Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/nx/nx.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Routines supporting the Power 7+ Nest Accelerators driver
4
*
5
* Copyright (C) 2011-2012 International Business Machines Inc.
6
*
7
* Author: Kent Yoder <[email protected]>
8
*/
9
10
#include <crypto/aes.h>
11
#include <crypto/internal/aead.h>
12
#include <crypto/internal/hash.h>
13
#include <crypto/internal/skcipher.h>
14
#include <crypto/sha2.h>
15
#include <crypto/scatterwalk.h>
16
#include <linux/module.h>
17
#include <linux/moduleparam.h>
18
#include <linux/types.h>
19
#include <linux/mm.h>
20
#include <linux/scatterlist.h>
21
#include <linux/device.h>
22
#include <linux/of.h>
23
#include <asm/hvcall.h>
24
#include <asm/vio.h>
25
26
#include "nx_csbcpb.h"
27
#include "nx.h"
28
29
30
/**
31
* nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
32
*
33
* @nx_ctx: the crypto context handle
34
* @op: PFO operation struct to pass in
35
* @may_sleep: flag indicating the request can sleep
36
*
37
* Make the hcall, retrying while the hardware is busy. If we cannot yield
38
* the thread, limit the number of retries to 10 here.
39
*/
40
int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
41
struct vio_pfo_op *op,
42
u32 may_sleep)
43
{
44
int rc, retries = 10;
45
struct vio_dev *viodev = nx_driver.viodev;
46
47
atomic_inc(&(nx_ctx->stats->sync_ops));
48
49
do {
50
rc = vio_h_cop_sync(viodev, op);
51
} while (rc == -EBUSY && !may_sleep && retries--);
52
53
if (rc) {
54
dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
55
"hcall rc: %ld\n", rc, op->hcall_err);
56
atomic_inc(&(nx_ctx->stats->errors));
57
atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
58
atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
59
}
60
61
return rc;
62
}
63
64
/**
65
* nx_build_sg_list - build an NX scatter list describing a single buffer
66
*
67
* @sg_head: pointer to the first scatter list element to build
68
* @start_addr: pointer to the linear buffer
69
* @len: length of the data at @start_addr
70
* @sgmax: the largest number of scatter list elements we're allowed to create
71
*
72
* This function will start writing nx_sg elements at @sg_head and keep
73
* writing them until all of the data from @start_addr is described or
74
* until sgmax elements have been written. Scatter list elements will be
75
* created such that none of the elements describes a buffer that crosses a 4K
76
* boundary.
77
*/
78
struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
79
u8 *start_addr,
80
unsigned int *len,
81
u32 sgmax)
82
{
83
unsigned int sg_len = 0;
84
struct nx_sg *sg;
85
u64 sg_addr = (u64)start_addr;
86
u64 end_addr;
87
88
/* determine the start and end for this address range - slightly
89
* different if this is in VMALLOC_REGION */
90
if (is_vmalloc_addr(start_addr))
91
sg_addr = page_to_phys(vmalloc_to_page(start_addr))
92
+ offset_in_page(sg_addr);
93
else
94
sg_addr = __pa(sg_addr);
95
96
end_addr = sg_addr + *len;
97
98
/* each iteration will write one struct nx_sg element and add the
99
* length of data described by that element to sg_len. Once @len bytes
100
* have been described (or @sgmax elements have been written), the
101
* loop ends. min_t is used to ensure @end_addr falls on the same page
102
* as sg_addr, if not, we need to create another nx_sg element for the
103
* data on the next page.
104
*
105
* Also when using vmalloc'ed data, every time that a system page
106
* boundary is crossed the physical address needs to be re-calculated.
107
*/
108
for (sg = sg_head; sg_len < *len; sg++) {
109
u64 next_page;
110
111
sg->addr = sg_addr;
112
sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
113
end_addr);
114
115
next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
116
sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
117
sg_len += sg->len;
118
119
if (sg_addr >= next_page &&
120
is_vmalloc_addr(start_addr + sg_len)) {
121
sg_addr = page_to_phys(vmalloc_to_page(
122
start_addr + sg_len));
123
end_addr = sg_addr + *len - sg_len;
124
}
125
126
if ((sg - sg_head) == sgmax) {
127
sg++;
128
break;
129
}
130
}
131
*len = sg_len;
132
133
/* return the moved sg_head pointer */
134
return sg;
135
}
136
137
/**
138
* nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
139
*
140
* @nx_dst: pointer to the first nx_sg element to write
141
* @sglen: max number of nx_sg entries we're allowed to write
142
* @sg_src: pointer to the source linux scatterlist to walk
143
* @start: number of bytes to fast-forward past at the beginning of @sg_src
144
* @src_len: number of bytes to walk in @sg_src
145
*/
146
struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst,
147
unsigned int sglen,
148
struct scatterlist *sg_src,
149
unsigned int start,
150
unsigned int *src_len)
151
{
152
struct scatter_walk walk;
153
struct nx_sg *nx_sg = nx_dst;
154
unsigned int n, len = *src_len;
155
156
/* we need to fast forward through @start bytes first */
157
scatterwalk_start_at_pos(&walk, sg_src, start);
158
159
while (len && (nx_sg - nx_dst) < sglen) {
160
n = scatterwalk_next(&walk, len);
161
162
nx_sg = nx_build_sg_list(nx_sg, walk.addr, &n, sglen - (nx_sg - nx_dst));
163
164
scatterwalk_done_src(&walk, n);
165
len -= n;
166
}
167
/* update to_process */
168
*src_len -= len;
169
170
/* return the moved destination pointer */
171
return nx_sg;
172
}
173
174
/**
175
* trim_sg_list - ensures the bound in sg list.
176
* @sg: sg list head
177
* @end: sg lisg end
178
* @delta: is the amount we need to crop in order to bound the list.
179
* @nbytes: length of data in the scatterlists or data length - whichever
180
* is greater.
181
*/
182
static long int trim_sg_list(struct nx_sg *sg,
183
struct nx_sg *end,
184
unsigned int delta,
185
unsigned int *nbytes)
186
{
187
long int oplen;
188
long int data_back;
189
unsigned int is_delta = delta;
190
191
while (delta && end > sg) {
192
struct nx_sg *last = end - 1;
193
194
if (last->len > delta) {
195
last->len -= delta;
196
delta = 0;
197
} else {
198
end--;
199
delta -= last->len;
200
}
201
}
202
203
/* There are cases where we need to crop list in order to make it
204
* a block size multiple, but we also need to align data. In order to
205
* that we need to calculate how much we need to put back to be
206
* processed
207
*/
208
oplen = (sg - end) * sizeof(struct nx_sg);
209
if (is_delta) {
210
data_back = (abs(oplen) / AES_BLOCK_SIZE) * sg->len;
211
data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
212
*nbytes -= data_back;
213
}
214
215
return oplen;
216
}
217
218
/**
219
* nx_build_sg_lists - walk the input scatterlists and build arrays of NX
220
* scatterlists based on them.
221
*
222
* @nx_ctx: NX crypto context for the lists we're building
223
* @iv: iv data, if the algorithm requires it
224
* @dst: destination scatterlist
225
* @src: source scatterlist
226
* @nbytes: length of data described in the scatterlists
227
* @offset: number of bytes to fast-forward past at the beginning of
228
* scatterlists.
229
* @oiv: destination for the iv data, if the algorithm requires it
230
*
231
* This is common code shared by all the AES algorithms. It uses the crypto
232
* scatterlist walk routines to traverse input and output scatterlists, building
233
* corresponding NX scatterlists
234
*/
235
int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx,
236
const u8 *iv,
237
struct scatterlist *dst,
238
struct scatterlist *src,
239
unsigned int *nbytes,
240
unsigned int offset,
241
u8 *oiv)
242
{
243
unsigned int delta = 0;
244
unsigned int total = *nbytes;
245
struct nx_sg *nx_insg = nx_ctx->in_sg;
246
struct nx_sg *nx_outsg = nx_ctx->out_sg;
247
unsigned int max_sg_len;
248
249
max_sg_len = min_t(u64, nx_ctx->ap->sglen,
250
nx_driver.of.max_sg_len/sizeof(struct nx_sg));
251
max_sg_len = min_t(u64, max_sg_len,
252
nx_ctx->ap->databytelen/NX_PAGE_SIZE);
253
254
if (oiv)
255
memcpy(oiv, iv, AES_BLOCK_SIZE);
256
257
*nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
258
259
nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
260
offset, nbytes);
261
nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
262
offset, nbytes);
263
264
if (*nbytes < total)
265
delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
266
267
/* these lengths should be negative, which will indicate to phyp that
268
* the input and output parameters are scatterlists, not linear
269
* buffers */
270
nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes);
271
nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes);
272
273
return 0;
274
}
275
276
/**
277
* nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
278
*
279
* @nx_ctx: the nx context to initialize
280
* @function: the function code for the op
281
*/
282
void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
283
{
284
spin_lock_init(&nx_ctx->lock);
285
memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
286
nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
287
288
nx_ctx->op.flags = function;
289
nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
290
nx_ctx->op.in = __pa(nx_ctx->in_sg);
291
nx_ctx->op.out = __pa(nx_ctx->out_sg);
292
293
if (nx_ctx->csbcpb_aead) {
294
nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
295
296
nx_ctx->op_aead.flags = function;
297
nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
298
nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
299
nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
300
}
301
}
302
303
static void nx_of_update_status(struct device *dev,
304
struct property *p,
305
struct nx_of *props)
306
{
307
if (!strncmp(p->value, "okay", p->length)) {
308
props->status = NX_WAITING;
309
props->flags |= NX_OF_FLAG_STATUS_SET;
310
} else {
311
dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
312
(char *)p->value);
313
}
314
}
315
316
static void nx_of_update_sglen(struct device *dev,
317
struct property *p,
318
struct nx_of *props)
319
{
320
if (p->length != sizeof(props->max_sg_len)) {
321
dev_err(dev, "%s: unexpected format for "
322
"ibm,max-sg-len property\n", __func__);
323
dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
324
"long, expected %zd bytes\n", __func__,
325
p->length, sizeof(props->max_sg_len));
326
return;
327
}
328
329
props->max_sg_len = *(u32 *)p->value;
330
props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
331
}
332
333
static void nx_of_update_msc(struct device *dev,
334
struct property *p,
335
struct nx_of *props)
336
{
337
struct msc_triplet *trip;
338
struct max_sync_cop *msc;
339
unsigned int bytes_so_far, i, lenp;
340
341
msc = (struct max_sync_cop *)p->value;
342
lenp = p->length;
343
344
/* You can't tell if the data read in for this property is sane by its
345
* size alone. This is because there are sizes embedded in the data
346
* structure. The best we can do is check lengths as we parse and bail
347
* as soon as a length error is detected. */
348
bytes_so_far = 0;
349
350
while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
351
bytes_so_far += sizeof(struct max_sync_cop);
352
353
trip = msc->trip;
354
355
for (i = 0;
356
((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
357
i < msc->triplets;
358
i++) {
359
if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) {
360
dev_err(dev, "unknown function code/mode "
361
"combo: %d/%d (ignored)\n", msc->fc,
362
msc->mode);
363
goto next_loop;
364
}
365
366
if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
367
dev_warn(dev, "bogus sglen/databytelen: "
368
"%u/%u (ignored)\n", trip->sglen,
369
trip->databytelen);
370
goto next_loop;
371
}
372
373
switch (trip->keybitlen) {
374
case 128:
375
case 160:
376
props->ap[msc->fc][msc->mode][0].databytelen =
377
trip->databytelen;
378
props->ap[msc->fc][msc->mode][0].sglen =
379
trip->sglen;
380
break;
381
case 192:
382
props->ap[msc->fc][msc->mode][1].databytelen =
383
trip->databytelen;
384
props->ap[msc->fc][msc->mode][1].sglen =
385
trip->sglen;
386
break;
387
case 256:
388
if (msc->fc == NX_FC_AES) {
389
props->ap[msc->fc][msc->mode][2].
390
databytelen = trip->databytelen;
391
props->ap[msc->fc][msc->mode][2].sglen =
392
trip->sglen;
393
} else if (msc->fc == NX_FC_AES_HMAC ||
394
msc->fc == NX_FC_SHA) {
395
props->ap[msc->fc][msc->mode][1].
396
databytelen = trip->databytelen;
397
props->ap[msc->fc][msc->mode][1].sglen =
398
trip->sglen;
399
} else {
400
dev_warn(dev, "unknown function "
401
"code/key bit len combo"
402
": (%u/256)\n", msc->fc);
403
}
404
break;
405
case 512:
406
props->ap[msc->fc][msc->mode][2].databytelen =
407
trip->databytelen;
408
props->ap[msc->fc][msc->mode][2].sglen =
409
trip->sglen;
410
break;
411
default:
412
dev_warn(dev, "unknown function code/key bit "
413
"len combo: (%u/%u)\n", msc->fc,
414
trip->keybitlen);
415
break;
416
}
417
next_loop:
418
bytes_so_far += sizeof(struct msc_triplet);
419
trip++;
420
}
421
422
msc = (struct max_sync_cop *)trip;
423
}
424
425
props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
426
}
427
428
/**
429
* nx_of_init - read openFirmware values from the device tree
430
*
431
* @dev: device handle
432
* @props: pointer to struct to hold the properties values
433
*
434
* Called once at driver probe time, this function will read out the
435
* openFirmware properties we use at runtime. If all the OF properties are
436
* acceptable, when we exit this function props->flags will indicate that
437
* we're ready to register our crypto algorithms.
438
*/
439
static void nx_of_init(struct device *dev, struct nx_of *props)
440
{
441
struct device_node *base_node = dev->of_node;
442
struct property *p;
443
444
p = of_find_property(base_node, "status", NULL);
445
if (!p)
446
dev_info(dev, "%s: property 'status' not found\n", __func__);
447
else
448
nx_of_update_status(dev, p, props);
449
450
p = of_find_property(base_node, "ibm,max-sg-len", NULL);
451
if (!p)
452
dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
453
__func__);
454
else
455
nx_of_update_sglen(dev, p, props);
456
457
p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
458
if (!p)
459
dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
460
__func__);
461
else
462
nx_of_update_msc(dev, p, props);
463
}
464
465
static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
466
{
467
struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
468
469
if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
470
if (dev)
471
dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
472
"%u/%u (ignored)\n", fc, mode, slot,
473
props->sglen, props->databytelen);
474
return false;
475
}
476
477
return true;
478
}
479
480
static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
481
{
482
int i;
483
484
for (i = 0; i < 3; i++)
485
if (!nx_check_prop(dev, fc, mode, i))
486
return false;
487
488
return true;
489
}
490
491
static int nx_register_skcipher(struct skcipher_alg *alg, u32 fc, u32 mode)
492
{
493
return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
494
crypto_register_skcipher(alg) : 0;
495
}
496
497
static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
498
{
499
return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
500
crypto_register_aead(alg) : 0;
501
}
502
503
static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
504
{
505
return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev,
506
fc, mode, slot) :
507
nx_check_props(&nx_driver.viodev->dev, fc, mode)) ?
508
crypto_register_shash(alg) : 0;
509
}
510
511
static void nx_unregister_skcipher(struct skcipher_alg *alg, u32 fc, u32 mode)
512
{
513
if (nx_check_props(NULL, fc, mode))
514
crypto_unregister_skcipher(alg);
515
}
516
517
static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
518
{
519
if (nx_check_props(NULL, fc, mode))
520
crypto_unregister_aead(alg);
521
}
522
523
static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
524
int slot)
525
{
526
if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
527
nx_check_props(NULL, fc, mode))
528
crypto_unregister_shash(alg);
529
}
530
531
/**
532
* nx_register_algs - register algorithms with the crypto API
533
*
534
* Called from nx_probe()
535
*
536
* If all OF properties are in an acceptable state, the driver flags will
537
* indicate that we're ready and we'll create our debugfs files and register
538
* out crypto algorithms.
539
*/
540
static int nx_register_algs(void)
541
{
542
int rc = -1;
543
544
if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
545
goto out;
546
547
memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
548
549
NX_DEBUGFS_INIT(&nx_driver);
550
551
nx_driver.of.status = NX_OKAY;
552
553
rc = nx_register_skcipher(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
554
if (rc)
555
goto out;
556
557
rc = nx_register_skcipher(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
558
if (rc)
559
goto out_unreg_ecb;
560
561
rc = nx_register_skcipher(&nx_ctr3686_aes_alg, NX_FC_AES,
562
NX_MODE_AES_CTR);
563
if (rc)
564
goto out_unreg_cbc;
565
566
rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
567
if (rc)
568
goto out_unreg_ctr3686;
569
570
rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
571
if (rc)
572
goto out_unreg_gcm;
573
574
rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
575
if (rc)
576
goto out_unreg_gcm4106;
577
578
rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
579
if (rc)
580
goto out_unreg_ccm;
581
582
rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
583
NX_PROPS_SHA256);
584
if (rc)
585
goto out_unreg_ccm4309;
586
587
rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
588
NX_PROPS_SHA512);
589
if (rc)
590
goto out_unreg_s256;
591
592
rc = nx_register_shash(&nx_shash_aes_xcbc_alg,
593
NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
594
if (rc)
595
goto out_unreg_s512;
596
597
goto out;
598
599
out_unreg_s512:
600
nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
601
NX_PROPS_SHA512);
602
out_unreg_s256:
603
nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
604
NX_PROPS_SHA256);
605
out_unreg_ccm4309:
606
nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
607
out_unreg_ccm:
608
nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
609
out_unreg_gcm4106:
610
nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
611
out_unreg_gcm:
612
nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
613
out_unreg_ctr3686:
614
nx_unregister_skcipher(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
615
out_unreg_cbc:
616
nx_unregister_skcipher(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
617
out_unreg_ecb:
618
nx_unregister_skcipher(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
619
out:
620
return rc;
621
}
622
623
/**
624
* nx_crypto_ctx_init - create and initialize a crypto api context
625
*
626
* @nx_ctx: the crypto api context
627
* @fc: function code for the context
628
* @mode: the function code specific mode for this context
629
*/
630
static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
631
{
632
if (nx_driver.of.status != NX_OKAY) {
633
pr_err("Attempt to initialize NX crypto context while device "
634
"is not available!\n");
635
return -ENODEV;
636
}
637
638
/* we need an extra page for csbcpb_aead for these modes */
639
if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
640
nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
641
sizeof(struct nx_csbcpb);
642
else
643
nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
644
sizeof(struct nx_csbcpb);
645
646
nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
647
if (!nx_ctx->kmem)
648
return -ENOMEM;
649
650
/* the csbcpb and scatterlists must be 4K aligned pages */
651
nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
652
(u64)NX_PAGE_SIZE));
653
nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
654
nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
655
656
if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
657
nx_ctx->csbcpb_aead =
658
(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
659
NX_PAGE_SIZE);
660
661
/* give each context a pointer to global stats and their OF
662
* properties */
663
nx_ctx->stats = &nx_driver.stats;
664
memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
665
sizeof(struct alg_props) * 3);
666
667
return 0;
668
}
669
670
/* entry points from the crypto tfm initializers */
671
int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm)
672
{
673
crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx));
674
return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
675
NX_MODE_AES_CCM);
676
}
677
678
int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
679
{
680
crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx));
681
return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
682
NX_MODE_AES_GCM);
683
}
684
685
int nx_crypto_ctx_aes_ctr_init(struct crypto_skcipher *tfm)
686
{
687
return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES,
688
NX_MODE_AES_CTR);
689
}
690
691
int nx_crypto_ctx_aes_cbc_init(struct crypto_skcipher *tfm)
692
{
693
return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES,
694
NX_MODE_AES_CBC);
695
}
696
697
int nx_crypto_ctx_aes_ecb_init(struct crypto_skcipher *tfm)
698
{
699
return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES,
700
NX_MODE_AES_ECB);
701
}
702
703
int nx_crypto_ctx_sha_init(struct crypto_shash *tfm)
704
{
705
return nx_crypto_ctx_init(crypto_shash_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
706
}
707
708
int nx_crypto_ctx_aes_xcbc_init(struct crypto_shash *tfm)
709
{
710
return nx_crypto_ctx_init(crypto_shash_ctx(tfm), NX_FC_AES,
711
NX_MODE_AES_XCBC_MAC);
712
}
713
714
/**
715
* nx_crypto_ctx_exit - destroy a crypto api context
716
*
717
* @tfm: the crypto transform pointer for the context
718
*
719
* As crypto API contexts are destroyed, this exit hook is called to free the
720
* memory associated with it.
721
*/
722
void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
723
{
724
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
725
726
kfree_sensitive(nx_ctx->kmem);
727
nx_ctx->csbcpb = NULL;
728
nx_ctx->csbcpb_aead = NULL;
729
nx_ctx->in_sg = NULL;
730
nx_ctx->out_sg = NULL;
731
}
732
733
void nx_crypto_ctx_skcipher_exit(struct crypto_skcipher *tfm)
734
{
735
nx_crypto_ctx_exit(crypto_skcipher_ctx(tfm));
736
}
737
738
void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
739
{
740
struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
741
742
kfree_sensitive(nx_ctx->kmem);
743
}
744
745
void nx_crypto_ctx_shash_exit(struct crypto_shash *tfm)
746
{
747
nx_crypto_ctx_exit(crypto_shash_ctx(tfm));
748
}
749
750
static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
751
{
752
dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
753
viodev->name, viodev->resource_id);
754
755
if (nx_driver.viodev) {
756
dev_err(&viodev->dev, "%s: Attempt to register more than one "
757
"instance of the hardware\n", __func__);
758
return -EINVAL;
759
}
760
761
nx_driver.viodev = viodev;
762
763
nx_of_init(&viodev->dev, &nx_driver.of);
764
765
return nx_register_algs();
766
}
767
768
static void nx_remove(struct vio_dev *viodev)
769
{
770
dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
771
viodev->unit_address);
772
773
if (nx_driver.of.status == NX_OKAY) {
774
NX_DEBUGFS_FINI(&nx_driver);
775
776
nx_unregister_shash(&nx_shash_aes_xcbc_alg,
777
NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
778
nx_unregister_shash(&nx_shash_sha512_alg,
779
NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
780
nx_unregister_shash(&nx_shash_sha256_alg,
781
NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
782
nx_unregister_aead(&nx_ccm4309_aes_alg,
783
NX_FC_AES, NX_MODE_AES_CCM);
784
nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
785
nx_unregister_aead(&nx_gcm4106_aes_alg,
786
NX_FC_AES, NX_MODE_AES_GCM);
787
nx_unregister_aead(&nx_gcm_aes_alg,
788
NX_FC_AES, NX_MODE_AES_GCM);
789
nx_unregister_skcipher(&nx_ctr3686_aes_alg,
790
NX_FC_AES, NX_MODE_AES_CTR);
791
nx_unregister_skcipher(&nx_cbc_aes_alg, NX_FC_AES,
792
NX_MODE_AES_CBC);
793
nx_unregister_skcipher(&nx_ecb_aes_alg, NX_FC_AES,
794
NX_MODE_AES_ECB);
795
}
796
}
797
798
799
/* module wide initialization/cleanup */
800
static int __init nx_init(void)
801
{
802
return vio_register_driver(&nx_driver.viodriver);
803
}
804
805
static void __exit nx_fini(void)
806
{
807
vio_unregister_driver(&nx_driver.viodriver);
808
}
809
810
static const struct vio_device_id nx_crypto_driver_ids[] = {
811
{ "ibm,sym-encryption-v1", "ibm,sym-encryption" },
812
{ "", "" }
813
};
814
MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
815
816
/* driver state structure */
817
struct nx_crypto_driver nx_driver = {
818
.viodriver = {
819
.id_table = nx_crypto_driver_ids,
820
.probe = nx_probe,
821
.remove = nx_remove,
822
.name = NX_NAME,
823
},
824
};
825
826
module_init(nx_init);
827
module_exit(nx_fini);
828
829
MODULE_AUTHOR("Kent Yoder <[email protected]>");
830
MODULE_DESCRIPTION(NX_STRING);
831
MODULE_LICENSE("GPL");
832
MODULE_VERSION(NX_VERSION);
833
834