Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/padlock-aes.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Cryptographic API.
4
*
5
* Support for VIA PadLock hardware crypto engine.
6
*
7
* Copyright (c) 2004 Michal Ludvig <[email protected]>
8
*
9
*/
10
11
#include <crypto/algapi.h>
12
#include <crypto/aes.h>
13
#include <crypto/internal/skcipher.h>
14
#include <crypto/padlock.h>
15
#include <linux/module.h>
16
#include <linux/init.h>
17
#include <linux/types.h>
18
#include <linux/errno.h>
19
#include <linux/interrupt.h>
20
#include <linux/kernel.h>
21
#include <linux/mm.h>
22
#include <linux/percpu.h>
23
#include <linux/smp.h>
24
#include <linux/slab.h>
25
#include <asm/cpu_device_id.h>
26
#include <asm/byteorder.h>
27
#include <asm/processor.h>
28
#include <asm/fpu/api.h>
29
30
/*
31
* Number of data blocks actually fetched for each xcrypt insn.
32
* Processors with prefetch errata will fetch extra blocks.
33
*/
34
static unsigned int ecb_fetch_blocks = 2;
35
#define MAX_ECB_FETCH_BLOCKS (8)
36
#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
37
38
static unsigned int cbc_fetch_blocks = 1;
39
#define MAX_CBC_FETCH_BLOCKS (4)
40
#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
41
42
/* Control word. */
43
struct cword {
44
unsigned int __attribute__ ((__packed__))
45
rounds:4,
46
algo:3,
47
keygen:1,
48
interm:1,
49
encdec:1,
50
ksize:2;
51
} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
52
53
/* Whenever making any changes to the following
54
* structure *make sure* you keep E, d_data
55
* and cword aligned on 16 Bytes boundaries and
56
* the Hardware can access 16 * 16 bytes of E and d_data
57
* (only the first 15 * 16 bytes matter but the HW reads
58
* more).
59
*/
60
struct aes_ctx {
61
u32 E[AES_MAX_KEYLENGTH_U32]
62
__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
63
u32 d_data[AES_MAX_KEYLENGTH_U32]
64
__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
65
struct {
66
struct cword encrypt;
67
struct cword decrypt;
68
} cword;
69
u32 *D;
70
};
71
72
static DEFINE_PER_CPU(struct cword *, paes_last_cword);
73
74
/* Tells whether the ACE is capable to generate
75
the extended key for a given key_len. */
76
static inline int
77
aes_hw_extkey_available(uint8_t key_len)
78
{
79
/* TODO: We should check the actual CPU model/stepping
80
as it's possible that the capability will be
81
added in the next CPU revisions. */
82
if (key_len == 16)
83
return 1;
84
return 0;
85
}
86
87
static inline struct aes_ctx *aes_ctx_common(void *ctx)
88
{
89
unsigned long addr = (unsigned long)ctx;
90
unsigned long align = PADLOCK_ALIGNMENT;
91
92
if (align <= crypto_tfm_ctx_alignment())
93
align = 1;
94
return (struct aes_ctx *)ALIGN(addr, align);
95
}
96
97
static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
98
{
99
return aes_ctx_common(crypto_tfm_ctx(tfm));
100
}
101
102
static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
103
{
104
return aes_ctx_common(crypto_skcipher_ctx(tfm));
105
}
106
107
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
108
unsigned int key_len)
109
{
110
struct aes_ctx *ctx = aes_ctx(tfm);
111
const __le32 *key = (const __le32 *)in_key;
112
struct crypto_aes_ctx gen_aes;
113
int cpu;
114
115
if (key_len % 8)
116
return -EINVAL;
117
118
/*
119
* If the hardware is capable of generating the extended key
120
* itself we must supply the plain key for both encryption
121
* and decryption.
122
*/
123
ctx->D = ctx->E;
124
125
ctx->E[0] = le32_to_cpu(key[0]);
126
ctx->E[1] = le32_to_cpu(key[1]);
127
ctx->E[2] = le32_to_cpu(key[2]);
128
ctx->E[3] = le32_to_cpu(key[3]);
129
130
/* Prepare control words. */
131
memset(&ctx->cword, 0, sizeof(ctx->cword));
132
133
ctx->cword.decrypt.encdec = 1;
134
ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
135
ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
136
ctx->cword.encrypt.ksize = (key_len - 16) / 8;
137
ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
138
139
/* Don't generate extended keys if the hardware can do it. */
140
if (aes_hw_extkey_available(key_len))
141
goto ok;
142
143
ctx->D = ctx->d_data;
144
ctx->cword.encrypt.keygen = 1;
145
ctx->cword.decrypt.keygen = 1;
146
147
if (aes_expandkey(&gen_aes, in_key, key_len))
148
return -EINVAL;
149
150
memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
151
memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
152
153
ok:
154
for_each_online_cpu(cpu)
155
if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
156
&ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
157
per_cpu(paes_last_cword, cpu) = NULL;
158
159
return 0;
160
}
161
162
static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
163
unsigned int key_len)
164
{
165
return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
166
}
167
168
/* ====== Encryption/decryption routines ====== */
169
170
/* These are the real call to PadLock. */
171
static inline void padlock_reset_key(struct cword *cword)
172
{
173
int cpu = raw_smp_processor_id();
174
175
if (cword != per_cpu(paes_last_cword, cpu))
176
#ifndef CONFIG_X86_64
177
asm volatile ("pushfl; popfl");
178
#else
179
asm volatile ("pushfq; popfq");
180
#endif
181
}
182
183
static inline void padlock_store_cword(struct cword *cword)
184
{
185
per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
186
}
187
188
/*
189
* While the padlock instructions don't use FP/SSE registers, they
190
* generate a spurious DNA fault when CR0.TS is '1'. Fortunately,
191
* the kernel doesn't use CR0.TS.
192
*/
193
194
static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
195
struct cword *control_word, int count)
196
{
197
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
198
: "+S"(input), "+D"(output)
199
: "d"(control_word), "b"(key), "c"(count));
200
}
201
202
static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
203
u8 *iv, struct cword *control_word, int count)
204
{
205
asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
206
: "+S" (input), "+D" (output), "+a" (iv)
207
: "d" (control_word), "b" (key), "c" (count));
208
return iv;
209
}
210
211
static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
212
struct cword *cword, int count)
213
{
214
/*
215
* Padlock prefetches extra data so we must provide mapped input buffers.
216
* Assume there are at least 16 bytes of stack already in use.
217
*/
218
u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
219
u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
220
221
memcpy(tmp, in, count * AES_BLOCK_SIZE);
222
rep_xcrypt_ecb(tmp, out, key, cword, count);
223
}
224
225
static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
226
u8 *iv, struct cword *cword, int count)
227
{
228
/*
229
* Padlock prefetches extra data so we must provide mapped input buffers.
230
* Assume there are at least 16 bytes of stack already in use.
231
*/
232
u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
233
u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
234
235
memcpy(tmp, in, count * AES_BLOCK_SIZE);
236
return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
237
}
238
239
static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
240
struct cword *cword, int count)
241
{
242
/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
243
* We could avoid some copying here but it's probably not worth it.
244
*/
245
if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
246
ecb_crypt_copy(in, out, key, cword, count);
247
return;
248
}
249
250
rep_xcrypt_ecb(in, out, key, cword, count);
251
}
252
253
static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
254
u8 *iv, struct cword *cword, int count)
255
{
256
/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
257
if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
258
return cbc_crypt_copy(in, out, key, iv, cword, count);
259
260
return rep_xcrypt_cbc(in, out, key, iv, cword, count);
261
}
262
263
static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
264
void *control_word, u32 count)
265
{
266
u32 initial = count & (ecb_fetch_blocks - 1);
267
268
if (count < ecb_fetch_blocks) {
269
ecb_crypt(input, output, key, control_word, count);
270
return;
271
}
272
273
count -= initial;
274
275
if (initial)
276
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
277
: "+S"(input), "+D"(output)
278
: "d"(control_word), "b"(key), "c"(initial));
279
280
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
281
: "+S"(input), "+D"(output)
282
: "d"(control_word), "b"(key), "c"(count));
283
}
284
285
static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
286
u8 *iv, void *control_word, u32 count)
287
{
288
u32 initial = count & (cbc_fetch_blocks - 1);
289
290
if (count < cbc_fetch_blocks)
291
return cbc_crypt(input, output, key, iv, control_word, count);
292
293
count -= initial;
294
295
if (initial)
296
asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
297
: "+S" (input), "+D" (output), "+a" (iv)
298
: "d" (control_word), "b" (key), "c" (initial));
299
300
asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
301
: "+S" (input), "+D" (output), "+a" (iv)
302
: "d" (control_word), "b" (key), "c" (count));
303
return iv;
304
}
305
306
static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
307
{
308
struct aes_ctx *ctx = aes_ctx(tfm);
309
310
padlock_reset_key(&ctx->cword.encrypt);
311
ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
312
padlock_store_cword(&ctx->cword.encrypt);
313
}
314
315
static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
316
{
317
struct aes_ctx *ctx = aes_ctx(tfm);
318
319
padlock_reset_key(&ctx->cword.encrypt);
320
ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
321
padlock_store_cword(&ctx->cword.encrypt);
322
}
323
324
static struct crypto_alg aes_alg = {
325
.cra_name = "aes",
326
.cra_driver_name = "aes-padlock",
327
.cra_priority = PADLOCK_CRA_PRIORITY,
328
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
329
.cra_blocksize = AES_BLOCK_SIZE,
330
.cra_ctxsize = sizeof(struct aes_ctx),
331
.cra_alignmask = PADLOCK_ALIGNMENT - 1,
332
.cra_module = THIS_MODULE,
333
.cra_u = {
334
.cipher = {
335
.cia_min_keysize = AES_MIN_KEY_SIZE,
336
.cia_max_keysize = AES_MAX_KEY_SIZE,
337
.cia_setkey = aes_set_key,
338
.cia_encrypt = padlock_aes_encrypt,
339
.cia_decrypt = padlock_aes_decrypt,
340
}
341
}
342
};
343
344
static int ecb_aes_encrypt(struct skcipher_request *req)
345
{
346
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
347
struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
348
struct skcipher_walk walk;
349
unsigned int nbytes;
350
int err;
351
352
padlock_reset_key(&ctx->cword.encrypt);
353
354
err = skcipher_walk_virt(&walk, req, false);
355
356
while ((nbytes = walk.nbytes) != 0) {
357
padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
358
ctx->E, &ctx->cword.encrypt,
359
nbytes / AES_BLOCK_SIZE);
360
nbytes &= AES_BLOCK_SIZE - 1;
361
err = skcipher_walk_done(&walk, nbytes);
362
}
363
364
padlock_store_cword(&ctx->cword.encrypt);
365
366
return err;
367
}
368
369
static int ecb_aes_decrypt(struct skcipher_request *req)
370
{
371
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
372
struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
373
struct skcipher_walk walk;
374
unsigned int nbytes;
375
int err;
376
377
padlock_reset_key(&ctx->cword.decrypt);
378
379
err = skcipher_walk_virt(&walk, req, false);
380
381
while ((nbytes = walk.nbytes) != 0) {
382
padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
383
ctx->D, &ctx->cword.decrypt,
384
nbytes / AES_BLOCK_SIZE);
385
nbytes &= AES_BLOCK_SIZE - 1;
386
err = skcipher_walk_done(&walk, nbytes);
387
}
388
389
padlock_store_cword(&ctx->cword.encrypt);
390
391
return err;
392
}
393
394
static struct skcipher_alg ecb_aes_alg = {
395
.base.cra_name = "ecb(aes)",
396
.base.cra_driver_name = "ecb-aes-padlock",
397
.base.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
398
.base.cra_blocksize = AES_BLOCK_SIZE,
399
.base.cra_ctxsize = sizeof(struct aes_ctx),
400
.base.cra_alignmask = PADLOCK_ALIGNMENT - 1,
401
.base.cra_module = THIS_MODULE,
402
.min_keysize = AES_MIN_KEY_SIZE,
403
.max_keysize = AES_MAX_KEY_SIZE,
404
.setkey = aes_set_key_skcipher,
405
.encrypt = ecb_aes_encrypt,
406
.decrypt = ecb_aes_decrypt,
407
};
408
409
static int cbc_aes_encrypt(struct skcipher_request *req)
410
{
411
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
412
struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
413
struct skcipher_walk walk;
414
unsigned int nbytes;
415
int err;
416
417
padlock_reset_key(&ctx->cword.encrypt);
418
419
err = skcipher_walk_virt(&walk, req, false);
420
421
while ((nbytes = walk.nbytes) != 0) {
422
u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
423
walk.dst.virt.addr, ctx->E,
424
walk.iv, &ctx->cword.encrypt,
425
nbytes / AES_BLOCK_SIZE);
426
memcpy(walk.iv, iv, AES_BLOCK_SIZE);
427
nbytes &= AES_BLOCK_SIZE - 1;
428
err = skcipher_walk_done(&walk, nbytes);
429
}
430
431
padlock_store_cword(&ctx->cword.decrypt);
432
433
return err;
434
}
435
436
static int cbc_aes_decrypt(struct skcipher_request *req)
437
{
438
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
439
struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
440
struct skcipher_walk walk;
441
unsigned int nbytes;
442
int err;
443
444
padlock_reset_key(&ctx->cword.encrypt);
445
446
err = skcipher_walk_virt(&walk, req, false);
447
448
while ((nbytes = walk.nbytes) != 0) {
449
padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
450
ctx->D, walk.iv, &ctx->cword.decrypt,
451
nbytes / AES_BLOCK_SIZE);
452
nbytes &= AES_BLOCK_SIZE - 1;
453
err = skcipher_walk_done(&walk, nbytes);
454
}
455
456
padlock_store_cword(&ctx->cword.encrypt);
457
458
return err;
459
}
460
461
static struct skcipher_alg cbc_aes_alg = {
462
.base.cra_name = "cbc(aes)",
463
.base.cra_driver_name = "cbc-aes-padlock",
464
.base.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
465
.base.cra_blocksize = AES_BLOCK_SIZE,
466
.base.cra_ctxsize = sizeof(struct aes_ctx),
467
.base.cra_alignmask = PADLOCK_ALIGNMENT - 1,
468
.base.cra_module = THIS_MODULE,
469
.min_keysize = AES_MIN_KEY_SIZE,
470
.max_keysize = AES_MAX_KEY_SIZE,
471
.ivsize = AES_BLOCK_SIZE,
472
.setkey = aes_set_key_skcipher,
473
.encrypt = cbc_aes_encrypt,
474
.decrypt = cbc_aes_decrypt,
475
};
476
477
static const struct x86_cpu_id padlock_cpu_id[] = {
478
X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL),
479
{}
480
};
481
MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
482
483
static int __init padlock_init(void)
484
{
485
int ret;
486
struct cpuinfo_x86 *c = &cpu_data(0);
487
488
if (!x86_match_cpu(padlock_cpu_id))
489
return -ENODEV;
490
491
if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
492
printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
493
return -ENODEV;
494
}
495
496
if ((ret = crypto_register_alg(&aes_alg)) != 0)
497
goto aes_err;
498
499
if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
500
goto ecb_aes_err;
501
502
if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
503
goto cbc_aes_err;
504
505
printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
506
507
if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
508
ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
509
cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
510
printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
511
}
512
513
out:
514
return ret;
515
516
cbc_aes_err:
517
crypto_unregister_skcipher(&ecb_aes_alg);
518
ecb_aes_err:
519
crypto_unregister_alg(&aes_alg);
520
aes_err:
521
printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
522
goto out;
523
}
524
525
static void __exit padlock_fini(void)
526
{
527
crypto_unregister_skcipher(&cbc_aes_alg);
528
crypto_unregister_skcipher(&ecb_aes_alg);
529
crypto_unregister_alg(&aes_alg);
530
}
531
532
module_init(padlock_init);
533
module_exit(padlock_fini);
534
535
MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
536
MODULE_LICENSE("GPL");
537
MODULE_AUTHOR("Michal Ludvig");
538
539
MODULE_ALIAS_CRYPTO("aes");
540
541