pkgattr(queue, 1);
897
sec_queue_aw_pkgattr(queue, 1);
898
899
/* Enable out of order queue */
900
sec_queue_reorder(queue, true);
901
902
/* Interrupt after a single complete element */
903
writel_relaxed(1, queue->regs + SEC_Q_PROC_NUM_CFG_REG);
904
905
sec_queue_depth(queue, SEC_QUEUE_LEN - 1);
906
907
sec_queue_cmdbase_addr(queue, queue->ring_cmd.paddr);
908
909
sec_queue_outorder_addr(queue, queue->ring_cq.paddr);
910
911
sec_queue_errbase_addr(queue, queue->ring_db.paddr);
912
913
writel_relaxed(0x100, queue->regs + SEC_Q_OT_TH_REG);
914
915
sec_queue_abn_irq_disable(queue);
916
sec_queue_irq_disable(queue);
917
writel_relaxed(SEC_Q_INIT_AND_STAT_CLEAR, queue->regs + SEC_Q_INIT_REG);
918
}
919
920
static int sec_hw_init(struct sec_dev_info *info)
921
{
922
struct iommu_domain *domain;
923
u32 sec_ipv4_mask = 0;
924
u32 sec_ipv6_mask[10] = {};
925
u32 i, ret;
926
927
domain = iommu_get_domain_for_dev(info->dev);
928
929
/*
930
* Enable all available processing unit clocks.
931
* Only the first cluster is usable with translations.
932
*/
933
if (domain && (domain->type & __IOMMU_DOMAIN_PAGING))
934
info->num_saas = 5;
935
936
else
937
info->num_saas = 10;
938
939
writel_relaxed(GENMASK(info->num_saas - 1, 0),
940
info->regs[SEC_SAA] + SEC_CLK_EN_REG);
941
942
/* 32 bit little endian */
943
sec_bd_endian_little(info);
944
945
sec_cache_config(info);
946
947
/* Data axi port write and read outstanding config as per datasheet */
948
sec_data_axiwr_otsd_cfg(info, 0x7);
949
sec_data_axird_otsd_cfg(info, 0x7);
950
951
/* Enable clock gating */
952
sec_clk_gate_en(info, true);
953
954
/* Set CNT_CYC register not read clear */
955
sec_comm_cnt_cfg(info, false);
956
957
/* Enable CNT_CYC */
958
sec_commsnap_en(info, false);
959
960
writel_relaxed((u32)~0, info->regs[SEC_SAA] + SEC_FSM_MAX_CNT_REG);
961
962
ret = sec_ipv4_hashmask(info, sec_ipv4_mask);
963
if (ret) {
964
dev_err(info->dev, "Failed to set ipv4 hashmask %d\n", ret);
965
return -EIO;
966
}
967
968
sec_ipv6_hashmask(info, sec_ipv6_mask);
969
970
/* do not use debug bd */
971
sec_set_dbg_bd_cfg(info, 0);
972
973
if (domain && (domain->type & __IOMMU_DOMAIN_PAGING)) {
974
for (i = 0; i < SEC_Q_NUM; i++) {
975
sec_streamid(info, i);
976
/* Same QoS for all queues */
977
writel_relaxed(0x3f,
978
info->regs[SEC_SAA] +
979
SEC_Q_WEIGHT_CFG_REG(i));
980
}
981
}
982
983
for (i = 0; i < info->num_saas; i++) {
984
sec_saa_getqm_en(info, i, 1);
985
sec_saa_int_mask(info, i, 0);
986
}
987
988
return 0;
989
}
990
991
static void sec_hw_exit(struct sec_dev_info *info)
992
{
993
int i;
994
995
for (i = 0; i < SEC_MAX_SAA_NUM; i++) {
996
sec_saa_int_mask(info, i, (u32)~0);
997
sec_saa_getqm_en(info, i, 0);
998
}
999
}
1000
1001
static void sec_queue_base_init(struct sec_dev_info *info,
1002
struct sec_queue *queue, int queue_id)
1003
{
1004
queue->dev_info = info;
1005
queue->queue_id = queue_id;
1006
snprintf(queue->name, sizeof(queue->name),
1007
"%s_%d", dev_name(info->dev), queue->queue_id);
1008
}
1009
1010
static int sec_map_io(struct sec_dev_info *info, struct platform_device *pdev)
1011
{
1012
struct resource *res;
1013
int i;
1014
1015
for (i = 0; i < SEC_NUM_ADDR_REGIONS; i++) {
1016
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1017
1018
if (!res) {
1019
dev_err(info->dev, "Memory resource %d not found\n", i);
1020
return -EINVAL;
1021
}
1022
1023
info->regs[i] = devm_ioremap(info->dev, res->start,
1024
resource_size(res));
1025
if (!info->regs[i]) {
1026
dev_err(info->dev,
1027
"Memory resource %d could not be remapped\n",
1028
i);
1029
return -EINVAL;
1030
}
1031
}
1032
1033
return 0;
1034
}
1035
1036
static int sec_base_init(struct sec_dev_info *info,
1037
struct platform_device *pdev)
1038
{
1039
int ret;
1040
1041
ret = sec_map_io(info, pdev);
1042
if (ret)
1043
return ret;
1044
1045
ret = sec_clk_en(info);
1046
if (ret)
1047
return ret;
1048
1049
ret = sec_reset_whole_module(info);
1050
if (ret)
1051
goto sec_clk_disable;
1052
1053
ret = sec_hw_init(info);
1054
if (ret)
1055
goto sec_clk_disable;
1056
1057
return 0;
1058
1059
sec_clk_disable:
1060
sec_clk_dis(info);
1061
1062
return ret;
1063
}
1064
1065
static void sec_base_exit(struct sec_dev_info *info)
1066
{
1067
sec_hw_exit(info);
1068
sec_clk_dis(info);
1069
}
1070
1071
#define SEC_Q_CMD_SIZE \
1072
round_up(SEC_QUEUE_LEN * sizeof(struct sec_bd_info), PAGE_SIZE)
1073
#define SEC_Q_CQ_SIZE \
1074
round_up(SEC_QUEUE_LEN * sizeof(struct sec_out_bd_info), PAGE_SIZE)
1075
#define SEC_Q_DB_SIZE \
1076
round_up(SEC_QUEUE_LEN * sizeof(struct sec_debug_bd_info), PAGE_SIZE)
1077
1078
static int sec_queue_res_cfg(struct sec_queue *queue)
1079
{
1080
struct device *dev = queue->dev_info->dev;
1081
struct sec_queue_ring_cmd *ring_cmd = &queue->ring_cmd;
1082
struct sec_queue_ring_cq *ring_cq = &queue->ring_cq;
1083
struct sec_queue_ring_db *ring_db = &queue->ring_db;
1084
int ret;
1085
1086
ring_cmd->vaddr = dma_alloc_coherent(dev, SEC_Q_CMD_SIZE,
1087
&ring_cmd->paddr, GFP_KERNEL);
1088
if (!ring_cmd->vaddr)
1089
return -ENOMEM;
1090
1091
atomic_set(&ring_cmd->used, 0);
1092
mutex_init(&ring_cmd->lock);
1093
ring_cmd->callback = sec_alg_callback;
1094
1095
ring_cq->vaddr = dma_alloc_coherent(dev, SEC_Q_CQ_SIZE,
1096
&ring_cq->paddr, GFP_KERNEL);
1097
if (!ring_cq->vaddr) {
1098
ret = -ENOMEM;
1099
goto err_free_ring_cmd;
1100
}
1101
1102
ring_db->vaddr = dma_alloc_coherent(dev, SEC_Q_DB_SIZE,
1103
&ring_db->paddr, GFP_KERNEL);
1104
if (!ring_db->vaddr) {
1105
ret = -ENOMEM;
1106
goto err_free_ring_cq;
1107
}
1108
queue->task_irq = platform_get_irq(to_platform_device(dev),
1109
queue->queue_id * 2 + 1);
1110
if (queue->task_irq < 0) {
1111
ret = queue->task_irq;
1112
goto err_free_ring_db;
1113
}
1114
1115
return 0;
1116
1117
err_free_ring_db:
1118
dma_free_coherent(dev, SEC_Q_DB_SIZE, queue->ring_db.vaddr,
1119
queue->ring_db.paddr);
1120
err_free_ring_cq:
1121
dma_free_coherent(dev, SEC_Q_CQ_SIZE, queue->ring_cq.vaddr,
1122
queue->ring_cq.paddr);
1123
err_free_ring_cmd:
1124
dma_free_coherent(dev, SEC_Q_CMD_SIZE, queue->ring_cmd.vaddr,
1125
queue->ring_cmd.paddr);
1126
1127
return ret;
1128
}
1129
1130
static void sec_queue_free_ring_pages(struct sec_queue *queue)
1131
{
1132
struct device *dev = queue->dev_info->dev;
1133
1134
dma_free_coherent(dev, SEC_Q_DB_SIZE, queue->ring_db.vaddr,
1135
queue->ring_db.paddr);
1136
dma_free_coherent(dev, SEC_Q_CQ_SIZE, queue->ring_cq.vaddr,
1137
queue->ring_cq.paddr);
1138
dma_free_coherent(dev, SEC_Q_CMD_SIZE, queue->ring_cmd.vaddr,
1139
queue->ring_cmd.paddr);
1140
}
1141
1142
static int sec_queue_config(struct sec_dev_info *info, struct sec_queue *queue,
1143
int queue_id)
1144
{
1145
int ret;
1146
1147
sec_queue_base_init(info, queue, queue_id);
1148
1149
ret = sec_queue_res_cfg(queue);
1150
if (ret)
1151
return ret;
1152
1153
ret = sec_queue_map_io(queue);
1154
if (ret) {
1155
dev_err(info->dev, "Queue map failed %d\n", ret);
1156
sec_queue_free_ring_pages(queue);
1157
return ret;
1158
}
1159
1160
sec_queue_hw_init(queue);
1161
1162
return 0;
1163
}
1164
1165
static void sec_queue_unconfig(struct sec_dev_info *info,
1166
struct sec_queue *queue)
1167
{
1168
sec_queue_unmap_io(queue);
1169
sec_queue_free_ring_pages(queue);
1170
}
1171
1172
static int sec_id_alloc(struct sec_dev_info *info)
1173
{
1174
int ret = 0;
1175
int i;
1176
1177
mutex_lock(&sec_id_lock);
1178
1179
for (i = 0; i < SEC_MAX_DEVICES; i++)
1180
if (!sec_devices[i])
1181
break;
1182
if (i == SEC_MAX_DEVICES) {
1183
ret = -ENOMEM;
1184
goto unlock;
1185
}
1186
info->sec_id = i;
1187
sec_devices[info->sec_id] = info;
1188
1189
unlock:
1190
mutex_unlock(&sec_id_lock);
1191
1192
return ret;
1193
}
1194
1195
static void sec_id_free(struct sec_dev_info *info)
1196
{
1197
mutex_lock(&sec_id_lock);
1198
sec_devices[info->sec_id] = NULL;
1199
mutex_unlock(&sec_id_lock);
1200
}
1201
1202
static int sec_probe(struct platform_device *pdev)
1203
{
1204
struct sec_dev_info *info;
1205
struct device *dev = &pdev->dev;
1206
int i, j;
1207
int ret;
1208
1209
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1210
if (ret) {
1211
dev_err(dev, "Failed to set 64 bit dma mask %d", ret);
1212
return -ENODEV;
1213
}
1214
1215
info = devm_kzalloc(dev, (sizeof(*info)), GFP_KERNEL);
1216
if (!info)
1217
return -ENOMEM;
1218
1219
info->dev = dev;
1220
mutex_init(&info->dev_lock);
1221
1222
info->hw_sgl_pool = dmam_pool_create("sgl", dev,
1223
sizeof(struct sec_hw_sgl), 64, 0);
1224
if (!info->hw_sgl_pool) {
1225
dev_err(dev, "Failed to create sec sgl dma pool\n");
1226
return -ENOMEM;
1227
}
1228
1229
ret = sec_base_init(info, pdev);
1230
if (ret) {
1231
dev_err(dev, "Base initialization fail! %d\n", ret);
1232
return ret;
1233
}
1234
1235
for (i = 0; i < SEC_Q_NUM; i++) {
1236
ret = sec_queue_config(info, &info->queues[i], i);
1237
if (ret)
1238
goto queues_unconfig;
1239
1240
ret = sec_queue_irq_init(&info->queues[i]);
1241
if (ret) {
1242
sec_queue_unconfig(info, &info->queues[i]);
1243
goto queues_unconfig;
1244
}
1245
}
1246
1247
ret = sec_algs_register();
1248
if (ret) {
1249
dev_err(dev, "Failed to register algorithms with crypto %d\n",
1250
ret);
1251
goto queues_unconfig;
1252
}
1253
1254
platform_set_drvdata(pdev, info);
1255
1256
ret = sec_id_alloc(info);
1257
if (ret)
1258
goto algs_unregister;
1259
1260
return 0;
1261
1262
algs_unregister:
1263
sec_algs_unregister();
1264
queues_unconfig:
1265
for (j = i - 1; j >= 0; j--) {
1266
sec_queue_irq_uninit(&info->queues[j]);
1267
sec_queue_unconfig(info, &info->queues[j]);
1268
}
1269
sec_base_exit(info);
1270
1271
return ret;
1272
}
1273
1274
static void sec_remove(struct platform_device *pdev)
1275
{
1276
struct sec_dev_info *info = platform_get_drvdata(pdev);
1277
int i;
1278
1279
/* Unexpose as soon as possible, reuse during remove is fine */
1280
sec_id_free(info);
1281
1282
sec_algs_unregister();
1283
1284
for (i = 0; i < SEC_Q_NUM; i++) {
1285
sec_queue_irq_uninit(&info->queues[i]);
1286
sec_queue_unconfig(info, &info->queues[i]);
1287
}
1288
1289
sec_base_exit(info);
1290
}
1291
1292
static const __maybe_unused struct of_device_id sec_match[] = {
1293
{ .compatible = "hisilicon,hip06-sec" },
1294
{ .compatible = "hisilicon,hip07-sec" },
1295
{}
1296
};
1297
MODULE_DEVICE_TABLE(of, sec_match);
1298
1299
static const __maybe_unused struct acpi_device_id sec_acpi_match[] = {
1300
{ "HISI02C1", 0 },
1301
{ }
1302
};
1303
MODULE_DEVICE_TABLE(acpi, sec_acpi_match);
1304
1305
static struct platform_driver sec_driver = {
1306
.probe = sec_probe,
1307
.remove = sec_remove,
1308
.driver = {
1309
.name = "hisi_sec_platform_driver",
1310
.of_match_table = sec_match,
1311
.acpi_match_table = ACPI_PTR(sec_acpi_match),
1312
},
1313
};
1314
module_platform_driver(sec_driver);
1315
1316
MODULE_LICENSE("GPL");
1317
MODULE_DESCRIPTION("HiSilicon Security Accelerators");
1318
MODULE_AUTHOR("Zaibo Xu <[email protected]");
1319
MODULE_AUTHOR("Jonathan Cameron <[email protected]>");
1320
1321