Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/mxs-dcp.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Freescale i.MX23/i.MX28 Data Co-Processor driver
4
*
5
* Copyright (C) 2013 Marek Vasut <[email protected]>
6
*/
7
8
#include <linux/dma-mapping.h>
9
#include <linux/interrupt.h>
10
#include <linux/io.h>
11
#include <linux/kernel.h>
12
#include <linux/kthread.h>
13
#include <linux/module.h>
14
#include <linux/of.h>
15
#include <linux/platform_device.h>
16
#include <linux/stmp_device.h>
17
#include <linux/clk.h>
18
#include <soc/fsl/dcp.h>
19
20
#include <crypto/aes.h>
21
#include <crypto/sha1.h>
22
#include <crypto/sha2.h>
23
#include <crypto/internal/hash.h>
24
#include <crypto/internal/skcipher.h>
25
#include <crypto/scatterwalk.h>
26
27
#define DCP_MAX_CHANS 4
28
#define DCP_BUF_SZ PAGE_SIZE
29
#define DCP_SHA_PAY_SZ 64
30
31
#define DCP_ALIGNMENT 64
32
33
/*
34
* Null hashes to align with hw behavior on imx6sl and ull
35
* these are flipped for consistency with hw output
36
*/
37
static const uint8_t sha1_null_hash[] =
38
"\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
39
"\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
40
41
static const uint8_t sha256_null_hash[] =
42
"\x55\xb8\x52\x78\x1b\x99\x95\xa4"
43
"\x4c\x93\x9b\x64\xe4\x41\xae\x27"
44
"\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
45
"\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
46
47
/* DCP DMA descriptor. */
48
struct dcp_dma_desc {
49
uint32_t next_cmd_addr;
50
uint32_t control0;
51
uint32_t control1;
52
uint32_t source;
53
uint32_t destination;
54
uint32_t size;
55
uint32_t payload;
56
uint32_t status;
57
};
58
59
/* Coherent aligned block for bounce buffering. */
60
struct dcp_coherent_block {
61
uint8_t aes_in_buf[DCP_BUF_SZ];
62
uint8_t aes_out_buf[DCP_BUF_SZ];
63
uint8_t sha_in_buf[DCP_BUF_SZ];
64
uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
65
66
uint8_t aes_key[2 * AES_KEYSIZE_128];
67
68
struct dcp_dma_desc desc[DCP_MAX_CHANS];
69
};
70
71
struct dcp {
72
struct device *dev;
73
void __iomem *base;
74
75
uint32_t caps;
76
77
struct dcp_coherent_block *coh;
78
79
struct completion completion[DCP_MAX_CHANS];
80
spinlock_t lock[DCP_MAX_CHANS];
81
struct task_struct *thread[DCP_MAX_CHANS];
82
struct crypto_queue queue[DCP_MAX_CHANS];
83
struct clk *dcp_clk;
84
};
85
86
enum dcp_chan {
87
DCP_CHAN_HASH_SHA = 0,
88
DCP_CHAN_CRYPTO = 2,
89
};
90
91
struct dcp_async_ctx {
92
/* Common context */
93
enum dcp_chan chan;
94
uint32_t fill;
95
96
/* SHA Hash-specific context */
97
struct mutex mutex;
98
uint32_t alg;
99
unsigned int hot:1;
100
101
/* Crypto-specific context */
102
struct crypto_skcipher *fallback;
103
unsigned int key_len;
104
uint8_t key[AES_KEYSIZE_128];
105
bool key_referenced;
106
};
107
108
struct dcp_aes_req_ctx {
109
unsigned int enc:1;
110
unsigned int ecb:1;
111
struct skcipher_request fallback_req; // keep at the end
112
};
113
114
struct dcp_sha_req_ctx {
115
unsigned int init:1;
116
unsigned int fini:1;
117
};
118
119
struct dcp_export_state {
120
struct dcp_sha_req_ctx req_ctx;
121
struct dcp_async_ctx async_ctx;
122
};
123
124
/*
125
* There can even be only one instance of the MXS DCP due to the
126
* design of Linux Crypto API.
127
*/
128
static struct dcp *global_sdcp;
129
130
/* DCP register layout. */
131
#define MXS_DCP_CTRL 0x00
132
#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
133
#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
134
135
#define MXS_DCP_STAT 0x10
136
#define MXS_DCP_STAT_CLR 0x18
137
#define MXS_DCP_STAT_IRQ_MASK 0xf
138
139
#define MXS_DCP_CHANNELCTRL 0x20
140
#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
141
142
#define MXS_DCP_CAPABILITY1 0x40
143
#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
144
#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
145
#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
146
147
#define MXS_DCP_CONTEXT 0x50
148
149
#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
150
151
#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
152
153
#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
154
#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
155
156
/* DMA descriptor bits. */
157
#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
158
#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
159
#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
160
#define MXS_DCP_CONTROL0_OTP_KEY (1 << 10)
161
#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
162
#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
163
#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
164
#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
165
#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
166
#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
167
168
#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
169
#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
170
#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
171
#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
172
#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
173
174
#define MXS_DCP_CONTROL1_KEY_SELECT_SHIFT 8
175
176
static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
177
{
178
int dma_err;
179
struct dcp *sdcp = global_sdcp;
180
const int chan = actx->chan;
181
uint32_t stat;
182
unsigned long ret;
183
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
184
dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
185
DMA_TO_DEVICE);
186
187
dma_err = dma_mapping_error(sdcp->dev, desc_phys);
188
if (dma_err)
189
return dma_err;
190
191
reinit_completion(&sdcp->completion[chan]);
192
193
/* Clear status register. */
194
writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
195
196
/* Load the DMA descriptor. */
197
writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
198
199
/* Increment the semaphore to start the DMA transfer. */
200
writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
201
202
ret = wait_for_completion_timeout(&sdcp->completion[chan],
203
msecs_to_jiffies(1000));
204
if (!ret) {
205
dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
206
chan, readl(sdcp->base + MXS_DCP_STAT));
207
return -ETIMEDOUT;
208
}
209
210
stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
211
if (stat & 0xff) {
212
dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
213
chan, stat);
214
return -EINVAL;
215
}
216
217
dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
218
219
return 0;
220
}
221
222
/*
223
* Encryption (AES128)
224
*/
225
static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
226
struct skcipher_request *req, int init)
227
{
228
dma_addr_t key_phys, src_phys, dst_phys;
229
struct dcp *sdcp = global_sdcp;
230
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
231
struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
232
bool key_referenced = actx->key_referenced;
233
int ret;
234
235
if (key_referenced)
236
key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key + AES_KEYSIZE_128,
237
AES_KEYSIZE_128, DMA_TO_DEVICE);
238
else
239
key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
240
2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
241
ret = dma_mapping_error(sdcp->dev, key_phys);
242
if (ret)
243
return ret;
244
245
src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
246
DCP_BUF_SZ, DMA_TO_DEVICE);
247
ret = dma_mapping_error(sdcp->dev, src_phys);
248
if (ret)
249
goto err_src;
250
251
dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
252
DCP_BUF_SZ, DMA_FROM_DEVICE);
253
ret = dma_mapping_error(sdcp->dev, dst_phys);
254
if (ret)
255
goto err_dst;
256
257
if (actx->fill % AES_BLOCK_SIZE) {
258
dev_err(sdcp->dev, "Invalid block size!\n");
259
ret = -EINVAL;
260
goto aes_done_run;
261
}
262
263
/* Fill in the DMA descriptor. */
264
desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
265
MXS_DCP_CONTROL0_INTERRUPT |
266
MXS_DCP_CONTROL0_ENABLE_CIPHER;
267
268
if (!key_referenced)
269
/* Payload contains the key. */
270
desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
271
else if (actx->key[0] == DCP_PAES_KEY_OTP)
272
/* Set OTP key bit to select the key via KEY_SELECT. */
273
desc->control0 |= MXS_DCP_CONTROL0_OTP_KEY;
274
275
if (rctx->enc)
276
desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
277
if (init)
278
desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
279
280
desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
281
282
if (rctx->ecb)
283
desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
284
else
285
desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
286
287
if (key_referenced)
288
desc->control1 |= sdcp->coh->aes_key[0] << MXS_DCP_CONTROL1_KEY_SELECT_SHIFT;
289
290
desc->next_cmd_addr = 0;
291
desc->source = src_phys;
292
desc->destination = dst_phys;
293
desc->size = actx->fill;
294
desc->payload = key_phys;
295
desc->status = 0;
296
297
ret = mxs_dcp_start_dma(actx);
298
299
aes_done_run:
300
dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
301
err_dst:
302
dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
303
err_src:
304
if (key_referenced)
305
dma_unmap_single(sdcp->dev, key_phys, AES_KEYSIZE_128,
306
DMA_TO_DEVICE);
307
else
308
dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
309
DMA_TO_DEVICE);
310
return ret;
311
}
312
313
static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
314
{
315
struct dcp *sdcp = global_sdcp;
316
317
struct skcipher_request *req = skcipher_request_cast(arq);
318
struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
319
struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
320
321
struct scatterlist *dst = req->dst;
322
struct scatterlist *src = req->src;
323
int dst_nents = sg_nents(dst);
324
325
const int out_off = DCP_BUF_SZ;
326
uint8_t *in_buf = sdcp->coh->aes_in_buf;
327
uint8_t *out_buf = sdcp->coh->aes_out_buf;
328
329
uint32_t dst_off = 0;
330
uint8_t *src_buf = NULL;
331
uint32_t last_out_len = 0;
332
333
uint8_t *key = sdcp->coh->aes_key;
334
335
int ret = 0;
336
unsigned int i, len, clen, tlen = 0;
337
int init = 0;
338
bool limit_hit = false;
339
340
actx->fill = 0;
341
342
/* Copy the key from the temporary location. */
343
memcpy(key, actx->key, actx->key_len);
344
345
if (!rctx->ecb) {
346
/* Copy the CBC IV just past the key. */
347
memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
348
/* CBC needs the INIT set. */
349
init = 1;
350
} else {
351
memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
352
}
353
354
for_each_sg(req->src, src, sg_nents(req->src), i) {
355
src_buf = sg_virt(src);
356
len = sg_dma_len(src);
357
tlen += len;
358
limit_hit = tlen > req->cryptlen;
359
360
if (limit_hit)
361
len = req->cryptlen - (tlen - len);
362
363
do {
364
if (actx->fill + len > out_off)
365
clen = out_off - actx->fill;
366
else
367
clen = len;
368
369
memcpy(in_buf + actx->fill, src_buf, clen);
370
len -= clen;
371
src_buf += clen;
372
actx->fill += clen;
373
374
/*
375
* If we filled the buffer or this is the last SG,
376
* submit the buffer.
377
*/
378
if (actx->fill == out_off || sg_is_last(src) ||
379
limit_hit) {
380
ret = mxs_dcp_run_aes(actx, req, init);
381
if (ret)
382
return ret;
383
init = 0;
384
385
sg_pcopy_from_buffer(dst, dst_nents, out_buf,
386
actx->fill, dst_off);
387
dst_off += actx->fill;
388
last_out_len = actx->fill;
389
actx->fill = 0;
390
}
391
} while (len);
392
393
if (limit_hit)
394
break;
395
}
396
397
/* Copy the IV for CBC for chaining */
398
if (!rctx->ecb) {
399
if (rctx->enc)
400
memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
401
AES_BLOCK_SIZE);
402
else
403
memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
404
AES_BLOCK_SIZE);
405
}
406
407
return ret;
408
}
409
410
static int dcp_chan_thread_aes(void *data)
411
{
412
struct dcp *sdcp = global_sdcp;
413
const int chan = DCP_CHAN_CRYPTO;
414
415
struct crypto_async_request *backlog;
416
struct crypto_async_request *arq;
417
418
int ret;
419
420
while (!kthread_should_stop()) {
421
set_current_state(TASK_INTERRUPTIBLE);
422
423
spin_lock(&sdcp->lock[chan]);
424
backlog = crypto_get_backlog(&sdcp->queue[chan]);
425
arq = crypto_dequeue_request(&sdcp->queue[chan]);
426
spin_unlock(&sdcp->lock[chan]);
427
428
if (!backlog && !arq) {
429
schedule();
430
continue;
431
}
432
433
set_current_state(TASK_RUNNING);
434
435
if (backlog)
436
crypto_request_complete(backlog, -EINPROGRESS);
437
438
if (arq) {
439
ret = mxs_dcp_aes_block_crypt(arq);
440
crypto_request_complete(arq, ret);
441
}
442
}
443
444
return 0;
445
}
446
447
static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
448
{
449
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
450
struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
451
struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
452
int ret;
453
454
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
455
skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
456
req->base.complete, req->base.data);
457
skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
458
req->cryptlen, req->iv);
459
460
if (enc)
461
ret = crypto_skcipher_encrypt(&rctx->fallback_req);
462
else
463
ret = crypto_skcipher_decrypt(&rctx->fallback_req);
464
465
return ret;
466
}
467
468
static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
469
{
470
struct dcp *sdcp = global_sdcp;
471
struct crypto_async_request *arq = &req->base;
472
struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
473
struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
474
int ret;
475
476
if (unlikely(actx->key_len != AES_KEYSIZE_128 && !actx->key_referenced))
477
return mxs_dcp_block_fallback(req, enc);
478
479
rctx->enc = enc;
480
rctx->ecb = ecb;
481
actx->chan = DCP_CHAN_CRYPTO;
482
483
spin_lock(&sdcp->lock[actx->chan]);
484
ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
485
spin_unlock(&sdcp->lock[actx->chan]);
486
487
wake_up_process(sdcp->thread[actx->chan]);
488
489
return ret;
490
}
491
492
static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
493
{
494
return mxs_dcp_aes_enqueue(req, 0, 1);
495
}
496
497
static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
498
{
499
return mxs_dcp_aes_enqueue(req, 1, 1);
500
}
501
502
static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
503
{
504
return mxs_dcp_aes_enqueue(req, 0, 0);
505
}
506
507
static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
508
{
509
return mxs_dcp_aes_enqueue(req, 1, 0);
510
}
511
512
static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
513
unsigned int len)
514
{
515
struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
516
517
/*
518
* AES 128 is supposed by the hardware, store key into temporary
519
* buffer and exit. We must use the temporary buffer here, since
520
* there can still be an operation in progress.
521
*/
522
actx->key_len = len;
523
actx->key_referenced = false;
524
if (len == AES_KEYSIZE_128) {
525
memcpy(actx->key, key, len);
526
return 0;
527
}
528
529
/*
530
* If the requested AES key size is not supported by the hardware,
531
* but is supported by in-kernel software implementation, we use
532
* software fallback.
533
*/
534
crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
535
crypto_skcipher_set_flags(actx->fallback,
536
tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
537
return crypto_skcipher_setkey(actx->fallback, key, len);
538
}
539
540
static int mxs_dcp_aes_setrefkey(struct crypto_skcipher *tfm, const u8 *key,
541
unsigned int len)
542
{
543
struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
544
545
if (len != DCP_PAES_KEYSIZE)
546
return -EINVAL;
547
548
switch (key[0]) {
549
case DCP_PAES_KEY_SLOT0:
550
case DCP_PAES_KEY_SLOT1:
551
case DCP_PAES_KEY_SLOT2:
552
case DCP_PAES_KEY_SLOT3:
553
case DCP_PAES_KEY_UNIQUE:
554
case DCP_PAES_KEY_OTP:
555
memcpy(actx->key, key, len);
556
actx->key_len = len;
557
actx->key_referenced = true;
558
break;
559
default:
560
return -EINVAL;
561
}
562
563
return 0;
564
}
565
566
static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
567
{
568
const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
569
struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
570
struct crypto_skcipher *blk;
571
572
blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
573
if (IS_ERR(blk))
574
return PTR_ERR(blk);
575
576
actx->fallback = blk;
577
crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
578
crypto_skcipher_reqsize(blk));
579
return 0;
580
}
581
582
static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
583
{
584
struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
585
586
crypto_free_skcipher(actx->fallback);
587
}
588
589
static int mxs_dcp_paes_init_tfm(struct crypto_skcipher *tfm)
590
{
591
crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx));
592
593
return 0;
594
}
595
596
/*
597
* Hashing (SHA1/SHA256)
598
*/
599
static int mxs_dcp_run_sha(struct ahash_request *req)
600
{
601
struct dcp *sdcp = global_sdcp;
602
int ret;
603
604
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
605
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
606
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
607
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
608
609
dma_addr_t digest_phys = 0;
610
dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
611
DCP_BUF_SZ, DMA_TO_DEVICE);
612
613
ret = dma_mapping_error(sdcp->dev, buf_phys);
614
if (ret)
615
return ret;
616
617
/* Fill in the DMA descriptor. */
618
desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
619
MXS_DCP_CONTROL0_INTERRUPT |
620
MXS_DCP_CONTROL0_ENABLE_HASH;
621
if (rctx->init)
622
desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
623
624
desc->control1 = actx->alg;
625
desc->next_cmd_addr = 0;
626
desc->source = buf_phys;
627
desc->destination = 0;
628
desc->size = actx->fill;
629
desc->payload = 0;
630
desc->status = 0;
631
632
/*
633
* Align driver with hw behavior when generating null hashes
634
*/
635
if (rctx->init && rctx->fini && desc->size == 0) {
636
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
637
const uint8_t *sha_buf =
638
(actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
639
sha1_null_hash : sha256_null_hash;
640
memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
641
ret = 0;
642
goto done_run;
643
}
644
645
/* Set HASH_TERM bit for last transfer block. */
646
if (rctx->fini) {
647
digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
648
DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
649
ret = dma_mapping_error(sdcp->dev, digest_phys);
650
if (ret)
651
goto done_run;
652
653
desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
654
desc->payload = digest_phys;
655
}
656
657
ret = mxs_dcp_start_dma(actx);
658
659
if (rctx->fini)
660
dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
661
DMA_FROM_DEVICE);
662
663
done_run:
664
dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
665
666
return ret;
667
}
668
669
static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
670
{
671
struct dcp *sdcp = global_sdcp;
672
673
struct ahash_request *req = ahash_request_cast(arq);
674
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
675
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
676
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
677
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
678
679
uint8_t *in_buf = sdcp->coh->sha_in_buf;
680
uint8_t *out_buf = sdcp->coh->sha_out_buf;
681
682
struct scatterlist *src;
683
684
unsigned int i, len, clen, oft = 0;
685
int ret;
686
687
int fin = rctx->fini;
688
if (fin)
689
rctx->fini = 0;
690
691
src = req->src;
692
len = req->nbytes;
693
694
while (len) {
695
if (actx->fill + len > DCP_BUF_SZ)
696
clen = DCP_BUF_SZ - actx->fill;
697
else
698
clen = len;
699
700
scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
701
0);
702
703
len -= clen;
704
oft += clen;
705
actx->fill += clen;
706
707
/*
708
* If we filled the buffer and still have some
709
* more data, submit the buffer.
710
*/
711
if (len && actx->fill == DCP_BUF_SZ) {
712
ret = mxs_dcp_run_sha(req);
713
if (ret)
714
return ret;
715
actx->fill = 0;
716
rctx->init = 0;
717
}
718
}
719
720
if (fin) {
721
rctx->fini = 1;
722
723
/* Submit whatever is left. */
724
if (!req->result)
725
return -EINVAL;
726
727
ret = mxs_dcp_run_sha(req);
728
if (ret)
729
return ret;
730
731
actx->fill = 0;
732
733
/* For some reason the result is flipped */
734
for (i = 0; i < halg->digestsize; i++)
735
req->result[i] = out_buf[halg->digestsize - i - 1];
736
}
737
738
return 0;
739
}
740
741
static int dcp_chan_thread_sha(void *data)
742
{
743
struct dcp *sdcp = global_sdcp;
744
const int chan = DCP_CHAN_HASH_SHA;
745
746
struct crypto_async_request *backlog;
747
struct crypto_async_request *arq;
748
int ret;
749
750
while (!kthread_should_stop()) {
751
set_current_state(TASK_INTERRUPTIBLE);
752
753
spin_lock(&sdcp->lock[chan]);
754
backlog = crypto_get_backlog(&sdcp->queue[chan]);
755
arq = crypto_dequeue_request(&sdcp->queue[chan]);
756
spin_unlock(&sdcp->lock[chan]);
757
758
if (!backlog && !arq) {
759
schedule();
760
continue;
761
}
762
763
set_current_state(TASK_RUNNING);
764
765
if (backlog)
766
crypto_request_complete(backlog, -EINPROGRESS);
767
768
if (arq) {
769
ret = dcp_sha_req_to_buf(arq);
770
crypto_request_complete(arq, ret);
771
}
772
}
773
774
return 0;
775
}
776
777
static int dcp_sha_init(struct ahash_request *req)
778
{
779
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
780
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
781
782
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
783
784
/*
785
* Start hashing session. The code below only inits the
786
* hashing session context, nothing more.
787
*/
788
memset(actx, 0, sizeof(*actx));
789
790
if (strcmp(halg->base.cra_name, "sha1") == 0)
791
actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
792
else
793
actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
794
795
actx->fill = 0;
796
actx->hot = 0;
797
actx->chan = DCP_CHAN_HASH_SHA;
798
799
mutex_init(&actx->mutex);
800
801
return 0;
802
}
803
804
static int dcp_sha_update_fx(struct ahash_request *req, int fini)
805
{
806
struct dcp *sdcp = global_sdcp;
807
808
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
809
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
810
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
811
812
int ret;
813
814
/*
815
* Ignore requests that have no data in them and are not
816
* the trailing requests in the stream of requests.
817
*/
818
if (!req->nbytes && !fini)
819
return 0;
820
821
mutex_lock(&actx->mutex);
822
823
rctx->fini = fini;
824
825
if (!actx->hot) {
826
actx->hot = 1;
827
rctx->init = 1;
828
}
829
830
spin_lock(&sdcp->lock[actx->chan]);
831
ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
832
spin_unlock(&sdcp->lock[actx->chan]);
833
834
wake_up_process(sdcp->thread[actx->chan]);
835
mutex_unlock(&actx->mutex);
836
837
return ret;
838
}
839
840
static int dcp_sha_update(struct ahash_request *req)
841
{
842
return dcp_sha_update_fx(req, 0);
843
}
844
845
static int dcp_sha_final(struct ahash_request *req)
846
{
847
ahash_request_set_crypt(req, NULL, req->result, 0);
848
req->nbytes = 0;
849
return dcp_sha_update_fx(req, 1);
850
}
851
852
static int dcp_sha_finup(struct ahash_request *req)
853
{
854
return dcp_sha_update_fx(req, 1);
855
}
856
857
static int dcp_sha_digest(struct ahash_request *req)
858
{
859
int ret;
860
861
ret = dcp_sha_init(req);
862
if (ret)
863
return ret;
864
865
return dcp_sha_finup(req);
866
}
867
868
static int dcp_sha_import(struct ahash_request *req, const void *in)
869
{
870
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
871
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
872
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
873
const struct dcp_export_state *export = in;
874
875
memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
876
memset(actx, 0, sizeof(struct dcp_async_ctx));
877
memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
878
memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
879
880
return 0;
881
}
882
883
static int dcp_sha_export(struct ahash_request *req, void *out)
884
{
885
struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
886
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
887
struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
888
struct dcp_export_state *export = out;
889
890
memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
891
memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
892
893
return 0;
894
}
895
896
static int dcp_sha_cra_init(struct crypto_tfm *tfm)
897
{
898
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
899
sizeof(struct dcp_sha_req_ctx));
900
return 0;
901
}
902
903
static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
904
{
905
}
906
907
/* AES 128 ECB and AES 128 CBC */
908
static struct skcipher_alg dcp_aes_algs[] = {
909
{
910
.base.cra_name = "ecb(aes)",
911
.base.cra_driver_name = "ecb-aes-dcp",
912
.base.cra_priority = 400,
913
.base.cra_alignmask = 15,
914
.base.cra_flags = CRYPTO_ALG_ASYNC |
915
CRYPTO_ALG_NEED_FALLBACK,
916
.base.cra_blocksize = AES_BLOCK_SIZE,
917
.base.cra_ctxsize = sizeof(struct dcp_async_ctx),
918
.base.cra_module = THIS_MODULE,
919
920
.min_keysize = AES_MIN_KEY_SIZE,
921
.max_keysize = AES_MAX_KEY_SIZE,
922
.setkey = mxs_dcp_aes_setkey,
923
.encrypt = mxs_dcp_aes_ecb_encrypt,
924
.decrypt = mxs_dcp_aes_ecb_decrypt,
925
.init = mxs_dcp_aes_fallback_init_tfm,
926
.exit = mxs_dcp_aes_fallback_exit_tfm,
927
}, {
928
.base.cra_name = "cbc(aes)",
929
.base.cra_driver_name = "cbc-aes-dcp",
930
.base.cra_priority = 400,
931
.base.cra_alignmask = 15,
932
.base.cra_flags = CRYPTO_ALG_ASYNC |
933
CRYPTO_ALG_NEED_FALLBACK,
934
.base.cra_blocksize = AES_BLOCK_SIZE,
935
.base.cra_ctxsize = sizeof(struct dcp_async_ctx),
936
.base.cra_module = THIS_MODULE,
937
938
.min_keysize = AES_MIN_KEY_SIZE,
939
.max_keysize = AES_MAX_KEY_SIZE,
940
.setkey = mxs_dcp_aes_setkey,
941
.encrypt = mxs_dcp_aes_cbc_encrypt,
942
.decrypt = mxs_dcp_aes_cbc_decrypt,
943
.ivsize = AES_BLOCK_SIZE,
944
.init = mxs_dcp_aes_fallback_init_tfm,
945
.exit = mxs_dcp_aes_fallback_exit_tfm,
946
}, {
947
.base.cra_name = "ecb(paes)",
948
.base.cra_driver_name = "ecb-paes-dcp",
949
.base.cra_priority = 401,
950
.base.cra_alignmask = 15,
951
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
952
.base.cra_blocksize = AES_BLOCK_SIZE,
953
.base.cra_ctxsize = sizeof(struct dcp_async_ctx),
954
.base.cra_module = THIS_MODULE,
955
956
.min_keysize = DCP_PAES_KEYSIZE,
957
.max_keysize = DCP_PAES_KEYSIZE,
958
.setkey = mxs_dcp_aes_setrefkey,
959
.encrypt = mxs_dcp_aes_ecb_encrypt,
960
.decrypt = mxs_dcp_aes_ecb_decrypt,
961
.init = mxs_dcp_paes_init_tfm,
962
}, {
963
.base.cra_name = "cbc(paes)",
964
.base.cra_driver_name = "cbc-paes-dcp",
965
.base.cra_priority = 401,
966
.base.cra_alignmask = 15,
967
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
968
.base.cra_blocksize = AES_BLOCK_SIZE,
969
.base.cra_ctxsize = sizeof(struct dcp_async_ctx),
970
.base.cra_module = THIS_MODULE,
971
972
.min_keysize = DCP_PAES_KEYSIZE,
973
.max_keysize = DCP_PAES_KEYSIZE,
974
.setkey = mxs_dcp_aes_setrefkey,
975
.encrypt = mxs_dcp_aes_cbc_encrypt,
976
.decrypt = mxs_dcp_aes_cbc_decrypt,
977
.ivsize = AES_BLOCK_SIZE,
978
.init = mxs_dcp_paes_init_tfm,
979
},
980
};
981
982
/* SHA1 */
983
static struct ahash_alg dcp_sha1_alg = {
984
.init = dcp_sha_init,
985
.update = dcp_sha_update,
986
.final = dcp_sha_final,
987
.finup = dcp_sha_finup,
988
.digest = dcp_sha_digest,
989
.import = dcp_sha_import,
990
.export = dcp_sha_export,
991
.halg = {
992
.digestsize = SHA1_DIGEST_SIZE,
993
.statesize = sizeof(struct dcp_export_state),
994
.base = {
995
.cra_name = "sha1",
996
.cra_driver_name = "sha1-dcp",
997
.cra_priority = 400,
998
.cra_flags = CRYPTO_ALG_ASYNC,
999
.cra_blocksize = SHA1_BLOCK_SIZE,
1000
.cra_ctxsize = sizeof(struct dcp_async_ctx),
1001
.cra_module = THIS_MODULE,
1002
.cra_init = dcp_sha_cra_init,
1003
.cra_exit = dcp_sha_cra_exit,
1004
},
1005
},
1006
};
1007
1008
/* SHA256 */
1009
static struct ahash_alg dcp_sha256_alg = {
1010
.init = dcp_sha_init,
1011
.update = dcp_sha_update,
1012
.final = dcp_sha_final,
1013
.finup = dcp_sha_finup,
1014
.digest = dcp_sha_digest,
1015
.import = dcp_sha_import,
1016
.export = dcp_sha_export,
1017
.halg = {
1018
.digestsize = SHA256_DIGEST_SIZE,
1019
.statesize = sizeof(struct dcp_export_state),
1020
.base = {
1021
.cra_name = "sha256",
1022
.cra_driver_name = "sha256-dcp",
1023
.cra_priority = 400,
1024
.cra_flags = CRYPTO_ALG_ASYNC,
1025
.cra_blocksize = SHA256_BLOCK_SIZE,
1026
.cra_ctxsize = sizeof(struct dcp_async_ctx),
1027
.cra_module = THIS_MODULE,
1028
.cra_init = dcp_sha_cra_init,
1029
.cra_exit = dcp_sha_cra_exit,
1030
},
1031
},
1032
};
1033
1034
static irqreturn_t mxs_dcp_irq(int irq, void *context)
1035
{
1036
struct dcp *sdcp = context;
1037
uint32_t stat;
1038
int i;
1039
1040
stat = readl(sdcp->base + MXS_DCP_STAT);
1041
stat &= MXS_DCP_STAT_IRQ_MASK;
1042
if (!stat)
1043
return IRQ_NONE;
1044
1045
/* Clear the interrupts. */
1046
writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
1047
1048
/* Complete the DMA requests that finished. */
1049
for (i = 0; i < DCP_MAX_CHANS; i++)
1050
if (stat & (1 << i))
1051
complete(&sdcp->completion[i]);
1052
1053
return IRQ_HANDLED;
1054
}
1055
1056
static int mxs_dcp_probe(struct platform_device *pdev)
1057
{
1058
struct device *dev = &pdev->dev;
1059
struct dcp *sdcp = NULL;
1060
int i, ret;
1061
int dcp_vmi_irq, dcp_irq;
1062
1063
if (global_sdcp) {
1064
dev_err(dev, "Only one DCP instance allowed!\n");
1065
return -ENODEV;
1066
}
1067
1068
dcp_vmi_irq = platform_get_irq(pdev, 0);
1069
if (dcp_vmi_irq < 0)
1070
return dcp_vmi_irq;
1071
1072
dcp_irq = platform_get_irq(pdev, 1);
1073
if (dcp_irq < 0)
1074
return dcp_irq;
1075
1076
sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
1077
if (!sdcp)
1078
return -ENOMEM;
1079
1080
sdcp->dev = dev;
1081
sdcp->base = devm_platform_ioremap_resource(pdev, 0);
1082
if (IS_ERR(sdcp->base))
1083
return PTR_ERR(sdcp->base);
1084
1085
1086
ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1087
"dcp-vmi-irq", sdcp);
1088
if (ret) {
1089
dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1090
return ret;
1091
}
1092
1093
ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1094
"dcp-irq", sdcp);
1095
if (ret) {
1096
dev_err(dev, "Failed to claim DCP IRQ!\n");
1097
return ret;
1098
}
1099
1100
/* Allocate coherent helper block. */
1101
sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1102
GFP_KERNEL);
1103
if (!sdcp->coh)
1104
return -ENOMEM;
1105
1106
/* Re-align the structure so it fits the DCP constraints. */
1107
sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1108
1109
/* DCP clock is optional, only used on some SOCs */
1110
sdcp->dcp_clk = devm_clk_get_optional_enabled(dev, "dcp");
1111
if (IS_ERR(sdcp->dcp_clk))
1112
return PTR_ERR(sdcp->dcp_clk);
1113
1114
/* Restart the DCP block. */
1115
ret = stmp_reset_block(sdcp->base);
1116
if (ret) {
1117
dev_err(dev, "Failed reset\n");
1118
return ret;
1119
}
1120
1121
/* Initialize control register. */
1122
writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1123
MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1124
sdcp->base + MXS_DCP_CTRL);
1125
1126
/* Enable all DCP DMA channels. */
1127
writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1128
sdcp->base + MXS_DCP_CHANNELCTRL);
1129
1130
/*
1131
* We do not enable context switching. Give the context buffer a
1132
* pointer to an illegal address so if context switching is
1133
* inadvertantly enabled, the DCP will return an error instead of
1134
* trashing good memory. The DCP DMA cannot access ROM, so any ROM
1135
* address will do.
1136
*/
1137
writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1138
for (i = 0; i < DCP_MAX_CHANS; i++)
1139
writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1140
writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1141
1142
global_sdcp = sdcp;
1143
1144
platform_set_drvdata(pdev, sdcp);
1145
1146
for (i = 0; i < DCP_MAX_CHANS; i++) {
1147
spin_lock_init(&sdcp->lock[i]);
1148
init_completion(&sdcp->completion[i]);
1149
crypto_init_queue(&sdcp->queue[i], 50);
1150
}
1151
1152
/* Create the SHA and AES handler threads. */
1153
sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1154
NULL, "mxs_dcp_chan/sha");
1155
if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1156
dev_err(dev, "Error starting SHA thread!\n");
1157
ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1158
return ret;
1159
}
1160
1161
sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1162
NULL, "mxs_dcp_chan/aes");
1163
if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1164
dev_err(dev, "Error starting SHA thread!\n");
1165
ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1166
goto err_destroy_sha_thread;
1167
}
1168
1169
/* Register the various crypto algorithms. */
1170
sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1171
1172
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1173
ret = crypto_register_skciphers(dcp_aes_algs,
1174
ARRAY_SIZE(dcp_aes_algs));
1175
if (ret) {
1176
/* Failed to register algorithm. */
1177
dev_err(dev, "Failed to register AES crypto!\n");
1178
goto err_destroy_aes_thread;
1179
}
1180
}
1181
1182
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1183
ret = crypto_register_ahash(&dcp_sha1_alg);
1184
if (ret) {
1185
dev_err(dev, "Failed to register %s hash!\n",
1186
dcp_sha1_alg.halg.base.cra_name);
1187
goto err_unregister_aes;
1188
}
1189
}
1190
1191
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1192
ret = crypto_register_ahash(&dcp_sha256_alg);
1193
if (ret) {
1194
dev_err(dev, "Failed to register %s hash!\n",
1195
dcp_sha256_alg.halg.base.cra_name);
1196
goto err_unregister_sha1;
1197
}
1198
}
1199
1200
return 0;
1201
1202
err_unregister_sha1:
1203
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1204
crypto_unregister_ahash(&dcp_sha1_alg);
1205
1206
err_unregister_aes:
1207
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1208
crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1209
1210
err_destroy_aes_thread:
1211
kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1212
1213
err_destroy_sha_thread:
1214
kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1215
1216
return ret;
1217
}
1218
1219
static void mxs_dcp_remove(struct platform_device *pdev)
1220
{
1221
struct dcp *sdcp = platform_get_drvdata(pdev);
1222
1223
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1224
crypto_unregister_ahash(&dcp_sha256_alg);
1225
1226
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1227
crypto_unregister_ahash(&dcp_sha1_alg);
1228
1229
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1230
crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1231
1232
kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1233
kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1234
1235
platform_set_drvdata(pdev, NULL);
1236
1237
global_sdcp = NULL;
1238
}
1239
1240
static const struct of_device_id mxs_dcp_dt_ids[] = {
1241
{ .compatible = "fsl,imx23-dcp", .data = NULL, },
1242
{ .compatible = "fsl,imx28-dcp", .data = NULL, },
1243
{ /* sentinel */ }
1244
};
1245
1246
MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1247
1248
static struct platform_driver mxs_dcp_driver = {
1249
.probe = mxs_dcp_probe,
1250
.remove = mxs_dcp_remove,
1251
.driver = {
1252
.name = "mxs-dcp",
1253
.of_match_table = mxs_dcp_dt_ids,
1254
},
1255
};
1256
1257
module_platform_driver(mxs_dcp_driver);
1258
1259
MODULE_AUTHOR("Marek Vasut <[email protected]>");
1260
MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1261
MODULE_LICENSE("GPL");
1262
MODULE_ALIAS("platform:mxs-dcp");
1263
1264