Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/rockchip/rk3288_crypto_ahash.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Crypto acceleration support for Rockchip RK3288
4
*
5
* Copyright (c) 2015, Fuzhou Rockchip Electronics Co., Ltd
6
*
7
* Author: Zain Wang <[email protected]>
8
*
9
* Some ideas are from marvell/cesa.c and s5p-sss.c driver.
10
*/
11
12
#include <linux/unaligned.h>
13
#include <crypto/internal/hash.h>
14
#include <linux/device.h>
15
#include <linux/err.h>
16
#include <linux/iopoll.h>
17
#include <linux/kernel.h>
18
#include <linux/module.h>
19
#include <linux/string.h>
20
#include "rk3288_crypto.h"
21
22
/*
23
* IC can not process zero message hash,
24
* so we put the fixed hash out when met zero message.
25
*/
26
27
static bool rk_ahash_need_fallback(struct ahash_request *req)
28
{
29
struct scatterlist *sg;
30
31
sg = req->src;
32
while (sg) {
33
if (!IS_ALIGNED(sg->offset, sizeof(u32))) {
34
return true;
35
}
36
if (sg->length % 4) {
37
return true;
38
}
39
sg = sg_next(sg);
40
}
41
return false;
42
}
43
44
static int rk_ahash_digest_fb(struct ahash_request *areq)
45
{
46
struct rk_ahash_rctx *rctx = ahash_request_ctx(areq);
47
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
48
struct rk_ahash_ctx *tfmctx = crypto_ahash_ctx(tfm);
49
struct ahash_alg *alg = crypto_ahash_alg(tfm);
50
struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.hash.base);
51
52
algt->stat_fb++;
53
54
ahash_request_set_tfm(&rctx->fallback_req, tfmctx->fallback_tfm);
55
ahash_request_set_callback(&rctx->fallback_req,
56
areq->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP,
57
areq->base.complete, areq->base.data);
58
ahash_request_set_crypt(&rctx->fallback_req, areq->src, areq->result,
59
areq->nbytes);
60
61
return crypto_ahash_digest(&rctx->fallback_req);
62
}
63
64
static int zero_message_process(struct ahash_request *req)
65
{
66
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
67
int rk_digest_size = crypto_ahash_digestsize(tfm);
68
69
switch (rk_digest_size) {
70
case SHA1_DIGEST_SIZE:
71
memcpy(req->result, sha1_zero_message_hash, rk_digest_size);
72
break;
73
case SHA256_DIGEST_SIZE:
74
memcpy(req->result, sha256_zero_message_hash, rk_digest_size);
75
break;
76
case MD5_DIGEST_SIZE:
77
memcpy(req->result, md5_zero_message_hash, rk_digest_size);
78
break;
79
default:
80
return -EINVAL;
81
}
82
83
return 0;
84
}
85
86
static void rk_ahash_reg_init(struct ahash_request *req,
87
struct rk_crypto_info *dev)
88
{
89
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
90
int reg_status;
91
92
reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL) |
93
RK_CRYPTO_HASH_FLUSH | _SBF(0xffff, 16);
94
CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status);
95
96
reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL);
97
reg_status &= (~RK_CRYPTO_HASH_FLUSH);
98
reg_status |= _SBF(0xffff, 16);
99
CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status);
100
101
memset_io(dev->reg + RK_CRYPTO_HASH_DOUT_0, 0, 32);
102
103
CRYPTO_WRITE(dev, RK_CRYPTO_INTENA, RK_CRYPTO_HRDMA_ERR_ENA |
104
RK_CRYPTO_HRDMA_DONE_ENA);
105
106
CRYPTO_WRITE(dev, RK_CRYPTO_INTSTS, RK_CRYPTO_HRDMA_ERR_INT |
107
RK_CRYPTO_HRDMA_DONE_INT);
108
109
CRYPTO_WRITE(dev, RK_CRYPTO_HASH_CTRL, rctx->mode |
110
RK_CRYPTO_HASH_SWAP_DO);
111
112
CRYPTO_WRITE(dev, RK_CRYPTO_CONF, RK_CRYPTO_BYTESWAP_HRFIFO |
113
RK_CRYPTO_BYTESWAP_BRFIFO |
114
RK_CRYPTO_BYTESWAP_BTFIFO);
115
116
CRYPTO_WRITE(dev, RK_CRYPTO_HASH_MSG_LEN, req->nbytes);
117
}
118
119
static int rk_ahash_init(struct ahash_request *req)
120
{
121
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
122
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
123
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
124
125
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
126
ahash_request_set_callback(&rctx->fallback_req,
127
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP,
128
req->base.complete, req->base.data);
129
130
return crypto_ahash_init(&rctx->fallback_req);
131
}
132
133
static int rk_ahash_update(struct ahash_request *req)
134
{
135
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
136
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
137
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
138
139
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
140
ahash_request_set_callback(&rctx->fallback_req,
141
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP,
142
req->base.complete, req->base.data);
143
ahash_request_set_crypt(&rctx->fallback_req, req->src, NULL, req->nbytes);
144
145
return crypto_ahash_update(&rctx->fallback_req);
146
}
147
148
static int rk_ahash_final(struct ahash_request *req)
149
{
150
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
151
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
152
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
153
154
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
155
ahash_request_set_callback(&rctx->fallback_req,
156
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP,
157
req->base.complete, req->base.data);
158
ahash_request_set_crypt(&rctx->fallback_req, NULL, req->result, 0);
159
160
return crypto_ahash_final(&rctx->fallback_req);
161
}
162
163
static int rk_ahash_finup(struct ahash_request *req)
164
{
165
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
166
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
167
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
168
169
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
170
ahash_request_set_callback(&rctx->fallback_req,
171
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP,
172
req->base.complete, req->base.data);
173
ahash_request_set_crypt(&rctx->fallback_req, req->src, req->result,
174
req->nbytes);
175
176
return crypto_ahash_finup(&rctx->fallback_req);
177
}
178
179
static int rk_ahash_import(struct ahash_request *req, const void *in)
180
{
181
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
182
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
183
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
184
185
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
186
ahash_request_set_callback(&rctx->fallback_req,
187
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP,
188
req->base.complete, req->base.data);
189
190
return crypto_ahash_import(&rctx->fallback_req, in);
191
}
192
193
static int rk_ahash_export(struct ahash_request *req, void *out)
194
{
195
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
196
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
197
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
198
199
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
200
ahash_request_set_callback(&rctx->fallback_req,
201
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP,
202
req->base.complete, req->base.data);
203
204
return crypto_ahash_export(&rctx->fallback_req, out);
205
}
206
207
static int rk_ahash_digest(struct ahash_request *req)
208
{
209
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
210
struct rk_crypto_info *dev;
211
struct crypto_engine *engine;
212
213
if (rk_ahash_need_fallback(req))
214
return rk_ahash_digest_fb(req);
215
216
if (!req->nbytes)
217
return zero_message_process(req);
218
219
dev = get_rk_crypto();
220
221
rctx->dev = dev;
222
engine = dev->engine;
223
224
return crypto_transfer_hash_request_to_engine(engine, req);
225
}
226
227
static void crypto_ahash_dma_start(struct rk_crypto_info *dev, struct scatterlist *sg)
228
{
229
CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAS, sg_dma_address(sg));
230
CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAL, sg_dma_len(sg) / 4);
231
CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, RK_CRYPTO_HASH_START |
232
(RK_CRYPTO_HASH_START << 16));
233
}
234
235
static int rk_hash_prepare(struct crypto_engine *engine, void *breq)
236
{
237
struct ahash_request *areq = container_of(breq, struct ahash_request, base);
238
struct rk_ahash_rctx *rctx = ahash_request_ctx(areq);
239
struct rk_crypto_info *rkc = rctx->dev;
240
int ret;
241
242
ret = dma_map_sg(rkc->dev, areq->src, sg_nents(areq->src), DMA_TO_DEVICE);
243
if (ret <= 0)
244
return -EINVAL;
245
246
rctx->nrsg = ret;
247
248
return 0;
249
}
250
251
static void rk_hash_unprepare(struct crypto_engine *engine, void *breq)
252
{
253
struct ahash_request *areq = container_of(breq, struct ahash_request, base);
254
struct rk_ahash_rctx *rctx = ahash_request_ctx(areq);
255
struct rk_crypto_info *rkc = rctx->dev;
256
257
dma_unmap_sg(rkc->dev, areq->src, rctx->nrsg, DMA_TO_DEVICE);
258
}
259
260
static int rk_hash_run(struct crypto_engine *engine, void *breq)
261
{
262
struct ahash_request *areq = container_of(breq, struct ahash_request, base);
263
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
264
struct rk_ahash_rctx *rctx = ahash_request_ctx(areq);
265
struct ahash_alg *alg = crypto_ahash_alg(tfm);
266
struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.hash.base);
267
struct scatterlist *sg = areq->src;
268
struct rk_crypto_info *rkc = rctx->dev;
269
int err;
270
int i;
271
u32 v;
272
273
err = pm_runtime_resume_and_get(rkc->dev);
274
if (err)
275
return err;
276
277
err = rk_hash_prepare(engine, breq);
278
if (err)
279
goto theend;
280
281
rctx->mode = 0;
282
283
algt->stat_req++;
284
rkc->nreq++;
285
286
switch (crypto_ahash_digestsize(tfm)) {
287
case SHA1_DIGEST_SIZE:
288
rctx->mode = RK_CRYPTO_HASH_SHA1;
289
break;
290
case SHA256_DIGEST_SIZE:
291
rctx->mode = RK_CRYPTO_HASH_SHA256;
292
break;
293
case MD5_DIGEST_SIZE:
294
rctx->mode = RK_CRYPTO_HASH_MD5;
295
break;
296
default:
297
err = -EINVAL;
298
goto theend;
299
}
300
301
rk_ahash_reg_init(areq, rkc);
302
303
while (sg) {
304
reinit_completion(&rkc->complete);
305
rkc->status = 0;
306
crypto_ahash_dma_start(rkc, sg);
307
wait_for_completion_interruptible_timeout(&rkc->complete,
308
msecs_to_jiffies(2000));
309
if (!rkc->status) {
310
dev_err(rkc->dev, "DMA timeout\n");
311
err = -EFAULT;
312
goto theend;
313
}
314
sg = sg_next(sg);
315
}
316
317
/*
318
* it will take some time to process date after last dma
319
* transmission.
320
*
321
* waiting time is relative with the last date len,
322
* so cannot set a fixed time here.
323
* 10us makes system not call here frequently wasting
324
* efficiency, and make it response quickly when dma
325
* complete.
326
*/
327
readl_poll_timeout(rkc->reg + RK_CRYPTO_HASH_STS, v, v == 0, 10, 1000);
328
329
for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++) {
330
v = readl(rkc->reg + RK_CRYPTO_HASH_DOUT_0 + i * 4);
331
put_unaligned_le32(v, areq->result + i * 4);
332
}
333
334
theend:
335
pm_runtime_put_autosuspend(rkc->dev);
336
337
rk_hash_unprepare(engine, breq);
338
339
local_bh_disable();
340
crypto_finalize_hash_request(engine, breq, err);
341
local_bh_enable();
342
343
return 0;
344
}
345
346
static int rk_hash_init_tfm(struct crypto_ahash *tfm)
347
{
348
struct rk_ahash_ctx *tctx = crypto_ahash_ctx(tfm);
349
const char *alg_name = crypto_ahash_alg_name(tfm);
350
struct ahash_alg *alg = crypto_ahash_alg(tfm);
351
struct rk_crypto_tmp *algt = container_of(alg, struct rk_crypto_tmp, alg.hash.base);
352
353
/* for fallback */
354
tctx->fallback_tfm = crypto_alloc_ahash(alg_name, 0,
355
CRYPTO_ALG_NEED_FALLBACK);
356
if (IS_ERR(tctx->fallback_tfm)) {
357
dev_err(algt->dev->dev, "Could not load fallback driver.\n");
358
return PTR_ERR(tctx->fallback_tfm);
359
}
360
361
crypto_ahash_set_reqsize(tfm,
362
sizeof(struct rk_ahash_rctx) +
363
crypto_ahash_reqsize(tctx->fallback_tfm));
364
365
return 0;
366
}
367
368
static void rk_hash_exit_tfm(struct crypto_ahash *tfm)
369
{
370
struct rk_ahash_ctx *tctx = crypto_ahash_ctx(tfm);
371
372
crypto_free_ahash(tctx->fallback_tfm);
373
}
374
375
struct rk_crypto_tmp rk_ahash_sha1 = {
376
.type = CRYPTO_ALG_TYPE_AHASH,
377
.alg.hash.base = {
378
.init = rk_ahash_init,
379
.update = rk_ahash_update,
380
.final = rk_ahash_final,
381
.finup = rk_ahash_finup,
382
.export = rk_ahash_export,
383
.import = rk_ahash_import,
384
.digest = rk_ahash_digest,
385
.init_tfm = rk_hash_init_tfm,
386
.exit_tfm = rk_hash_exit_tfm,
387
.halg = {
388
.digestsize = SHA1_DIGEST_SIZE,
389
.statesize = sizeof(struct sha1_state),
390
.base = {
391
.cra_name = "sha1",
392
.cra_driver_name = "rk-sha1",
393
.cra_priority = 300,
394
.cra_flags = CRYPTO_ALG_ASYNC |
395
CRYPTO_ALG_NEED_FALLBACK,
396
.cra_blocksize = SHA1_BLOCK_SIZE,
397
.cra_ctxsize = sizeof(struct rk_ahash_ctx),
398
.cra_module = THIS_MODULE,
399
}
400
}
401
},
402
.alg.hash.op = {
403
.do_one_request = rk_hash_run,
404
},
405
};
406
407
struct rk_crypto_tmp rk_ahash_sha256 = {
408
.type = CRYPTO_ALG_TYPE_AHASH,
409
.alg.hash.base = {
410
.init = rk_ahash_init,
411
.update = rk_ahash_update,
412
.final = rk_ahash_final,
413
.finup = rk_ahash_finup,
414
.export = rk_ahash_export,
415
.import = rk_ahash_import,
416
.digest = rk_ahash_digest,
417
.init_tfm = rk_hash_init_tfm,
418
.exit_tfm = rk_hash_exit_tfm,
419
.halg = {
420
.digestsize = SHA256_DIGEST_SIZE,
421
.statesize = sizeof(struct sha256_state),
422
.base = {
423
.cra_name = "sha256",
424
.cra_driver_name = "rk-sha256",
425
.cra_priority = 300,
426
.cra_flags = CRYPTO_ALG_ASYNC |
427
CRYPTO_ALG_NEED_FALLBACK,
428
.cra_blocksize = SHA256_BLOCK_SIZE,
429
.cra_ctxsize = sizeof(struct rk_ahash_ctx),
430
.cra_module = THIS_MODULE,
431
}
432
}
433
},
434
.alg.hash.op = {
435
.do_one_request = rk_hash_run,
436
},
437
};
438
439
struct rk_crypto_tmp rk_ahash_md5 = {
440
.type = CRYPTO_ALG_TYPE_AHASH,
441
.alg.hash.base = {
442
.init = rk_ahash_init,
443
.update = rk_ahash_update,
444
.final = rk_ahash_final,
445
.finup = rk_ahash_finup,
446
.export = rk_ahash_export,
447
.import = rk_ahash_import,
448
.digest = rk_ahash_digest,
449
.init_tfm = rk_hash_init_tfm,
450
.exit_tfm = rk_hash_exit_tfm,
451
.halg = {
452
.digestsize = MD5_DIGEST_SIZE,
453
.statesize = sizeof(struct md5_state),
454
.base = {
455
.cra_name = "md5",
456
.cra_driver_name = "rk-md5",
457
.cra_priority = 300,
458
.cra_flags = CRYPTO_ALG_ASYNC |
459
CRYPTO_ALG_NEED_FALLBACK,
460
.cra_blocksize = SHA1_BLOCK_SIZE,
461
.cra_ctxsize = sizeof(struct rk_ahash_ctx),
462
.cra_module = THIS_MODULE,
463
}
464
}
465
},
466
.alg.hash.op = {
467
.do_one_request = rk_hash_run,
468
},
469
};
470
471