Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/marvell/cesa/cesa.c
50647 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Support for Marvell's Cryptographic Engine and Security Accelerator (CESA)
4
* that can be found on the following platform: Orion, Kirkwood, Armada. This
5
* driver supports the TDMA engine on platforms on which it is available.
6
*
7
* Author: Boris Brezillon <[email protected]>
8
* Author: Arnaud Ebalard <[email protected]>
9
*
10
* This work is based on an initial version written by
11
* Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
12
*/
13
14
#include <linux/delay.h>
15
#include <linux/dma-mapping.h>
16
#include <linux/genalloc.h>
17
#include <linux/interrupt.h>
18
#include <linux/io.h>
19
#include <linux/kthread.h>
20
#include <linux/mbus.h>
21
#include <linux/platform_device.h>
22
#include <linux/scatterlist.h>
23
#include <linux/slab.h>
24
#include <linux/module.h>
25
#include <linux/clk.h>
26
#include <linux/of.h>
27
#include <linux/of_platform.h>
28
#include <linux/of_irq.h>
29
30
#include "cesa.h"
31
32
/* Limit of the crypto queue before reaching the backlog */
33
#define CESA_CRYPTO_DEFAULT_MAX_QLEN 128
34
35
struct mv_cesa_dev *cesa_dev;
36
37
struct crypto_async_request *
38
mv_cesa_dequeue_req_locked(struct mv_cesa_engine *engine,
39
struct crypto_async_request **backlog)
40
{
41
*backlog = crypto_get_backlog(&engine->queue);
42
43
return crypto_dequeue_request(&engine->queue);
44
}
45
46
static void mv_cesa_rearm_engine(struct mv_cesa_engine *engine)
47
{
48
struct crypto_async_request *req = NULL, *backlog = NULL;
49
struct mv_cesa_ctx *ctx;
50
51
52
spin_lock_bh(&engine->lock);
53
if (!engine->req) {
54
req = mv_cesa_dequeue_req_locked(engine, &backlog);
55
engine->req = req;
56
}
57
spin_unlock_bh(&engine->lock);
58
59
if (!req)
60
return;
61
62
if (backlog)
63
crypto_request_complete(backlog, -EINPROGRESS);
64
65
ctx = crypto_tfm_ctx(req->tfm);
66
ctx->ops->step(req);
67
}
68
69
static int mv_cesa_std_process(struct mv_cesa_engine *engine, u32 status)
70
{
71
struct crypto_async_request *req;
72
struct mv_cesa_ctx *ctx;
73
int res;
74
75
req = engine->req;
76
ctx = crypto_tfm_ctx(req->tfm);
77
res = ctx->ops->process(req, status);
78
79
if (res == 0) {
80
ctx->ops->complete(req);
81
mv_cesa_engine_enqueue_complete_request(engine, req);
82
} else if (res == -EINPROGRESS) {
83
ctx->ops->step(req);
84
}
85
86
return res;
87
}
88
89
static int mv_cesa_int_process(struct mv_cesa_engine *engine, u32 status)
90
{
91
if (engine->chain_hw.first && engine->chain_hw.last)
92
return mv_cesa_tdma_process(engine, status);
93
94
return mv_cesa_std_process(engine, status);
95
}
96
97
static inline void
98
mv_cesa_complete_req(struct mv_cesa_ctx *ctx, struct crypto_async_request *req,
99
int res)
100
{
101
ctx->ops->cleanup(req);
102
local_bh_disable();
103
crypto_request_complete(req, res);
104
local_bh_enable();
105
}
106
107
static irqreturn_t mv_cesa_int(int irq, void *priv)
108
{
109
struct mv_cesa_engine *engine = priv;
110
struct crypto_async_request *req;
111
struct mv_cesa_ctx *ctx;
112
u32 status, mask;
113
irqreturn_t ret = IRQ_NONE;
114
115
while (true) {
116
int res;
117
118
mask = mv_cesa_get_int_mask(engine);
119
status = readl(engine->regs + CESA_SA_INT_STATUS);
120
121
if (!(status & mask))
122
break;
123
124
/*
125
* TODO: avoid clearing the FPGA_INT_STATUS if this not
126
* relevant on some platforms.
127
*/
128
writel(~status, engine->regs + CESA_SA_FPGA_INT_STATUS);
129
writel(~status, engine->regs + CESA_SA_INT_STATUS);
130
131
/* Process fetched requests */
132
res = mv_cesa_int_process(engine, status & mask);
133
ret = IRQ_HANDLED;
134
135
spin_lock_bh(&engine->lock);
136
req = engine->req;
137
if (res != -EINPROGRESS)
138
engine->req = NULL;
139
spin_unlock_bh(&engine->lock);
140
141
ctx = crypto_tfm_ctx(req->tfm);
142
143
if (res && res != -EINPROGRESS)
144
mv_cesa_complete_req(ctx, req, res);
145
146
/* Launch the next pending request */
147
mv_cesa_rearm_engine(engine);
148
149
/* Iterate over the complete queue */
150
while (true) {
151
req = mv_cesa_engine_dequeue_complete_request(engine);
152
if (!req)
153
break;
154
155
ctx = crypto_tfm_ctx(req->tfm);
156
mv_cesa_complete_req(ctx, req, 0);
157
}
158
}
159
160
return ret;
161
}
162
163
int mv_cesa_queue_req(struct crypto_async_request *req,
164
struct mv_cesa_req *creq)
165
{
166
int ret;
167
struct mv_cesa_engine *engine = creq->engine;
168
169
spin_lock_bh(&engine->lock);
170
ret = crypto_enqueue_request(&engine->queue, req);
171
if ((mv_cesa_req_get_type(creq) == CESA_DMA_REQ) &&
172
(ret == -EINPROGRESS || ret == -EBUSY))
173
mv_cesa_tdma_chain(engine, creq);
174
spin_unlock_bh(&engine->lock);
175
176
if (ret != -EINPROGRESS)
177
return ret;
178
179
mv_cesa_rearm_engine(engine);
180
181
return -EINPROGRESS;
182
}
183
184
static int mv_cesa_add_algs(struct mv_cesa_dev *cesa)
185
{
186
int ret;
187
int i, j;
188
189
for (i = 0; i < cesa->caps->ncipher_algs; i++) {
190
ret = crypto_register_skcipher(cesa->caps->cipher_algs[i]);
191
if (ret)
192
goto err_unregister_crypto;
193
}
194
195
for (i = 0; i < cesa->caps->nahash_algs; i++) {
196
ret = crypto_register_ahash(cesa->caps->ahash_algs[i]);
197
if (ret)
198
goto err_unregister_ahash;
199
}
200
201
return 0;
202
203
err_unregister_ahash:
204
for (j = 0; j < i; j++)
205
crypto_unregister_ahash(cesa->caps->ahash_algs[j]);
206
i = cesa->caps->ncipher_algs;
207
208
err_unregister_crypto:
209
for (j = 0; j < i; j++)
210
crypto_unregister_skcipher(cesa->caps->cipher_algs[j]);
211
212
return ret;
213
}
214
215
static void mv_cesa_remove_algs(struct mv_cesa_dev *cesa)
216
{
217
int i;
218
219
for (i = 0; i < cesa->caps->nahash_algs; i++)
220
crypto_unregister_ahash(cesa->caps->ahash_algs[i]);
221
222
for (i = 0; i < cesa->caps->ncipher_algs; i++)
223
crypto_unregister_skcipher(cesa->caps->cipher_algs[i]);
224
}
225
226
static struct skcipher_alg *orion_cipher_algs[] = {
227
&mv_cesa_ecb_des_alg,
228
&mv_cesa_cbc_des_alg,
229
&mv_cesa_ecb_des3_ede_alg,
230
&mv_cesa_cbc_des3_ede_alg,
231
&mv_cesa_ecb_aes_alg,
232
&mv_cesa_cbc_aes_alg,
233
};
234
235
static struct ahash_alg *orion_ahash_algs[] = {
236
&mv_md5_alg,
237
&mv_sha1_alg,
238
&mv_ahmac_md5_alg,
239
&mv_ahmac_sha1_alg,
240
};
241
242
static struct skcipher_alg *armada_370_cipher_algs[] = {
243
&mv_cesa_ecb_des_alg,
244
&mv_cesa_cbc_des_alg,
245
&mv_cesa_ecb_des3_ede_alg,
246
&mv_cesa_cbc_des3_ede_alg,
247
&mv_cesa_ecb_aes_alg,
248
&mv_cesa_cbc_aes_alg,
249
};
250
251
static struct ahash_alg *armada_370_ahash_algs[] = {
252
&mv_md5_alg,
253
&mv_sha1_alg,
254
&mv_sha256_alg,
255
&mv_ahmac_md5_alg,
256
&mv_ahmac_sha1_alg,
257
&mv_ahmac_sha256_alg,
258
};
259
260
static const struct mv_cesa_caps orion_caps = {
261
.nengines = 1,
262
.cipher_algs = orion_cipher_algs,
263
.ncipher_algs = ARRAY_SIZE(orion_cipher_algs),
264
.ahash_algs = orion_ahash_algs,
265
.nahash_algs = ARRAY_SIZE(orion_ahash_algs),
266
.has_tdma = false,
267
};
268
269
static const struct mv_cesa_caps kirkwood_caps = {
270
.nengines = 1,
271
.cipher_algs = orion_cipher_algs,
272
.ncipher_algs = ARRAY_SIZE(orion_cipher_algs),
273
.ahash_algs = orion_ahash_algs,
274
.nahash_algs = ARRAY_SIZE(orion_ahash_algs),
275
.has_tdma = true,
276
};
277
278
static const struct mv_cesa_caps armada_370_caps = {
279
.nengines = 1,
280
.cipher_algs = armada_370_cipher_algs,
281
.ncipher_algs = ARRAY_SIZE(armada_370_cipher_algs),
282
.ahash_algs = armada_370_ahash_algs,
283
.nahash_algs = ARRAY_SIZE(armada_370_ahash_algs),
284
.has_tdma = true,
285
};
286
287
static const struct mv_cesa_caps armada_xp_caps = {
288
.nengines = 2,
289
.cipher_algs = armada_370_cipher_algs,
290
.ncipher_algs = ARRAY_SIZE(armada_370_cipher_algs),
291
.ahash_algs = armada_370_ahash_algs,
292
.nahash_algs = ARRAY_SIZE(armada_370_ahash_algs),
293
.has_tdma = true,
294
};
295
296
static const struct of_device_id mv_cesa_of_match_table[] = {
297
{ .compatible = "marvell,orion-crypto", .data = &orion_caps },
298
{ .compatible = "marvell,kirkwood-crypto", .data = &kirkwood_caps },
299
{ .compatible = "marvell,dove-crypto", .data = &kirkwood_caps },
300
{ .compatible = "marvell,armada-370-crypto", .data = &armada_370_caps },
301
{ .compatible = "marvell,armada-xp-crypto", .data = &armada_xp_caps },
302
{ .compatible = "marvell,armada-375-crypto", .data = &armada_xp_caps },
303
{ .compatible = "marvell,armada-38x-crypto", .data = &armada_xp_caps },
304
{}
305
};
306
MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
307
308
static void
309
mv_cesa_conf_mbus_windows(struct mv_cesa_engine *engine,
310
const struct mbus_dram_target_info *dram)
311
{
312
void __iomem *iobase = engine->regs;
313
int i;
314
315
for (i = 0; i < 4; i++) {
316
writel(0, iobase + CESA_TDMA_WINDOW_CTRL(i));
317
writel(0, iobase + CESA_TDMA_WINDOW_BASE(i));
318
}
319
320
for (i = 0; i < dram->num_cs; i++) {
321
const struct mbus_dram_window *cs = dram->cs + i;
322
323
writel(((cs->size - 1) & 0xffff0000) |
324
(cs->mbus_attr << 8) |
325
(dram->mbus_dram_target_id << 4) | 1,
326
iobase + CESA_TDMA_WINDOW_CTRL(i));
327
writel(cs->base, iobase + CESA_TDMA_WINDOW_BASE(i));
328
}
329
}
330
331
static int mv_cesa_dev_dma_init(struct mv_cesa_dev *cesa)
332
{
333
struct device *dev = cesa->dev;
334
struct mv_cesa_dev_dma *dma;
335
336
if (!cesa->caps->has_tdma)
337
return 0;
338
339
dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
340
if (!dma)
341
return -ENOMEM;
342
343
dma->tdma_desc_pool = dmam_pool_create("tdma_desc", dev,
344
sizeof(struct mv_cesa_tdma_desc),
345
16, 0);
346
if (!dma->tdma_desc_pool)
347
return -ENOMEM;
348
349
dma->op_pool = dmam_pool_create("cesa_op", dev,
350
sizeof(struct mv_cesa_op_ctx), 16, 0);
351
if (!dma->op_pool)
352
return -ENOMEM;
353
354
dma->cache_pool = dmam_pool_create("cesa_cache", dev,
355
CESA_MAX_HASH_BLOCK_SIZE, 1, 0);
356
if (!dma->cache_pool)
357
return -ENOMEM;
358
359
dma->padding_pool = dmam_pool_create("cesa_padding", dev, 72, 1, 0);
360
if (!dma->padding_pool)
361
return -ENOMEM;
362
363
cesa->dma = dma;
364
365
return 0;
366
}
367
368
static int mv_cesa_get_sram(struct platform_device *pdev, int idx)
369
{
370
struct mv_cesa_dev *cesa = platform_get_drvdata(pdev);
371
struct mv_cesa_engine *engine = &cesa->engines[idx];
372
struct resource *res;
373
374
engine->pool = of_gen_pool_get(cesa->dev->of_node,
375
"marvell,crypto-srams", idx);
376
if (engine->pool) {
377
engine->sram_pool = gen_pool_dma_alloc(engine->pool,
378
cesa->sram_size,
379
&engine->sram_dma);
380
if (engine->sram_pool)
381
return 0;
382
383
engine->pool = NULL;
384
return -ENOMEM;
385
}
386
387
engine->sram = devm_platform_get_and_ioremap_resource(pdev, idx, &res);
388
if (IS_ERR(engine->sram))
389
return PTR_ERR(engine->sram);
390
391
engine->sram_dma = dma_map_resource(cesa->dev, res->start,
392
cesa->sram_size,
393
DMA_BIDIRECTIONAL, 0);
394
if (dma_mapping_error(cesa->dev, engine->sram_dma))
395
return -ENOMEM;
396
397
return 0;
398
}
399
400
static void mv_cesa_put_sram(struct platform_device *pdev, int idx)
401
{
402
struct mv_cesa_dev *cesa = platform_get_drvdata(pdev);
403
struct mv_cesa_engine *engine = &cesa->engines[idx];
404
405
if (engine->pool)
406
gen_pool_free(engine->pool, (unsigned long)engine->sram_pool,
407
cesa->sram_size);
408
else
409
dma_unmap_resource(cesa->dev, engine->sram_dma,
410
cesa->sram_size, DMA_BIDIRECTIONAL, 0);
411
}
412
413
static int mv_cesa_probe(struct platform_device *pdev)
414
{
415
const struct mv_cesa_caps *caps = &orion_caps;
416
const struct mbus_dram_target_info *dram;
417
struct device *dev = &pdev->dev;
418
struct mv_cesa_dev *cesa;
419
struct mv_cesa_engine *engines;
420
int irq, ret, i, cpu;
421
u32 sram_size;
422
423
if (cesa_dev) {
424
dev_err(&pdev->dev, "Only one CESA device authorized\n");
425
return -EEXIST;
426
}
427
428
if (dev->of_node) {
429
caps = of_device_get_match_data(dev);
430
if (!caps)
431
return -ENOTSUPP;
432
}
433
434
cesa = devm_kzalloc(dev, sizeof(*cesa), GFP_KERNEL);
435
if (!cesa)
436
return -ENOMEM;
437
438
cesa->caps = caps;
439
cesa->dev = dev;
440
441
sram_size = CESA_SA_DEFAULT_SRAM_SIZE;
442
of_property_read_u32(cesa->dev->of_node, "marvell,crypto-sram-size",
443
&sram_size);
444
if (sram_size < CESA_SA_MIN_SRAM_SIZE)
445
sram_size = CESA_SA_MIN_SRAM_SIZE;
446
447
cesa->sram_size = sram_size;
448
cesa->engines = devm_kcalloc(dev, caps->nengines, sizeof(*engines),
449
GFP_KERNEL);
450
if (!cesa->engines)
451
return -ENOMEM;
452
453
spin_lock_init(&cesa->lock);
454
455
cesa->regs = devm_platform_ioremap_resource_byname(pdev, "regs");
456
if (IS_ERR(cesa->regs))
457
return PTR_ERR(cesa->regs);
458
459
ret = mv_cesa_dev_dma_init(cesa);
460
if (ret)
461
return ret;
462
463
dram = mv_mbus_dram_info_nooverlap();
464
465
platform_set_drvdata(pdev, cesa);
466
467
for (i = 0; i < caps->nengines; i++) {
468
struct mv_cesa_engine *engine = &cesa->engines[i];
469
char res_name[16];
470
471
engine->id = i;
472
spin_lock_init(&engine->lock);
473
474
ret = mv_cesa_get_sram(pdev, i);
475
if (ret)
476
goto err_cleanup;
477
478
irq = platform_get_irq(pdev, i);
479
if (irq < 0) {
480
ret = irq;
481
goto err_cleanup;
482
}
483
484
engine->irq = irq;
485
486
/*
487
* Not all platforms can gate the CESA clocks: do not complain
488
* if the clock does not exist.
489
*/
490
snprintf(res_name, sizeof(res_name), "cesa%u", i);
491
engine->clk = devm_clk_get_optional_enabled(dev, res_name);
492
if (IS_ERR(engine->clk)) {
493
engine->clk = devm_clk_get_optional_enabled(dev, NULL);
494
if (IS_ERR(engine->clk)) {
495
ret = PTR_ERR(engine->clk);
496
goto err_cleanup;
497
}
498
}
499
500
snprintf(res_name, sizeof(res_name), "cesaz%u", i);
501
engine->zclk = devm_clk_get_optional_enabled(dev, res_name);
502
if (IS_ERR(engine->zclk)) {
503
ret = PTR_ERR(engine->zclk);
504
goto err_cleanup;
505
}
506
507
engine->regs = cesa->regs + CESA_ENGINE_OFF(i);
508
509
if (dram && cesa->caps->has_tdma)
510
mv_cesa_conf_mbus_windows(engine, dram);
511
512
writel(0, engine->regs + CESA_SA_INT_STATUS);
513
writel(CESA_SA_CFG_STOP_DIG_ERR,
514
engine->regs + CESA_SA_CFG);
515
writel(engine->sram_dma & CESA_SA_SRAM_MSK,
516
engine->regs + CESA_SA_DESC_P0);
517
518
ret = devm_request_threaded_irq(dev, irq, NULL, mv_cesa_int,
519
IRQF_ONESHOT,
520
dev_name(&pdev->dev),
521
engine);
522
if (ret)
523
goto err_cleanup;
524
525
/* Set affinity */
526
cpu = cpumask_local_spread(engine->id, NUMA_NO_NODE);
527
irq_set_affinity_hint(irq, get_cpu_mask(cpu));
528
529
crypto_init_queue(&engine->queue, CESA_CRYPTO_DEFAULT_MAX_QLEN);
530
atomic_set(&engine->load, 0);
531
INIT_LIST_HEAD(&engine->complete_queue);
532
}
533
534
cesa_dev = cesa;
535
536
ret = mv_cesa_add_algs(cesa);
537
if (ret) {
538
cesa_dev = NULL;
539
goto err_cleanup;
540
}
541
542
dev_info(dev, "CESA device successfully registered\n");
543
544
return 0;
545
546
err_cleanup:
547
for (i = 0; i < caps->nengines; i++)
548
mv_cesa_put_sram(pdev, i);
549
550
return ret;
551
}
552
553
static void mv_cesa_remove(struct platform_device *pdev)
554
{
555
struct mv_cesa_dev *cesa = platform_get_drvdata(pdev);
556
int i;
557
558
mv_cesa_remove_algs(cesa);
559
560
for (i = 0; i < cesa->caps->nengines; i++)
561
mv_cesa_put_sram(pdev, i);
562
}
563
564
static const struct platform_device_id mv_cesa_plat_id_table[] = {
565
{ .name = "mv_crypto" },
566
{ /* sentinel */ },
567
};
568
MODULE_DEVICE_TABLE(platform, mv_cesa_plat_id_table);
569
570
static struct platform_driver marvell_cesa = {
571
.probe = mv_cesa_probe,
572
.remove = mv_cesa_remove,
573
.id_table = mv_cesa_plat_id_table,
574
.driver = {
575
.name = "marvell-cesa",
576
.of_match_table = mv_cesa_of_match_table,
577
},
578
};
579
module_platform_driver(marvell_cesa);
580
581
MODULE_AUTHOR("Boris Brezillon <[email protected]>");
582
MODULE_AUTHOR("Arnaud Ebalard <[email protected]>");
583
MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
584
MODULE_LICENSE("GPL v2");
585
586