Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/marvell/octeontx/otx_cptvf_reqmgr.c
26288 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Marvell OcteonTX CPT driver
3
*
4
* Copyright (C) 2019 Marvell International Ltd.
5
*
6
* This program is free software; you can redistribute it and/or modify
7
* it under the terms of the GNU General Public License version 2 as
8
* published by the Free Software Foundation.
9
*/
10
11
#include "otx_cptvf.h"
12
#include "otx_cptvf_algs.h"
13
14
/* Completion code size and initial value */
15
#define COMPLETION_CODE_SIZE 8
16
#define COMPLETION_CODE_INIT 0
17
18
/* SG list header size in bytes */
19
#define SG_LIST_HDR_SIZE 8
20
21
/* Default timeout when waiting for free pending entry in us */
22
#define CPT_PENTRY_TIMEOUT 1000
23
#define CPT_PENTRY_STEP 50
24
25
/* Default threshold for stopping and resuming sender requests */
26
#define CPT_IQ_STOP_MARGIN 128
27
#define CPT_IQ_RESUME_MARGIN 512
28
29
#define CPT_DMA_ALIGN 128
30
31
void otx_cpt_dump_sg_list(struct pci_dev *pdev, struct otx_cpt_req_info *req)
32
{
33
int i;
34
35
pr_debug("Gather list size %d\n", req->incnt);
36
for (i = 0; i < req->incnt; i++) {
37
pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i,
38
req->in[i].size, req->in[i].vptr,
39
(void *) req->in[i].dma_addr);
40
pr_debug("Buffer hexdump (%d bytes)\n",
41
req->in[i].size);
42
print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
43
req->in[i].vptr, req->in[i].size, false);
44
}
45
46
pr_debug("Scatter list size %d\n", req->outcnt);
47
for (i = 0; i < req->outcnt; i++) {
48
pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i,
49
req->out[i].size, req->out[i].vptr,
50
(void *) req->out[i].dma_addr);
51
pr_debug("Buffer hexdump (%d bytes)\n", req->out[i].size);
52
print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
53
req->out[i].vptr, req->out[i].size, false);
54
}
55
}
56
57
static inline struct otx_cpt_pending_entry *get_free_pending_entry(
58
struct otx_cpt_pending_queue *q,
59
int qlen)
60
{
61
struct otx_cpt_pending_entry *ent = NULL;
62
63
ent = &q->head[q->rear];
64
if (unlikely(ent->busy))
65
return NULL;
66
67
q->rear++;
68
if (unlikely(q->rear == qlen))
69
q->rear = 0;
70
71
return ent;
72
}
73
74
static inline u32 modulo_inc(u32 index, u32 length, u32 inc)
75
{
76
if (WARN_ON(inc > length))
77
inc = length;
78
79
index += inc;
80
if (unlikely(index >= length))
81
index -= length;
82
83
return index;
84
}
85
86
static inline void free_pentry(struct otx_cpt_pending_entry *pentry)
87
{
88
pentry->completion_addr = NULL;
89
pentry->info = NULL;
90
pentry->callback = NULL;
91
pentry->areq = NULL;
92
pentry->resume_sender = false;
93
pentry->busy = false;
94
}
95
96
static inline int setup_sgio_components(struct pci_dev *pdev,
97
struct otx_cpt_buf_ptr *list,
98
int buf_count, u8 *buffer)
99
{
100
struct otx_cpt_sglist_component *sg_ptr = NULL;
101
int ret = 0, i, j;
102
int components;
103
104
if (unlikely(!list)) {
105
dev_err(&pdev->dev, "Input list pointer is NULL\n");
106
return -EFAULT;
107
}
108
109
for (i = 0; i < buf_count; i++) {
110
if (likely(list[i].vptr)) {
111
list[i].dma_addr = dma_map_single(&pdev->dev,
112
list[i].vptr,
113
list[i].size,
114
DMA_BIDIRECTIONAL);
115
if (unlikely(dma_mapping_error(&pdev->dev,
116
list[i].dma_addr))) {
117
dev_err(&pdev->dev, "Dma mapping failed\n");
118
ret = -EIO;
119
goto sg_cleanup;
120
}
121
}
122
}
123
124
components = buf_count / 4;
125
sg_ptr = (struct otx_cpt_sglist_component *)buffer;
126
for (i = 0; i < components; i++) {
127
sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
128
sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
129
sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
130
sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size);
131
sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
132
sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
133
sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
134
sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr);
135
sg_ptr++;
136
}
137
components = buf_count % 4;
138
139
switch (components) {
140
case 3:
141
sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
142
sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
143
fallthrough;
144
case 2:
145
sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
146
sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
147
fallthrough;
148
case 1:
149
sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
150
sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
151
break;
152
default:
153
break;
154
}
155
return ret;
156
157
sg_cleanup:
158
for (j = 0; j < i; j++) {
159
if (list[j].dma_addr) {
160
dma_unmap_single(&pdev->dev, list[i].dma_addr,
161
list[i].size, DMA_BIDIRECTIONAL);
162
}
163
164
list[j].dma_addr = 0;
165
}
166
return ret;
167
}
168
169
static inline int setup_sgio_list(struct pci_dev *pdev,
170
struct otx_cpt_info_buffer **pinfo,
171
struct otx_cpt_req_info *req, gfp_t gfp)
172
{
173
u32 dlen, align_dlen, info_len, rlen;
174
struct otx_cpt_info_buffer *info;
175
u16 g_sz_bytes, s_sz_bytes;
176
int align = CPT_DMA_ALIGN;
177
u32 total_mem_len;
178
179
if (unlikely(req->incnt > OTX_CPT_MAX_SG_IN_CNT ||
180
req->outcnt > OTX_CPT_MAX_SG_OUT_CNT)) {
181
dev_err(&pdev->dev, "Error too many sg components\n");
182
return -EINVAL;
183
}
184
185
g_sz_bytes = ((req->incnt + 3) / 4) *
186
sizeof(struct otx_cpt_sglist_component);
187
s_sz_bytes = ((req->outcnt + 3) / 4) *
188
sizeof(struct otx_cpt_sglist_component);
189
190
dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE;
191
align_dlen = ALIGN(dlen, align);
192
info_len = ALIGN(sizeof(*info), align);
193
rlen = ALIGN(sizeof(union otx_cpt_res_s), align);
194
total_mem_len = align_dlen + info_len + rlen + COMPLETION_CODE_SIZE;
195
196
info = kzalloc(total_mem_len, gfp);
197
if (unlikely(!info)) {
198
dev_err(&pdev->dev, "Memory allocation failed\n");
199
return -ENOMEM;
200
}
201
*pinfo = info;
202
info->dlen = dlen;
203
info->in_buffer = (u8 *)info + info_len;
204
205
((__be16 *)info->in_buffer)[0] = cpu_to_be16(req->outcnt);
206
((__be16 *)info->in_buffer)[1] = cpu_to_be16(req->incnt);
207
((u16 *)info->in_buffer)[2] = 0;
208
((u16 *)info->in_buffer)[3] = 0;
209
210
/* Setup gather (input) components */
211
if (setup_sgio_components(pdev, req->in, req->incnt,
212
&info->in_buffer[8])) {
213
dev_err(&pdev->dev, "Failed to setup gather list\n");
214
return -EFAULT;
215
}
216
217
if (setup_sgio_components(pdev, req->out, req->outcnt,
218
&info->in_buffer[8 + g_sz_bytes])) {
219
dev_err(&pdev->dev, "Failed to setup scatter list\n");
220
return -EFAULT;
221
}
222
223
info->dma_len = total_mem_len - info_len;
224
info->dptr_baddr = dma_map_single(&pdev->dev, (void *)info->in_buffer,
225
info->dma_len, DMA_BIDIRECTIONAL);
226
if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) {
227
dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n");
228
return -EIO;
229
}
230
/*
231
* Get buffer for union otx_cpt_res_s response
232
* structure and its physical address
233
*/
234
info->completion_addr = (u64 *)(info->in_buffer + align_dlen);
235
info->comp_baddr = info->dptr_baddr + align_dlen;
236
237
/* Create and initialize RPTR */
238
info->out_buffer = (u8 *)info->completion_addr + rlen;
239
info->rptr_baddr = info->comp_baddr + rlen;
240
241
*((u64 *) info->out_buffer) = ~((u64) COMPLETION_CODE_INIT);
242
243
return 0;
244
}
245
246
247
static void cpt_fill_inst(union otx_cpt_inst_s *inst,
248
struct otx_cpt_info_buffer *info,
249
struct otx_cpt_iq_cmd *cmd)
250
{
251
inst->u[0] = 0x0;
252
inst->s.doneint = true;
253
inst->s.res_addr = (u64)info->comp_baddr;
254
inst->u[2] = 0x0;
255
inst->s.wq_ptr = 0;
256
inst->s.ei0 = cmd->cmd.u64;
257
inst->s.ei1 = cmd->dptr;
258
inst->s.ei2 = cmd->rptr;
259
inst->s.ei3 = cmd->cptr.u64;
260
}
261
262
/*
263
* On OcteonTX platform the parameter db_count is used as a count for ringing
264
* door bell. The valid values for db_count are:
265
* 0 - 1 CPT instruction will be enqueued however CPT will not be informed
266
* 1 - 1 CPT instruction will be enqueued and CPT will be informed
267
*/
268
static void cpt_send_cmd(union otx_cpt_inst_s *cptinst, struct otx_cptvf *cptvf)
269
{
270
struct otx_cpt_cmd_qinfo *qinfo = &cptvf->cqinfo;
271
struct otx_cpt_cmd_queue *queue;
272
struct otx_cpt_cmd_chunk *curr;
273
u8 *ent;
274
275
queue = &qinfo->queue[0];
276
/*
277
* cpt_send_cmd is currently called only from critical section
278
* therefore no locking is required for accessing instruction queue
279
*/
280
ent = &queue->qhead->head[queue->idx * OTX_CPT_INST_SIZE];
281
memcpy(ent, (void *) cptinst, OTX_CPT_INST_SIZE);
282
283
if (++queue->idx >= queue->qhead->size / 64) {
284
curr = queue->qhead;
285
286
if (list_is_last(&curr->nextchunk, &queue->chead))
287
queue->qhead = queue->base;
288
else
289
queue->qhead = list_next_entry(queue->qhead, nextchunk);
290
queue->idx = 0;
291
}
292
/* make sure all memory stores are done before ringing doorbell */
293
smp_wmb();
294
otx_cptvf_write_vq_doorbell(cptvf, 1);
295
}
296
297
static int process_request(struct pci_dev *pdev, struct otx_cpt_req_info *req,
298
struct otx_cpt_pending_queue *pqueue,
299
struct otx_cptvf *cptvf)
300
{
301
struct otx_cptvf_request *cpt_req = &req->req;
302
struct otx_cpt_pending_entry *pentry = NULL;
303
union otx_cpt_ctrl_info *ctrl = &req->ctrl;
304
struct otx_cpt_info_buffer *info = NULL;
305
union otx_cpt_res_s *result = NULL;
306
struct otx_cpt_iq_cmd iq_cmd;
307
union otx_cpt_inst_s cptinst;
308
int retry, ret = 0;
309
u8 resume_sender;
310
gfp_t gfp;
311
312
gfp = (req->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
313
GFP_ATOMIC;
314
ret = setup_sgio_list(pdev, &info, req, gfp);
315
if (unlikely(ret)) {
316
dev_err(&pdev->dev, "Setting up SG list failed\n");
317
goto request_cleanup;
318
}
319
cpt_req->dlen = info->dlen;
320
321
result = (union otx_cpt_res_s *) info->completion_addr;
322
result->s.compcode = COMPLETION_CODE_INIT;
323
324
spin_lock_bh(&pqueue->lock);
325
pentry = get_free_pending_entry(pqueue, pqueue->qlen);
326
retry = CPT_PENTRY_TIMEOUT / CPT_PENTRY_STEP;
327
while (unlikely(!pentry) && retry--) {
328
spin_unlock_bh(&pqueue->lock);
329
udelay(CPT_PENTRY_STEP);
330
spin_lock_bh(&pqueue->lock);
331
pentry = get_free_pending_entry(pqueue, pqueue->qlen);
332
}
333
334
if (unlikely(!pentry)) {
335
ret = -ENOSPC;
336
spin_unlock_bh(&pqueue->lock);
337
goto request_cleanup;
338
}
339
340
/*
341
* Check if we are close to filling in entire pending queue,
342
* if so then tell the sender to stop/sleep by returning -EBUSY
343
* We do it only for context which can sleep (GFP_KERNEL)
344
*/
345
if (gfp == GFP_KERNEL &&
346
pqueue->pending_count > (pqueue->qlen - CPT_IQ_STOP_MARGIN)) {
347
pentry->resume_sender = true;
348
} else
349
pentry->resume_sender = false;
350
resume_sender = pentry->resume_sender;
351
pqueue->pending_count++;
352
353
pentry->completion_addr = info->completion_addr;
354
pentry->info = info;
355
pentry->callback = req->callback;
356
pentry->areq = req->areq;
357
pentry->busy = true;
358
info->pentry = pentry;
359
info->time_in = jiffies;
360
info->req = req;
361
362
/* Fill in the command */
363
iq_cmd.cmd.u64 = 0;
364
iq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags);
365
iq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1);
366
iq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2);
367
iq_cmd.cmd.s.dlen = cpu_to_be16(cpt_req->dlen);
368
369
iq_cmd.dptr = info->dptr_baddr;
370
iq_cmd.rptr = info->rptr_baddr;
371
iq_cmd.cptr.u64 = 0;
372
iq_cmd.cptr.s.grp = ctrl->s.grp;
373
374
/* Fill in the CPT_INST_S type command for HW interpretation */
375
cpt_fill_inst(&cptinst, info, &iq_cmd);
376
377
/* Print debug info if enabled */
378
otx_cpt_dump_sg_list(pdev, req);
379
pr_debug("Cpt_inst_s hexdump (%d bytes)\n", OTX_CPT_INST_SIZE);
380
print_hex_dump_debug("", 0, 16, 1, &cptinst, OTX_CPT_INST_SIZE, false);
381
pr_debug("Dptr hexdump (%d bytes)\n", cpt_req->dlen);
382
print_hex_dump_debug("", 0, 16, 1, info->in_buffer,
383
cpt_req->dlen, false);
384
385
/* Send CPT command */
386
cpt_send_cmd(&cptinst, cptvf);
387
388
/*
389
* We allocate and prepare pending queue entry in critical section
390
* together with submitting CPT instruction to CPT instruction queue
391
* to make sure that order of CPT requests is the same in both
392
* pending and instruction queues
393
*/
394
spin_unlock_bh(&pqueue->lock);
395
396
ret = resume_sender ? -EBUSY : -EINPROGRESS;
397
return ret;
398
399
request_cleanup:
400
do_request_cleanup(pdev, info);
401
return ret;
402
}
403
404
int otx_cpt_do_request(struct pci_dev *pdev, struct otx_cpt_req_info *req,
405
int cpu_num)
406
{
407
struct otx_cptvf *cptvf = pci_get_drvdata(pdev);
408
409
if (!otx_cpt_device_ready(cptvf)) {
410
dev_err(&pdev->dev, "CPT Device is not ready\n");
411
return -ENODEV;
412
}
413
414
if ((cptvf->vftype == OTX_CPT_SE_TYPES) && (!req->ctrl.s.se_req)) {
415
dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request\n",
416
cptvf->vfid);
417
return -EINVAL;
418
} else if ((cptvf->vftype == OTX_CPT_AE_TYPES) &&
419
(req->ctrl.s.se_req)) {
420
dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request\n",
421
cptvf->vfid);
422
return -EINVAL;
423
}
424
425
return process_request(pdev, req, &cptvf->pqinfo.queue[0], cptvf);
426
}
427
428
static int cpt_process_ccode(struct pci_dev *pdev,
429
union otx_cpt_res_s *cpt_status,
430
struct otx_cpt_info_buffer *cpt_info,
431
struct otx_cpt_req_info *req, u32 *res_code)
432
{
433
u8 ccode = cpt_status->s.compcode;
434
union otx_cpt_error_code ecode;
435
436
ecode.u = be64_to_cpup((__be64 *)cpt_info->out_buffer);
437
switch (ccode) {
438
case CPT_COMP_E_FAULT:
439
dev_err(&pdev->dev,
440
"Request failed with DMA fault\n");
441
otx_cpt_dump_sg_list(pdev, req);
442
break;
443
444
case CPT_COMP_E_SWERR:
445
dev_err(&pdev->dev,
446
"Request failed with software error code %d\n",
447
ecode.s.ccode);
448
otx_cpt_dump_sg_list(pdev, req);
449
break;
450
451
case CPT_COMP_E_HWERR:
452
dev_err(&pdev->dev,
453
"Request failed with hardware error\n");
454
otx_cpt_dump_sg_list(pdev, req);
455
break;
456
457
case COMPLETION_CODE_INIT:
458
/* check for timeout */
459
if (time_after_eq(jiffies, cpt_info->time_in +
460
OTX_CPT_COMMAND_TIMEOUT * HZ))
461
dev_warn(&pdev->dev, "Request timed out 0x%p\n", req);
462
else if (cpt_info->extra_time < OTX_CPT_TIME_IN_RESET_COUNT) {
463
cpt_info->time_in = jiffies;
464
cpt_info->extra_time++;
465
}
466
return 1;
467
468
case CPT_COMP_E_GOOD:
469
/* Check microcode completion code */
470
if (ecode.s.ccode) {
471
/*
472
* If requested hmac is truncated and ucode returns
473
* s/g write length error then we report success
474
* because ucode writes as many bytes of calculated
475
* hmac as available in gather buffer and reports
476
* s/g write length error if number of bytes in gather
477
* buffer is less than full hmac size.
478
*/
479
if (req->is_trunc_hmac &&
480
ecode.s.ccode == ERR_SCATTER_GATHER_WRITE_LENGTH) {
481
*res_code = 0;
482
break;
483
}
484
485
dev_err(&pdev->dev,
486
"Request failed with software error code 0x%x\n",
487
ecode.s.ccode);
488
otx_cpt_dump_sg_list(pdev, req);
489
break;
490
}
491
492
/* Request has been processed with success */
493
*res_code = 0;
494
break;
495
496
default:
497
dev_err(&pdev->dev, "Request returned invalid status\n");
498
break;
499
}
500
501
return 0;
502
}
503
504
static inline void process_pending_queue(struct pci_dev *pdev,
505
struct otx_cpt_pending_queue *pqueue)
506
{
507
void (*callback)(int status, void *arg1, void *arg2);
508
struct otx_cpt_pending_entry *resume_pentry = NULL;
509
struct otx_cpt_pending_entry *pentry = NULL;
510
struct otx_cpt_info_buffer *cpt_info = NULL;
511
union otx_cpt_res_s *cpt_status = NULL;
512
struct otx_cpt_req_info *req = NULL;
513
struct crypto_async_request *areq;
514
u32 res_code, resume_index;
515
516
while (1) {
517
spin_lock_bh(&pqueue->lock);
518
pentry = &pqueue->head[pqueue->front];
519
520
if (WARN_ON(!pentry)) {
521
spin_unlock_bh(&pqueue->lock);
522
break;
523
}
524
525
res_code = -EINVAL;
526
if (unlikely(!pentry->busy)) {
527
spin_unlock_bh(&pqueue->lock);
528
break;
529
}
530
531
if (unlikely(!pentry->callback)) {
532
dev_err(&pdev->dev, "Callback NULL\n");
533
goto process_pentry;
534
}
535
536
cpt_info = pentry->info;
537
if (unlikely(!cpt_info)) {
538
dev_err(&pdev->dev, "Pending entry post arg NULL\n");
539
goto process_pentry;
540
}
541
542
req = cpt_info->req;
543
if (unlikely(!req)) {
544
dev_err(&pdev->dev, "Request NULL\n");
545
goto process_pentry;
546
}
547
548
cpt_status = (union otx_cpt_res_s *) pentry->completion_addr;
549
if (unlikely(!cpt_status)) {
550
dev_err(&pdev->dev, "Completion address NULL\n");
551
goto process_pentry;
552
}
553
554
if (cpt_process_ccode(pdev, cpt_status, cpt_info, req,
555
&res_code)) {
556
spin_unlock_bh(&pqueue->lock);
557
return;
558
}
559
cpt_info->pdev = pdev;
560
561
process_pentry:
562
/*
563
* Check if we should inform sending side to resume
564
* We do it CPT_IQ_RESUME_MARGIN elements in advance before
565
* pending queue becomes empty
566
*/
567
resume_index = modulo_inc(pqueue->front, pqueue->qlen,
568
CPT_IQ_RESUME_MARGIN);
569
resume_pentry = &pqueue->head[resume_index];
570
if (resume_pentry &&
571
resume_pentry->resume_sender) {
572
resume_pentry->resume_sender = false;
573
callback = resume_pentry->callback;
574
areq = resume_pentry->areq;
575
576
if (callback) {
577
spin_unlock_bh(&pqueue->lock);
578
579
/*
580
* EINPROGRESS is an indication for sending
581
* side that it can resume sending requests
582
*/
583
callback(-EINPROGRESS, areq, cpt_info);
584
spin_lock_bh(&pqueue->lock);
585
}
586
}
587
588
callback = pentry->callback;
589
areq = pentry->areq;
590
free_pentry(pentry);
591
592
pqueue->pending_count--;
593
pqueue->front = modulo_inc(pqueue->front, pqueue->qlen, 1);
594
spin_unlock_bh(&pqueue->lock);
595
596
/*
597
* Call callback after current pending entry has been
598
* processed, we don't do it if the callback pointer is
599
* invalid.
600
*/
601
if (callback)
602
callback(res_code, areq, cpt_info);
603
}
604
}
605
606
void otx_cpt_post_process(struct otx_cptvf_wqe *wqe)
607
{
608
process_pending_queue(wqe->cptvf->pdev, &wqe->cptvf->pqinfo.queue[0]);
609
}
610
611