Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/s5p-sss.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
//
3
// Cryptographic API.
4
//
5
// Support for Samsung S5PV210 and Exynos HW acceleration.
6
//
7
// Copyright (C) 2011 NetUP Inc. All rights reserved.
8
// Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9
//
10
// Hash part based on omap-sham.c driver.
11
12
#include <crypto/aes.h>
13
#include <crypto/ctr.h>
14
#include <crypto/internal/hash.h>
15
#include <crypto/internal/skcipher.h>
16
#include <crypto/md5.h>
17
#include <crypto/scatterwalk.h>
18
#include <crypto/sha1.h>
19
#include <crypto/sha2.h>
20
#include <linux/clk.h>
21
#include <linux/dma-mapping.h>
22
#include <linux/err.h>
23
#include <linux/init.h>
24
#include <linux/interrupt.h>
25
#include <linux/io.h>
26
#include <linux/kernel.h>
27
#include <linux/module.h>
28
#include <linux/of.h>
29
#include <linux/platform_device.h>
30
#include <linux/scatterlist.h>
31
#include <linux/slab.h>
32
#include <linux/spinlock.h>
33
#include <linux/string.h>
34
35
#define _SBF(s, v) ((v) << (s))
36
37
/* Feed control registers */
38
#define SSS_REG_FCINTSTAT 0x0000
39
#define SSS_FCINTSTAT_HPARTINT BIT(7)
40
#define SSS_FCINTSTAT_HDONEINT BIT(5)
41
#define SSS_FCINTSTAT_BRDMAINT BIT(3)
42
#define SSS_FCINTSTAT_BTDMAINT BIT(2)
43
#define SSS_FCINTSTAT_HRDMAINT BIT(1)
44
#define SSS_FCINTSTAT_PKDMAINT BIT(0)
45
46
#define SSS_REG_FCINTENSET 0x0004
47
#define SSS_FCINTENSET_HPARTINTENSET BIT(7)
48
#define SSS_FCINTENSET_HDONEINTENSET BIT(5)
49
#define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
50
#define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
51
#define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
52
#define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
53
54
#define SSS_REG_FCINTENCLR 0x0008
55
#define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
56
#define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
57
#define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
58
#define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
59
#define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
60
#define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
61
62
#define SSS_REG_FCINTPEND 0x000C
63
#define SSS_FCINTPEND_HPARTINTP BIT(7)
64
#define SSS_FCINTPEND_HDONEINTP BIT(5)
65
#define SSS_FCINTPEND_BRDMAINTP BIT(3)
66
#define SSS_FCINTPEND_BTDMAINTP BIT(2)
67
#define SSS_FCINTPEND_HRDMAINTP BIT(1)
68
#define SSS_FCINTPEND_PKDMAINTP BIT(0)
69
70
#define SSS_REG_FCFIFOSTAT 0x0010
71
#define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
72
#define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
73
#define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
74
#define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
75
#define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
76
#define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
77
#define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
78
#define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
79
80
#define SSS_REG_FCFIFOCTRL 0x0014
81
#define SSS_FCFIFOCTRL_DESSEL BIT(2)
82
#define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
83
#define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
84
#define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
85
#define SSS_HASHIN_MASK _SBF(0, 0x03)
86
87
#define SSS_REG_FCBRDMAS 0x0020
88
#define SSS_REG_FCBRDMAL 0x0024
89
#define SSS_REG_FCBRDMAC 0x0028
90
#define SSS_FCBRDMAC_BYTESWAP BIT(1)
91
#define SSS_FCBRDMAC_FLUSH BIT(0)
92
93
#define SSS_REG_FCBTDMAS 0x0030
94
#define SSS_REG_FCBTDMAL 0x0034
95
#define SSS_REG_FCBTDMAC 0x0038
96
#define SSS_FCBTDMAC_BYTESWAP BIT(1)
97
#define SSS_FCBTDMAC_FLUSH BIT(0)
98
99
#define SSS_REG_FCHRDMAS 0x0040
100
#define SSS_REG_FCHRDMAL 0x0044
101
#define SSS_REG_FCHRDMAC 0x0048
102
#define SSS_FCHRDMAC_BYTESWAP BIT(1)
103
#define SSS_FCHRDMAC_FLUSH BIT(0)
104
105
#define SSS_REG_FCPKDMAS 0x0050
106
#define SSS_REG_FCPKDMAL 0x0054
107
#define SSS_REG_FCPKDMAC 0x0058
108
#define SSS_FCPKDMAC_BYTESWAP BIT(3)
109
#define SSS_FCPKDMAC_DESCEND BIT(2)
110
#define SSS_FCPKDMAC_TRANSMIT BIT(1)
111
#define SSS_FCPKDMAC_FLUSH BIT(0)
112
113
#define SSS_REG_FCPKDMAO 0x005C
114
115
/* AES registers */
116
#define SSS_REG_AES_CONTROL 0x00
117
#define SSS_AES_BYTESWAP_DI BIT(11)
118
#define SSS_AES_BYTESWAP_DO BIT(10)
119
#define SSS_AES_BYTESWAP_IV BIT(9)
120
#define SSS_AES_BYTESWAP_CNT BIT(8)
121
#define SSS_AES_BYTESWAP_KEY BIT(7)
122
#define SSS_AES_KEY_CHANGE_MODE BIT(6)
123
#define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
124
#define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
125
#define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
126
#define SSS_AES_FIFO_MODE BIT(3)
127
#define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
128
#define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
129
#define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
130
#define SSS_AES_MODE_DECRYPT BIT(0)
131
132
#define SSS_REG_AES_STATUS 0x04
133
#define SSS_AES_BUSY BIT(2)
134
#define SSS_AES_INPUT_READY BIT(1)
135
#define SSS_AES_OUTPUT_READY BIT(0)
136
137
#define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
138
#define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
139
#define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
140
#define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
141
#define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
142
143
#define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
144
#define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
145
#define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
146
147
#define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
148
#define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
149
SSS_AES_REG(dev, reg))
150
151
/* HW engine modes */
152
#define FLAGS_AES_DECRYPT BIT(0)
153
#define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
154
#define FLAGS_AES_CBC _SBF(1, 0x01)
155
#define FLAGS_AES_CTR _SBF(1, 0x02)
156
157
#define AES_KEY_LEN 16
158
#define CRYPTO_QUEUE_LEN 1
159
160
/* HASH registers */
161
#define SSS_REG_HASH_CTRL 0x00
162
163
#define SSS_HASH_USER_IV_EN BIT(5)
164
#define SSS_HASH_INIT_BIT BIT(4)
165
#define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
166
#define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
167
#define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
168
169
#define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
170
171
#define SSS_REG_HASH_CTRL_PAUSE 0x04
172
173
#define SSS_HASH_PAUSE BIT(0)
174
175
#define SSS_REG_HASH_CTRL_FIFO 0x08
176
177
#define SSS_HASH_FIFO_MODE_DMA BIT(0)
178
#define SSS_HASH_FIFO_MODE_CPU 0
179
180
#define SSS_REG_HASH_CTRL_SWAP 0x0C
181
182
#define SSS_HASH_BYTESWAP_DI BIT(3)
183
#define SSS_HASH_BYTESWAP_DO BIT(2)
184
#define SSS_HASH_BYTESWAP_IV BIT(1)
185
#define SSS_HASH_BYTESWAP_KEY BIT(0)
186
187
#define SSS_REG_HASH_STATUS 0x10
188
189
#define SSS_HASH_STATUS_MSG_DONE BIT(6)
190
#define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
191
#define SSS_HASH_STATUS_BUFFER_READY BIT(0)
192
193
#define SSS_REG_HASH_MSG_SIZE_LOW 0x20
194
#define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
195
196
#define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
197
#define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
198
199
#define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
200
#define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
201
202
#define HASH_BLOCK_SIZE 64
203
#define HASH_REG_SIZEOF 4
204
#define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
205
#define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
206
#define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
207
208
/*
209
* HASH bit numbers, used by device, setting in dev->hash_flags with
210
* functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
211
* to keep HASH state BUSY or FREE, or to signal state from irq_handler
212
* to hash_tasklet. SGS keep track of allocated memory for scatterlist
213
*/
214
#define HASH_FLAGS_BUSY 0
215
#define HASH_FLAGS_FINAL 1
216
#define HASH_FLAGS_DMA_ACTIVE 2
217
#define HASH_FLAGS_OUTPUT_READY 3
218
#define HASH_FLAGS_DMA_READY 4
219
#define HASH_FLAGS_SGS_COPIED 5
220
#define HASH_FLAGS_SGS_ALLOCED 6
221
222
/* HASH HW constants */
223
#define BUFLEN HASH_BLOCK_SIZE
224
225
#define SSS_HASH_QUEUE_LENGTH 10
226
227
/**
228
* struct samsung_aes_variant - platform specific SSS driver data
229
* @aes_offset: AES register offset from SSS module's base.
230
* @hash_offset: HASH register offset from SSS module's base.
231
* @clk_names: names of clocks needed to run SSS IP
232
*
233
* Specifies platform specific configuration of SSS module.
234
* Note: A structure for driver specific platform data is used for future
235
* expansion of its usage.
236
*/
237
struct samsung_aes_variant {
238
unsigned int aes_offset;
239
unsigned int hash_offset;
240
const char *clk_names[2];
241
};
242
243
struct s5p_aes_reqctx {
244
unsigned long mode;
245
};
246
247
struct s5p_aes_ctx {
248
struct s5p_aes_dev *dev;
249
250
u8 aes_key[AES_MAX_KEY_SIZE];
251
u8 nonce[CTR_RFC3686_NONCE_SIZE];
252
int keylen;
253
};
254
255
/**
256
* struct s5p_aes_dev - Crypto device state container
257
* @dev: Associated device
258
* @clk: Clock for accessing hardware
259
* @pclk: APB bus clock necessary to access the hardware
260
* @ioaddr: Mapped IO memory region
261
* @aes_ioaddr: Per-varian offset for AES block IO memory
262
* @irq_fc: Feed control interrupt line
263
* @req: Crypto request currently handled by the device
264
* @ctx: Configuration for currently handled crypto request
265
* @sg_src: Scatter list with source data for currently handled block
266
* in device. This is DMA-mapped into device.
267
* @sg_dst: Scatter list with destination data for currently handled block
268
* in device. This is DMA-mapped into device.
269
* @sg_src_cpy: In case of unaligned access, copied scatter list
270
* with source data.
271
* @sg_dst_cpy: In case of unaligned access, copied scatter list
272
* with destination data.
273
* @tasklet: New request scheduling jib
274
* @queue: Crypto queue
275
* @busy: Indicates whether the device is currently handling some request
276
* thus it uses some of the fields from this state, like:
277
* req, ctx, sg_src/dst (and copies). This essentially
278
* protects against concurrent access to these fields.
279
* @lock: Lock for protecting both access to device hardware registers
280
* and fields related to current request (including the busy field).
281
* @res: Resources for hash.
282
* @io_hash_base: Per-variant offset for HASH block IO memory.
283
* @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
284
* variable.
285
* @hash_flags: Flags for current HASH op.
286
* @hash_queue: Async hash queue.
287
* @hash_tasklet: New HASH request scheduling job.
288
* @xmit_buf: Buffer for current HASH request transfer into SSS block.
289
* @hash_req: Current request sending to SSS HASH block.
290
* @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
291
* @hash_sg_cnt: Counter for hash_sg_iter.
292
*
293
* @use_hash: true if HASH algs enabled
294
*/
295
struct s5p_aes_dev {
296
struct device *dev;
297
struct clk *clk;
298
struct clk *pclk;
299
void __iomem *ioaddr;
300
void __iomem *aes_ioaddr;
301
int irq_fc;
302
303
struct skcipher_request *req;
304
struct s5p_aes_ctx *ctx;
305
struct scatterlist *sg_src;
306
struct scatterlist *sg_dst;
307
308
struct scatterlist *sg_src_cpy;
309
struct scatterlist *sg_dst_cpy;
310
311
struct tasklet_struct tasklet;
312
struct crypto_queue queue;
313
bool busy;
314
spinlock_t lock;
315
316
struct resource *res;
317
void __iomem *io_hash_base;
318
319
spinlock_t hash_lock; /* protect hash_ vars */
320
unsigned long hash_flags;
321
struct crypto_queue hash_queue;
322
struct tasklet_struct hash_tasklet;
323
324
u8 xmit_buf[BUFLEN];
325
struct ahash_request *hash_req;
326
struct scatterlist *hash_sg_iter;
327
unsigned int hash_sg_cnt;
328
329
bool use_hash;
330
};
331
332
/**
333
* struct s5p_hash_reqctx - HASH request context
334
* @dd: Associated device
335
* @op_update: Current request operation (OP_UPDATE or OP_FINAL)
336
* @digcnt: Number of bytes processed by HW (without buffer[] ones)
337
* @digest: Digest message or IV for partial result
338
* @nregs: Number of HW registers for digest or IV read/write
339
* @engine: Bits for selecting type of HASH in SSS block
340
* @sg: sg for DMA transfer
341
* @sg_len: Length of sg for DMA transfer
342
* @sgl: sg for joining buffer and req->src scatterlist
343
* @skip: Skip offset in req->src for current op
344
* @total: Total number of bytes for current request
345
* @finup: Keep state for finup or final.
346
* @error: Keep track of error.
347
* @bufcnt: Number of bytes holded in buffer[]
348
* @buffer: For byte(s) from end of req->src in UPDATE op
349
*/
350
struct s5p_hash_reqctx {
351
struct s5p_aes_dev *dd;
352
bool op_update;
353
354
u64 digcnt;
355
u8 digest[SHA256_DIGEST_SIZE];
356
357
unsigned int nregs; /* digest_size / sizeof(reg) */
358
u32 engine;
359
360
struct scatterlist *sg;
361
unsigned int sg_len;
362
struct scatterlist sgl[2];
363
unsigned int skip;
364
unsigned int total;
365
bool finup;
366
bool error;
367
368
u32 bufcnt;
369
u8 buffer[];
370
};
371
372
/**
373
* struct s5p_hash_ctx - HASH transformation context
374
* @dd: Associated device
375
* @flags: Bits for algorithm HASH.
376
* @fallback: Software transformation for zero message or size < BUFLEN.
377
*/
378
struct s5p_hash_ctx {
379
struct s5p_aes_dev *dd;
380
unsigned long flags;
381
struct crypto_shash *fallback;
382
};
383
384
static const struct samsung_aes_variant s5p_aes_data = {
385
.aes_offset = 0x4000,
386
.hash_offset = 0x6000,
387
.clk_names = { "secss", },
388
};
389
390
static const struct samsung_aes_variant exynos_aes_data = {
391
.aes_offset = 0x200,
392
.hash_offset = 0x400,
393
.clk_names = { "secss", },
394
};
395
396
static const struct samsung_aes_variant exynos5433_slim_aes_data = {
397
.aes_offset = 0x400,
398
.hash_offset = 0x800,
399
.clk_names = { "aclk", "pclk", },
400
};
401
402
static const struct of_device_id s5p_sss_dt_match[] = {
403
{
404
.compatible = "samsung,s5pv210-secss",
405
.data = &s5p_aes_data,
406
},
407
{
408
.compatible = "samsung,exynos4210-secss",
409
.data = &exynos_aes_data,
410
},
411
{
412
.compatible = "samsung,exynos5433-slim-sss",
413
.data = &exynos5433_slim_aes_data,
414
},
415
{ },
416
};
417
MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
418
419
static inline const struct samsung_aes_variant *find_s5p_sss_version
420
(const struct platform_device *pdev)
421
{
422
if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
423
return of_device_get_match_data(&pdev->dev);
424
425
return (const struct samsung_aes_variant *)
426
platform_get_device_id(pdev)->driver_data;
427
}
428
429
static struct s5p_aes_dev *s5p_dev;
430
431
static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
432
const struct scatterlist *sg)
433
{
434
SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
435
SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
436
}
437
438
static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
439
const struct scatterlist *sg)
440
{
441
SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
442
SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
443
}
444
445
static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
446
{
447
int len;
448
449
if (!*sg)
450
return;
451
452
len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
453
free_pages((unsigned long)sg_virt(*sg), get_order(len));
454
455
kfree(*sg);
456
*sg = NULL;
457
}
458
459
static void s5p_sg_done(struct s5p_aes_dev *dev)
460
{
461
struct skcipher_request *req = dev->req;
462
struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
463
464
if (dev->sg_dst_cpy) {
465
dev_dbg(dev->dev,
466
"Copying %d bytes of output data back to original place\n",
467
dev->req->cryptlen);
468
memcpy_to_sglist(dev->req->dst, 0, sg_virt(dev->sg_dst_cpy),
469
dev->req->cryptlen);
470
}
471
s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
472
s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
473
if (reqctx->mode & FLAGS_AES_CBC)
474
memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
475
476
else if (reqctx->mode & FLAGS_AES_CTR)
477
memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
478
}
479
480
/* Calls the completion. Cannot be called with dev->lock hold. */
481
static void s5p_aes_complete(struct skcipher_request *req, int err)
482
{
483
skcipher_request_complete(req, err);
484
}
485
486
static void s5p_unset_outdata(struct s5p_aes_dev *dev)
487
{
488
dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
489
}
490
491
static void s5p_unset_indata(struct s5p_aes_dev *dev)
492
{
493
dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
494
}
495
496
static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
497
struct scatterlist **dst)
498
{
499
void *pages;
500
int len;
501
502
*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
503
if (!*dst)
504
return -ENOMEM;
505
506
len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
507
pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
508
if (!pages) {
509
kfree(*dst);
510
*dst = NULL;
511
return -ENOMEM;
512
}
513
514
memcpy_from_sglist(pages, src, 0, dev->req->cryptlen);
515
516
sg_init_table(*dst, 1);
517
sg_set_buf(*dst, pages, len);
518
519
return 0;
520
}
521
522
static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
523
{
524
if (!sg->length)
525
return -EINVAL;
526
527
if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
528
return -ENOMEM;
529
530
dev->sg_dst = sg;
531
532
return 0;
533
}
534
535
static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
536
{
537
if (!sg->length)
538
return -EINVAL;
539
540
if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
541
return -ENOMEM;
542
543
dev->sg_src = sg;
544
545
return 0;
546
}
547
548
/*
549
* Returns -ERRNO on error (mapping of new data failed).
550
* On success returns:
551
* - 0 if there is no more data,
552
* - 1 if new transmitting (output) data is ready and its address+length
553
* have to be written to device (by calling s5p_set_dma_outdata()).
554
*/
555
static int s5p_aes_tx(struct s5p_aes_dev *dev)
556
{
557
int ret = 0;
558
559
s5p_unset_outdata(dev);
560
561
if (!sg_is_last(dev->sg_dst)) {
562
ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
563
if (!ret)
564
ret = 1;
565
}
566
567
return ret;
568
}
569
570
/*
571
* Returns -ERRNO on error (mapping of new data failed).
572
* On success returns:
573
* - 0 if there is no more data,
574
* - 1 if new receiving (input) data is ready and its address+length
575
* have to be written to device (by calling s5p_set_dma_indata()).
576
*/
577
static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
578
{
579
int ret = 0;
580
581
s5p_unset_indata(dev);
582
583
if (!sg_is_last(dev->sg_src)) {
584
ret = s5p_set_indata(dev, sg_next(dev->sg_src));
585
if (!ret)
586
ret = 1;
587
}
588
589
return ret;
590
}
591
592
static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
593
{
594
return __raw_readl(dd->io_hash_base + offset);
595
}
596
597
static inline void s5p_hash_write(struct s5p_aes_dev *dd,
598
u32 offset, u32 value)
599
{
600
__raw_writel(value, dd->io_hash_base + offset);
601
}
602
603
/**
604
* s5p_set_dma_hashdata() - start DMA with sg
605
* @dev: device
606
* @sg: scatterlist ready to DMA transmit
607
*/
608
static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
609
const struct scatterlist *sg)
610
{
611
dev->hash_sg_cnt--;
612
SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
613
SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
614
}
615
616
/**
617
* s5p_hash_rx() - get next hash_sg_iter
618
* @dev: device
619
*
620
* Return:
621
* 2 if there is no more data and it is UPDATE op
622
* 1 if new receiving (input) data is ready and can be written to device
623
* 0 if there is no more data and it is FINAL op
624
*/
625
static int s5p_hash_rx(struct s5p_aes_dev *dev)
626
{
627
if (dev->hash_sg_cnt > 0) {
628
dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
629
return 1;
630
}
631
632
set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
633
if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
634
return 0;
635
636
return 2;
637
}
638
639
static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
640
{
641
struct platform_device *pdev = dev_id;
642
struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
643
struct skcipher_request *req;
644
int err_dma_tx = 0;
645
int err_dma_rx = 0;
646
int err_dma_hx = 0;
647
bool tx_end = false;
648
bool hx_end = false;
649
unsigned long flags;
650
u32 status, st_bits;
651
int err;
652
653
spin_lock_irqsave(&dev->lock, flags);
654
655
/*
656
* Handle rx or tx interrupt. If there is still data (scatterlist did not
657
* reach end), then map next scatterlist entry.
658
* In case of such mapping error, s5p_aes_complete() should be called.
659
*
660
* If there is no more data in tx scatter list, call s5p_aes_complete()
661
* and schedule new tasklet.
662
*
663
* Handle hx interrupt. If there is still data map next entry.
664
*/
665
status = SSS_READ(dev, FCINTSTAT);
666
if (status & SSS_FCINTSTAT_BRDMAINT)
667
err_dma_rx = s5p_aes_rx(dev);
668
669
if (status & SSS_FCINTSTAT_BTDMAINT) {
670
if (sg_is_last(dev->sg_dst))
671
tx_end = true;
672
err_dma_tx = s5p_aes_tx(dev);
673
}
674
675
if (status & SSS_FCINTSTAT_HRDMAINT)
676
err_dma_hx = s5p_hash_rx(dev);
677
678
st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
679
SSS_FCINTSTAT_HRDMAINT);
680
/* clear DMA bits */
681
SSS_WRITE(dev, FCINTPEND, st_bits);
682
683
/* clear HASH irq bits */
684
if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
685
/* cannot have both HPART and HDONE */
686
if (status & SSS_FCINTSTAT_HPARTINT)
687
st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
688
689
if (status & SSS_FCINTSTAT_HDONEINT)
690
st_bits = SSS_HASH_STATUS_MSG_DONE;
691
692
set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
693
s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
694
hx_end = true;
695
/* when DONE or PART, do not handle HASH DMA */
696
err_dma_hx = 0;
697
}
698
699
if (err_dma_rx < 0) {
700
err = err_dma_rx;
701
goto error;
702
}
703
if (err_dma_tx < 0) {
704
err = err_dma_tx;
705
goto error;
706
}
707
708
if (tx_end) {
709
s5p_sg_done(dev);
710
if (err_dma_hx == 1)
711
s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
712
713
spin_unlock_irqrestore(&dev->lock, flags);
714
715
s5p_aes_complete(dev->req, 0);
716
/* Device is still busy */
717
tasklet_schedule(&dev->tasklet);
718
} else {
719
/*
720
* Writing length of DMA block (either receiving or
721
* transmitting) will start the operation immediately, so this
722
* should be done at the end (even after clearing pending
723
* interrupts to not miss the interrupt).
724
*/
725
if (err_dma_tx == 1)
726
s5p_set_dma_outdata(dev, dev->sg_dst);
727
if (err_dma_rx == 1)
728
s5p_set_dma_indata(dev, dev->sg_src);
729
if (err_dma_hx == 1)
730
s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
731
732
spin_unlock_irqrestore(&dev->lock, flags);
733
}
734
735
goto hash_irq_end;
736
737
error:
738
s5p_sg_done(dev);
739
dev->busy = false;
740
req = dev->req;
741
if (err_dma_hx == 1)
742
s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
743
744
spin_unlock_irqrestore(&dev->lock, flags);
745
s5p_aes_complete(req, err);
746
747
hash_irq_end:
748
/*
749
* Note about else if:
750
* when hash_sg_iter reaches end and its UPDATE op,
751
* issue SSS_HASH_PAUSE and wait for HPART irq
752
*/
753
if (hx_end)
754
tasklet_schedule(&dev->hash_tasklet);
755
else if (err_dma_hx == 2)
756
s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
757
SSS_HASH_PAUSE);
758
759
return IRQ_HANDLED;
760
}
761
762
/**
763
* s5p_hash_read_msg() - read message or IV from HW
764
* @req: AHASH request
765
*/
766
static void s5p_hash_read_msg(struct ahash_request *req)
767
{
768
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
769
struct s5p_aes_dev *dd = ctx->dd;
770
u32 *hash = (u32 *)ctx->digest;
771
unsigned int i;
772
773
for (i = 0; i < ctx->nregs; i++)
774
hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
775
}
776
777
/**
778
* s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
779
* @dd: device
780
* @ctx: request context
781
*/
782
static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
783
const struct s5p_hash_reqctx *ctx)
784
{
785
const u32 *hash = (const u32 *)ctx->digest;
786
unsigned int i;
787
788
for (i = 0; i < ctx->nregs; i++)
789
s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
790
}
791
792
/**
793
* s5p_hash_write_iv() - write IV for next partial/finup op.
794
* @req: AHASH request
795
*/
796
static void s5p_hash_write_iv(struct ahash_request *req)
797
{
798
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
799
800
s5p_hash_write_ctx_iv(ctx->dd, ctx);
801
}
802
803
/**
804
* s5p_hash_copy_result() - copy digest into req->result
805
* @req: AHASH request
806
*/
807
static void s5p_hash_copy_result(struct ahash_request *req)
808
{
809
const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
810
811
if (!req->result)
812
return;
813
814
memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
815
}
816
817
/**
818
* s5p_hash_dma_flush() - flush HASH DMA
819
* @dev: secss device
820
*/
821
static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
822
{
823
SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
824
}
825
826
/**
827
* s5p_hash_dma_enable() - enable DMA mode for HASH
828
* @dev: secss device
829
*
830
* enable DMA mode for HASH
831
*/
832
static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
833
{
834
s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
835
}
836
837
/**
838
* s5p_hash_irq_disable() - disable irq HASH signals
839
* @dev: secss device
840
* @flags: bitfield with irq's to be disabled
841
*/
842
static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
843
{
844
SSS_WRITE(dev, FCINTENCLR, flags);
845
}
846
847
/**
848
* s5p_hash_irq_enable() - enable irq signals
849
* @dev: secss device
850
* @flags: bitfield with irq's to be enabled
851
*/
852
static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
853
{
854
SSS_WRITE(dev, FCINTENSET, flags);
855
}
856
857
/**
858
* s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
859
* @dev: secss device
860
* @hashflow: HASH stream flow with/without crypto AES/DES
861
*/
862
static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
863
{
864
unsigned long flags;
865
u32 flow;
866
867
spin_lock_irqsave(&dev->lock, flags);
868
869
flow = SSS_READ(dev, FCFIFOCTRL);
870
flow &= ~SSS_HASHIN_MASK;
871
flow |= hashflow;
872
SSS_WRITE(dev, FCFIFOCTRL, flow);
873
874
spin_unlock_irqrestore(&dev->lock, flags);
875
}
876
877
/**
878
* s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
879
* @dev: secss device
880
* @hashflow: HASH stream flow with/without AES/DES
881
*
882
* flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
883
* enable HASH irq's HRDMA, HDONE, HPART
884
*/
885
static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
886
{
887
s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
888
SSS_FCINTENCLR_HDONEINTENCLR |
889
SSS_FCINTENCLR_HPARTINTENCLR);
890
s5p_hash_dma_flush(dev);
891
892
s5p_hash_dma_enable(dev);
893
s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
894
s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
895
SSS_FCINTENSET_HDONEINTENSET |
896
SSS_FCINTENSET_HPARTINTENSET);
897
}
898
899
/**
900
* s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
901
* @dd: secss device
902
* @length: length for request
903
* @final: true if final op
904
*
905
* Prepare SSS HASH block for processing bytes in DMA mode. If it is called
906
* after previous updates, fill up IV words. For final, calculate and set
907
* lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
908
* length as 2^63 so it will be never reached and set to zero prelow and
909
* prehigh.
910
*
911
* This function does not start DMA transfer.
912
*/
913
static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
914
bool final)
915
{
916
struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
917
u32 prelow, prehigh, low, high;
918
u32 configflags, swapflags;
919
u64 tmplen;
920
921
configflags = ctx->engine | SSS_HASH_INIT_BIT;
922
923
if (likely(ctx->digcnt)) {
924
s5p_hash_write_ctx_iv(dd, ctx);
925
configflags |= SSS_HASH_USER_IV_EN;
926
}
927
928
if (final) {
929
/* number of bytes for last part */
930
low = length;
931
high = 0;
932
/* total number of bits prev hashed */
933
tmplen = ctx->digcnt * 8;
934
prelow = (u32)tmplen;
935
prehigh = (u32)(tmplen >> 32);
936
} else {
937
prelow = 0;
938
prehigh = 0;
939
low = 0;
940
high = BIT(31);
941
}
942
943
swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
944
SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
945
946
s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
947
s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
948
s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
949
s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
950
951
s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
952
s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
953
}
954
955
/**
956
* s5p_hash_xmit_dma() - start DMA hash processing
957
* @dd: secss device
958
* @length: length for request
959
* @final: true if final op
960
*
961
* Update digcnt here, as it is needed for finup/final op.
962
*/
963
static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
964
bool final)
965
{
966
struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
967
unsigned int cnt;
968
969
cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
970
if (!cnt) {
971
dev_err(dd->dev, "dma_map_sg error\n");
972
ctx->error = true;
973
return -EINVAL;
974
}
975
976
set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
977
dd->hash_sg_iter = ctx->sg;
978
dd->hash_sg_cnt = cnt;
979
s5p_hash_write_ctrl(dd, length, final);
980
ctx->digcnt += length;
981
ctx->total -= length;
982
983
/* catch last interrupt */
984
if (final)
985
set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
986
987
s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
988
989
return -EINPROGRESS;
990
}
991
992
/**
993
* s5p_hash_copy_sgs() - copy request's bytes into new buffer
994
* @ctx: request context
995
* @sg: source scatterlist request
996
* @new_len: number of bytes to process from sg
997
*
998
* Allocate new buffer, copy data for HASH into it. If there was xmit_buf
999
* filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1000
* with allocated buffer.
1001
*
1002
* Set bit in dd->hash_flag so we can free it after irq ends processing.
1003
*/
1004
static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1005
struct scatterlist *sg, unsigned int new_len)
1006
{
1007
unsigned int pages, len;
1008
void *buf;
1009
1010
len = new_len + ctx->bufcnt;
1011
pages = get_order(len);
1012
1013
buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1014
if (!buf) {
1015
dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1016
ctx->error = true;
1017
return -ENOMEM;
1018
}
1019
1020
if (ctx->bufcnt)
1021
memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1022
1023
memcpy_from_sglist(buf + ctx->bufcnt, sg, ctx->skip, new_len);
1024
sg_init_table(ctx->sgl, 1);
1025
sg_set_buf(ctx->sgl, buf, len);
1026
ctx->sg = ctx->sgl;
1027
ctx->sg_len = 1;
1028
ctx->bufcnt = 0;
1029
ctx->skip = 0;
1030
set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1031
1032
return 0;
1033
}
1034
1035
/**
1036
* s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1037
* @ctx: request context
1038
* @sg: source scatterlist request
1039
* @new_len: number of bytes to process from sg
1040
*
1041
* Allocate new scatterlist table, copy data for HASH into it. If there was
1042
* xmit_buf filled, prepare it first, then copy page, length and offset from
1043
* source sg into it, adjusting begin and/or end for skip offset and
1044
* hash_later value.
1045
*
1046
* Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1047
* it after irq ends processing.
1048
*/
1049
static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1050
struct scatterlist *sg, unsigned int new_len)
1051
{
1052
unsigned int skip = ctx->skip, n = sg_nents(sg);
1053
struct scatterlist *tmp;
1054
unsigned int len;
1055
1056
if (ctx->bufcnt)
1057
n++;
1058
1059
ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1060
if (!ctx->sg) {
1061
ctx->error = true;
1062
return -ENOMEM;
1063
}
1064
1065
sg_init_table(ctx->sg, n);
1066
1067
tmp = ctx->sg;
1068
1069
ctx->sg_len = 0;
1070
1071
if (ctx->bufcnt) {
1072
sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1073
tmp = sg_next(tmp);
1074
ctx->sg_len++;
1075
}
1076
1077
while (sg && skip >= sg->length) {
1078
skip -= sg->length;
1079
sg = sg_next(sg);
1080
}
1081
1082
while (sg && new_len) {
1083
len = sg->length - skip;
1084
if (new_len < len)
1085
len = new_len;
1086
1087
new_len -= len;
1088
sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1089
skip = 0;
1090
if (new_len <= 0)
1091
sg_mark_end(tmp);
1092
1093
tmp = sg_next(tmp);
1094
ctx->sg_len++;
1095
sg = sg_next(sg);
1096
}
1097
1098
set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1099
1100
return 0;
1101
}
1102
1103
/**
1104
* s5p_hash_prepare_sgs() - prepare sg for processing
1105
* @ctx: request context
1106
* @sg: source scatterlist request
1107
* @new_len: number of bytes to process from sg
1108
* @final: final flag
1109
*
1110
* Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1111
* sg table have good aligned elements (list_ok). If one of this checks fails,
1112
* then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1113
* data into this buffer and prepare request in sgl, or (2) allocates new sg
1114
* table and prepare sg elements.
1115
*
1116
* For digest or finup all conditions can be good, and we may not need any
1117
* fixes.
1118
*/
1119
static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1120
struct scatterlist *sg,
1121
unsigned int new_len, bool final)
1122
{
1123
unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1124
bool aligned = true, list_ok = true;
1125
struct scatterlist *sg_tmp = sg;
1126
1127
if (!sg || !sg->length || !new_len)
1128
return 0;
1129
1130
if (skip || !final)
1131
list_ok = false;
1132
1133
while (nbytes > 0 && sg_tmp) {
1134
n++;
1135
if (skip >= sg_tmp->length) {
1136
skip -= sg_tmp->length;
1137
if (!sg_tmp->length) {
1138
aligned = false;
1139
break;
1140
}
1141
} else {
1142
if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1143
aligned = false;
1144
break;
1145
}
1146
1147
if (nbytes < sg_tmp->length - skip) {
1148
list_ok = false;
1149
break;
1150
}
1151
1152
nbytes -= sg_tmp->length - skip;
1153
skip = 0;
1154
}
1155
1156
sg_tmp = sg_next(sg_tmp);
1157
}
1158
1159
if (!aligned)
1160
return s5p_hash_copy_sgs(ctx, sg, new_len);
1161
else if (!list_ok)
1162
return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1163
1164
/*
1165
* Have aligned data from previous operation and/or current
1166
* Note: will enter here only if (digest or finup) and aligned
1167
*/
1168
if (ctx->bufcnt) {
1169
ctx->sg_len = n;
1170
sg_init_table(ctx->sgl, 2);
1171
sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1172
sg_chain(ctx->sgl, 2, sg);
1173
ctx->sg = ctx->sgl;
1174
ctx->sg_len++;
1175
} else {
1176
ctx->sg = sg;
1177
ctx->sg_len = n;
1178
}
1179
1180
return 0;
1181
}
1182
1183
/**
1184
* s5p_hash_prepare_request() - prepare request for processing
1185
* @req: AHASH request
1186
* @update: true if UPDATE op
1187
*
1188
* Note 1: we can have update flag _and_ final flag at the same time.
1189
* Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1190
* either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1191
* we have final op
1192
*/
1193
static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1194
{
1195
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1196
bool final = ctx->finup;
1197
int xmit_len, hash_later, nbytes;
1198
int ret;
1199
1200
if (update)
1201
nbytes = req->nbytes;
1202
else
1203
nbytes = 0;
1204
1205
ctx->total = nbytes + ctx->bufcnt;
1206
if (!ctx->total)
1207
return 0;
1208
1209
if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1210
/* bytes left from previous request, so fill up to BUFLEN */
1211
int len = BUFLEN - ctx->bufcnt % BUFLEN;
1212
1213
if (len > nbytes)
1214
len = nbytes;
1215
1216
memcpy_from_sglist(ctx->buffer + ctx->bufcnt, req->src, 0, len);
1217
ctx->bufcnt += len;
1218
nbytes -= len;
1219
ctx->skip = len;
1220
} else {
1221
ctx->skip = 0;
1222
}
1223
1224
if (ctx->bufcnt)
1225
memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1226
1227
xmit_len = ctx->total;
1228
if (final) {
1229
hash_later = 0;
1230
} else {
1231
if (IS_ALIGNED(xmit_len, BUFLEN))
1232
xmit_len -= BUFLEN;
1233
else
1234
xmit_len -= xmit_len & (BUFLEN - 1);
1235
1236
hash_later = ctx->total - xmit_len;
1237
/* copy hash_later bytes from end of req->src */
1238
/* previous bytes are in xmit_buf, so no overwrite */
1239
memcpy_from_sglist(ctx->buffer, req->src,
1240
req->nbytes - hash_later, hash_later);
1241
}
1242
1243
if (xmit_len > BUFLEN) {
1244
ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1245
final);
1246
if (ret)
1247
return ret;
1248
} else {
1249
/* have buffered data only */
1250
if (unlikely(!ctx->bufcnt)) {
1251
/* first update didn't fill up buffer */
1252
memcpy_from_sglist(ctx->dd->xmit_buf, req->src,
1253
0, xmit_len);
1254
}
1255
1256
sg_init_table(ctx->sgl, 1);
1257
sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1258
1259
ctx->sg = ctx->sgl;
1260
ctx->sg_len = 1;
1261
}
1262
1263
ctx->bufcnt = hash_later;
1264
if (!final)
1265
ctx->total = xmit_len;
1266
1267
return 0;
1268
}
1269
1270
/**
1271
* s5p_hash_update_dma_stop() - unmap DMA
1272
* @dd: secss device
1273
*
1274
* Unmap scatterlist ctx->sg.
1275
*/
1276
static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1277
{
1278
const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1279
1280
dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1281
clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1282
}
1283
1284
/**
1285
* s5p_hash_finish() - copy calculated digest to crypto layer
1286
* @req: AHASH request
1287
*/
1288
static void s5p_hash_finish(struct ahash_request *req)
1289
{
1290
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1291
struct s5p_aes_dev *dd = ctx->dd;
1292
1293
if (ctx->digcnt)
1294
s5p_hash_copy_result(req);
1295
1296
dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1297
}
1298
1299
/**
1300
* s5p_hash_finish_req() - finish request
1301
* @req: AHASH request
1302
* @err: error
1303
*/
1304
static void s5p_hash_finish_req(struct ahash_request *req, int err)
1305
{
1306
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1307
struct s5p_aes_dev *dd = ctx->dd;
1308
unsigned long flags;
1309
1310
if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1311
free_pages((unsigned long)sg_virt(ctx->sg),
1312
get_order(ctx->sg->length));
1313
1314
if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1315
kfree(ctx->sg);
1316
1317
ctx->sg = NULL;
1318
dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1319
BIT(HASH_FLAGS_SGS_COPIED));
1320
1321
if (!err && !ctx->error) {
1322
s5p_hash_read_msg(req);
1323
if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1324
s5p_hash_finish(req);
1325
} else {
1326
ctx->error = true;
1327
}
1328
1329
spin_lock_irqsave(&dd->hash_lock, flags);
1330
dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1331
BIT(HASH_FLAGS_DMA_READY) |
1332
BIT(HASH_FLAGS_OUTPUT_READY));
1333
spin_unlock_irqrestore(&dd->hash_lock, flags);
1334
1335
if (req->base.complete)
1336
ahash_request_complete(req, err);
1337
}
1338
1339
/**
1340
* s5p_hash_handle_queue() - handle hash queue
1341
* @dd: device s5p_aes_dev
1342
* @req: AHASH request
1343
*
1344
* If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1345
* device then processes the first request from the dd->queue
1346
*
1347
* Returns: see s5p_hash_final below.
1348
*/
1349
static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1350
struct ahash_request *req)
1351
{
1352
struct crypto_async_request *async_req, *backlog;
1353
struct s5p_hash_reqctx *ctx;
1354
unsigned long flags;
1355
int err = 0, ret = 0;
1356
1357
retry:
1358
spin_lock_irqsave(&dd->hash_lock, flags);
1359
if (req)
1360
ret = ahash_enqueue_request(&dd->hash_queue, req);
1361
1362
if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1363
spin_unlock_irqrestore(&dd->hash_lock, flags);
1364
return ret;
1365
}
1366
1367
backlog = crypto_get_backlog(&dd->hash_queue);
1368
async_req = crypto_dequeue_request(&dd->hash_queue);
1369
if (async_req)
1370
set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1371
1372
spin_unlock_irqrestore(&dd->hash_lock, flags);
1373
1374
if (!async_req)
1375
return ret;
1376
1377
if (backlog)
1378
crypto_request_complete(backlog, -EINPROGRESS);
1379
1380
req = ahash_request_cast(async_req);
1381
dd->hash_req = req;
1382
ctx = ahash_request_ctx(req);
1383
1384
err = s5p_hash_prepare_request(req, ctx->op_update);
1385
if (err || !ctx->total)
1386
goto out;
1387
1388
dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1389
ctx->op_update, req->nbytes);
1390
1391
s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1392
if (ctx->digcnt)
1393
s5p_hash_write_iv(req); /* restore hash IV */
1394
1395
if (ctx->op_update) { /* HASH_OP_UPDATE */
1396
err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1397
if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1398
/* no final() after finup() */
1399
err = s5p_hash_xmit_dma(dd, ctx->total, true);
1400
} else { /* HASH_OP_FINAL */
1401
err = s5p_hash_xmit_dma(dd, ctx->total, true);
1402
}
1403
out:
1404
if (err != -EINPROGRESS) {
1405
/* hash_tasklet_cb will not finish it, so do it here */
1406
s5p_hash_finish_req(req, err);
1407
req = NULL;
1408
1409
/*
1410
* Execute next request immediately if there is anything
1411
* in queue.
1412
*/
1413
goto retry;
1414
}
1415
1416
return ret;
1417
}
1418
1419
/**
1420
* s5p_hash_tasklet_cb() - hash tasklet
1421
* @data: ptr to s5p_aes_dev
1422
*/
1423
static void s5p_hash_tasklet_cb(unsigned long data)
1424
{
1425
struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1426
1427
if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1428
s5p_hash_handle_queue(dd, NULL);
1429
return;
1430
}
1431
1432
if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1433
if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1434
&dd->hash_flags)) {
1435
s5p_hash_update_dma_stop(dd);
1436
}
1437
1438
if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1439
&dd->hash_flags)) {
1440
/* hash or semi-hash ready */
1441
clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1442
goto finish;
1443
}
1444
}
1445
1446
return;
1447
1448
finish:
1449
/* finish curent request */
1450
s5p_hash_finish_req(dd->hash_req, 0);
1451
1452
/* If we are not busy, process next req */
1453
if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1454
s5p_hash_handle_queue(dd, NULL);
1455
}
1456
1457
/**
1458
* s5p_hash_enqueue() - enqueue request
1459
* @req: AHASH request
1460
* @op: operation UPDATE (true) or FINAL (false)
1461
*
1462
* Returns: see s5p_hash_final below.
1463
*/
1464
static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1465
{
1466
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1467
struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1468
1469
ctx->op_update = op;
1470
1471
return s5p_hash_handle_queue(tctx->dd, req);
1472
}
1473
1474
/**
1475
* s5p_hash_update() - process the hash input data
1476
* @req: AHASH request
1477
*
1478
* If request will fit in buffer, copy it and return immediately
1479
* else enqueue it with OP_UPDATE.
1480
*
1481
* Returns: see s5p_hash_final below.
1482
*/
1483
static int s5p_hash_update(struct ahash_request *req)
1484
{
1485
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1486
1487
if (!req->nbytes)
1488
return 0;
1489
1490
if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1491
memcpy_from_sglist(ctx->buffer + ctx->bufcnt, req->src,
1492
0, req->nbytes);
1493
ctx->bufcnt += req->nbytes;
1494
return 0;
1495
}
1496
1497
return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1498
}
1499
1500
/**
1501
* s5p_hash_final() - close up hash and calculate digest
1502
* @req: AHASH request
1503
*
1504
* Note: in final req->src do not have any data, and req->nbytes can be
1505
* non-zero.
1506
*
1507
* If there were no input data processed yet and the buffered hash data is
1508
* less than BUFLEN (64) then calculate the final hash immediately by using
1509
* SW algorithm fallback.
1510
*
1511
* Otherwise enqueues the current AHASH request with OP_FINAL operation op
1512
* and finalize hash message in HW. Note that if digcnt!=0 then there were
1513
* previous update op, so there are always some buffered bytes in ctx->buffer,
1514
* which means that ctx->bufcnt!=0
1515
*
1516
* Returns:
1517
* 0 if the request has been processed immediately,
1518
* -EINPROGRESS if the operation has been queued for later execution or is set
1519
* to processing by HW,
1520
* -EBUSY if queue is full and request should be resubmitted later,
1521
* other negative values denotes an error.
1522
*/
1523
static int s5p_hash_final(struct ahash_request *req)
1524
{
1525
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1526
1527
ctx->finup = true;
1528
if (ctx->error)
1529
return -EINVAL; /* uncompleted hash is not needed */
1530
1531
if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1532
struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1533
1534
return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1535
ctx->bufcnt, req->result);
1536
}
1537
1538
return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1539
}
1540
1541
/**
1542
* s5p_hash_finup() - process last req->src and calculate digest
1543
* @req: AHASH request containing the last update data
1544
*
1545
* Return values: see s5p_hash_final above.
1546
*/
1547
static int s5p_hash_finup(struct ahash_request *req)
1548
{
1549
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1550
int err1, err2;
1551
1552
ctx->finup = true;
1553
1554
err1 = s5p_hash_update(req);
1555
if (err1 == -EINPROGRESS || err1 == -EBUSY)
1556
return err1;
1557
1558
/*
1559
* final() has to be always called to cleanup resources even if
1560
* update() failed, except EINPROGRESS or calculate digest for small
1561
* size
1562
*/
1563
err2 = s5p_hash_final(req);
1564
1565
return err1 ?: err2;
1566
}
1567
1568
/**
1569
* s5p_hash_init() - initialize AHASH request contex
1570
* @req: AHASH request
1571
*
1572
* Init async hash request context.
1573
*/
1574
static int s5p_hash_init(struct ahash_request *req)
1575
{
1576
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1577
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1578
struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1579
1580
ctx->dd = tctx->dd;
1581
ctx->error = false;
1582
ctx->finup = false;
1583
ctx->bufcnt = 0;
1584
ctx->digcnt = 0;
1585
ctx->total = 0;
1586
ctx->skip = 0;
1587
1588
dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1589
crypto_ahash_digestsize(tfm));
1590
1591
switch (crypto_ahash_digestsize(tfm)) {
1592
case MD5_DIGEST_SIZE:
1593
ctx->engine = SSS_HASH_ENGINE_MD5;
1594
ctx->nregs = HASH_MD5_MAX_REG;
1595
break;
1596
case SHA1_DIGEST_SIZE:
1597
ctx->engine = SSS_HASH_ENGINE_SHA1;
1598
ctx->nregs = HASH_SHA1_MAX_REG;
1599
break;
1600
case SHA256_DIGEST_SIZE:
1601
ctx->engine = SSS_HASH_ENGINE_SHA256;
1602
ctx->nregs = HASH_SHA256_MAX_REG;
1603
break;
1604
default:
1605
ctx->error = true;
1606
return -EINVAL;
1607
}
1608
1609
return 0;
1610
}
1611
1612
/**
1613
* s5p_hash_digest - calculate digest from req->src
1614
* @req: AHASH request
1615
*
1616
* Return values: see s5p_hash_final above.
1617
*/
1618
static int s5p_hash_digest(struct ahash_request *req)
1619
{
1620
return s5p_hash_init(req) ?: s5p_hash_finup(req);
1621
}
1622
1623
/**
1624
* s5p_hash_cra_init_alg - init crypto alg transformation
1625
* @tfm: crypto transformation
1626
*/
1627
static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1628
{
1629
struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1630
const char *alg_name = crypto_tfm_alg_name(tfm);
1631
1632
tctx->dd = s5p_dev;
1633
/* Allocate a fallback and abort if it failed. */
1634
tctx->fallback = crypto_alloc_shash(alg_name, 0,
1635
CRYPTO_ALG_NEED_FALLBACK);
1636
if (IS_ERR(tctx->fallback)) {
1637
pr_err("fallback alloc fails for '%s'\n", alg_name);
1638
return PTR_ERR(tctx->fallback);
1639
}
1640
1641
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1642
sizeof(struct s5p_hash_reqctx) + BUFLEN);
1643
1644
return 0;
1645
}
1646
1647
/**
1648
* s5p_hash_cra_init - init crypto tfm
1649
* @tfm: crypto transformation
1650
*/
1651
static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1652
{
1653
return s5p_hash_cra_init_alg(tfm);
1654
}
1655
1656
/**
1657
* s5p_hash_cra_exit - exit crypto tfm
1658
* @tfm: crypto transformation
1659
*
1660
* free allocated fallback
1661
*/
1662
static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1663
{
1664
struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1665
1666
crypto_free_shash(tctx->fallback);
1667
tctx->fallback = NULL;
1668
}
1669
1670
/**
1671
* s5p_hash_export - export hash state
1672
* @req: AHASH request
1673
* @out: buffer for exported state
1674
*/
1675
static int s5p_hash_export(struct ahash_request *req, void *out)
1676
{
1677
const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1678
1679
memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1680
1681
return 0;
1682
}
1683
1684
/**
1685
* s5p_hash_import - import hash state
1686
* @req: AHASH request
1687
* @in: buffer with state to be imported from
1688
*/
1689
static int s5p_hash_import(struct ahash_request *req, const void *in)
1690
{
1691
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1692
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1693
struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1694
const struct s5p_hash_reqctx *ctx_in = in;
1695
1696
memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1697
if (ctx_in->bufcnt > BUFLEN) {
1698
ctx->error = true;
1699
return -EINVAL;
1700
}
1701
1702
ctx->dd = tctx->dd;
1703
ctx->error = false;
1704
1705
return 0;
1706
}
1707
1708
static struct ahash_alg algs_sha1_md5_sha256[] = {
1709
{
1710
.init = s5p_hash_init,
1711
.update = s5p_hash_update,
1712
.final = s5p_hash_final,
1713
.finup = s5p_hash_finup,
1714
.digest = s5p_hash_digest,
1715
.export = s5p_hash_export,
1716
.import = s5p_hash_import,
1717
.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1718
.halg.digestsize = SHA1_DIGEST_SIZE,
1719
.halg.base = {
1720
.cra_name = "sha1",
1721
.cra_driver_name = "exynos-sha1",
1722
.cra_priority = 100,
1723
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1724
CRYPTO_ALG_ASYNC |
1725
CRYPTO_ALG_NEED_FALLBACK,
1726
.cra_blocksize = HASH_BLOCK_SIZE,
1727
.cra_ctxsize = sizeof(struct s5p_hash_ctx),
1728
.cra_module = THIS_MODULE,
1729
.cra_init = s5p_hash_cra_init,
1730
.cra_exit = s5p_hash_cra_exit,
1731
}
1732
},
1733
{
1734
.init = s5p_hash_init,
1735
.update = s5p_hash_update,
1736
.final = s5p_hash_final,
1737
.finup = s5p_hash_finup,
1738
.digest = s5p_hash_digest,
1739
.export = s5p_hash_export,
1740
.import = s5p_hash_import,
1741
.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1742
.halg.digestsize = MD5_DIGEST_SIZE,
1743
.halg.base = {
1744
.cra_name = "md5",
1745
.cra_driver_name = "exynos-md5",
1746
.cra_priority = 100,
1747
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1748
CRYPTO_ALG_ASYNC |
1749
CRYPTO_ALG_NEED_FALLBACK,
1750
.cra_blocksize = HASH_BLOCK_SIZE,
1751
.cra_ctxsize = sizeof(struct s5p_hash_ctx),
1752
.cra_module = THIS_MODULE,
1753
.cra_init = s5p_hash_cra_init,
1754
.cra_exit = s5p_hash_cra_exit,
1755
}
1756
},
1757
{
1758
.init = s5p_hash_init,
1759
.update = s5p_hash_update,
1760
.final = s5p_hash_final,
1761
.finup = s5p_hash_finup,
1762
.digest = s5p_hash_digest,
1763
.export = s5p_hash_export,
1764
.import = s5p_hash_import,
1765
.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1766
.halg.digestsize = SHA256_DIGEST_SIZE,
1767
.halg.base = {
1768
.cra_name = "sha256",
1769
.cra_driver_name = "exynos-sha256",
1770
.cra_priority = 100,
1771
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1772
CRYPTO_ALG_ASYNC |
1773
CRYPTO_ALG_NEED_FALLBACK,
1774
.cra_blocksize = HASH_BLOCK_SIZE,
1775
.cra_ctxsize = sizeof(struct s5p_hash_ctx),
1776
.cra_module = THIS_MODULE,
1777
.cra_init = s5p_hash_cra_init,
1778
.cra_exit = s5p_hash_cra_exit,
1779
}
1780
}
1781
1782
};
1783
1784
static void s5p_set_aes(struct s5p_aes_dev *dev,
1785
const u8 *key, const u8 *iv, const u8 *ctr,
1786
unsigned int keylen)
1787
{
1788
void __iomem *keystart;
1789
1790
if (iv)
1791
memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1792
AES_BLOCK_SIZE);
1793
1794
if (ctr)
1795
memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1796
AES_BLOCK_SIZE);
1797
1798
if (keylen == AES_KEYSIZE_256)
1799
keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1800
else if (keylen == AES_KEYSIZE_192)
1801
keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1802
else
1803
keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1804
1805
memcpy_toio(keystart, key, keylen);
1806
}
1807
1808
static bool s5p_is_sg_aligned(struct scatterlist *sg)
1809
{
1810
while (sg) {
1811
if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1812
return false;
1813
sg = sg_next(sg);
1814
}
1815
1816
return true;
1817
}
1818
1819
static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1820
struct skcipher_request *req)
1821
{
1822
struct scatterlist *sg;
1823
int err;
1824
1825
dev->sg_src_cpy = NULL;
1826
sg = req->src;
1827
if (!s5p_is_sg_aligned(sg)) {
1828
dev_dbg(dev->dev,
1829
"At least one unaligned source scatter list, making a copy\n");
1830
err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1831
if (err)
1832
return err;
1833
1834
sg = dev->sg_src_cpy;
1835
}
1836
1837
err = s5p_set_indata(dev, sg);
1838
if (err) {
1839
s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1840
return err;
1841
}
1842
1843
return 0;
1844
}
1845
1846
static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1847
struct skcipher_request *req)
1848
{
1849
struct scatterlist *sg;
1850
int err;
1851
1852
dev->sg_dst_cpy = NULL;
1853
sg = req->dst;
1854
if (!s5p_is_sg_aligned(sg)) {
1855
dev_dbg(dev->dev,
1856
"At least one unaligned dest scatter list, making a copy\n");
1857
err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1858
if (err)
1859
return err;
1860
1861
sg = dev->sg_dst_cpy;
1862
}
1863
1864
err = s5p_set_outdata(dev, sg);
1865
if (err) {
1866
s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1867
return err;
1868
}
1869
1870
return 0;
1871
}
1872
1873
static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1874
{
1875
struct skcipher_request *req = dev->req;
1876
u32 aes_control;
1877
unsigned long flags;
1878
int err;
1879
u8 *iv, *ctr;
1880
1881
/* This sets bit [13:12] to 00, which selects 128-bit counter */
1882
aes_control = SSS_AES_KEY_CHANGE_MODE;
1883
if (mode & FLAGS_AES_DECRYPT)
1884
aes_control |= SSS_AES_MODE_DECRYPT;
1885
1886
if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1887
aes_control |= SSS_AES_CHAIN_MODE_CBC;
1888
iv = req->iv;
1889
ctr = NULL;
1890
} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1891
aes_control |= SSS_AES_CHAIN_MODE_CTR;
1892
iv = NULL;
1893
ctr = req->iv;
1894
} else {
1895
iv = NULL; /* AES_ECB */
1896
ctr = NULL;
1897
}
1898
1899
if (dev->ctx->keylen == AES_KEYSIZE_192)
1900
aes_control |= SSS_AES_KEY_SIZE_192;
1901
else if (dev->ctx->keylen == AES_KEYSIZE_256)
1902
aes_control |= SSS_AES_KEY_SIZE_256;
1903
1904
aes_control |= SSS_AES_FIFO_MODE;
1905
1906
/* as a variant it is possible to use byte swapping on DMA side */
1907
aes_control |= SSS_AES_BYTESWAP_DI
1908
| SSS_AES_BYTESWAP_DO
1909
| SSS_AES_BYTESWAP_IV
1910
| SSS_AES_BYTESWAP_KEY
1911
| SSS_AES_BYTESWAP_CNT;
1912
1913
spin_lock_irqsave(&dev->lock, flags);
1914
1915
SSS_WRITE(dev, FCINTENCLR,
1916
SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1917
SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1918
1919
err = s5p_set_indata_start(dev, req);
1920
if (err)
1921
goto indata_error;
1922
1923
err = s5p_set_outdata_start(dev, req);
1924
if (err)
1925
goto outdata_error;
1926
1927
SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1928
s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1929
1930
s5p_set_dma_indata(dev, dev->sg_src);
1931
s5p_set_dma_outdata(dev, dev->sg_dst);
1932
1933
SSS_WRITE(dev, FCINTENSET,
1934
SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1935
1936
spin_unlock_irqrestore(&dev->lock, flags);
1937
1938
return;
1939
1940
outdata_error:
1941
s5p_unset_indata(dev);
1942
1943
indata_error:
1944
s5p_sg_done(dev);
1945
dev->busy = false;
1946
spin_unlock_irqrestore(&dev->lock, flags);
1947
s5p_aes_complete(req, err);
1948
}
1949
1950
static void s5p_tasklet_cb(unsigned long data)
1951
{
1952
struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1953
struct crypto_async_request *async_req, *backlog;
1954
struct s5p_aes_reqctx *reqctx;
1955
unsigned long flags;
1956
1957
spin_lock_irqsave(&dev->lock, flags);
1958
backlog = crypto_get_backlog(&dev->queue);
1959
async_req = crypto_dequeue_request(&dev->queue);
1960
1961
if (!async_req) {
1962
dev->busy = false;
1963
spin_unlock_irqrestore(&dev->lock, flags);
1964
return;
1965
}
1966
spin_unlock_irqrestore(&dev->lock, flags);
1967
1968
if (backlog)
1969
crypto_request_complete(backlog, -EINPROGRESS);
1970
1971
dev->req = skcipher_request_cast(async_req);
1972
dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1973
reqctx = skcipher_request_ctx(dev->req);
1974
1975
s5p_aes_crypt_start(dev, reqctx->mode);
1976
}
1977
1978
static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
1979
struct skcipher_request *req)
1980
{
1981
unsigned long flags;
1982
int err;
1983
1984
spin_lock_irqsave(&dev->lock, flags);
1985
err = crypto_enqueue_request(&dev->queue, &req->base);
1986
if (dev->busy) {
1987
spin_unlock_irqrestore(&dev->lock, flags);
1988
return err;
1989
}
1990
dev->busy = true;
1991
1992
spin_unlock_irqrestore(&dev->lock, flags);
1993
1994
tasklet_schedule(&dev->tasklet);
1995
1996
return err;
1997
}
1998
1999
static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2000
{
2001
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2002
struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2003
struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2004
struct s5p_aes_dev *dev = ctx->dev;
2005
2006
if (!req->cryptlen)
2007
return 0;
2008
2009
if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2010
((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2011
dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2012
return -EINVAL;
2013
}
2014
2015
reqctx->mode = mode;
2016
2017
return s5p_aes_handle_req(dev, req);
2018
}
2019
2020
static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2021
const u8 *key, unsigned int keylen)
2022
{
2023
struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2024
struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2025
2026
if (keylen != AES_KEYSIZE_128 &&
2027
keylen != AES_KEYSIZE_192 &&
2028
keylen != AES_KEYSIZE_256)
2029
return -EINVAL;
2030
2031
memcpy(ctx->aes_key, key, keylen);
2032
ctx->keylen = keylen;
2033
2034
return 0;
2035
}
2036
2037
static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2038
{
2039
return s5p_aes_crypt(req, 0);
2040
}
2041
2042
static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2043
{
2044
return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2045
}
2046
2047
static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2048
{
2049
return s5p_aes_crypt(req, FLAGS_AES_CBC);
2050
}
2051
2052
static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2053
{
2054
return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2055
}
2056
2057
static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2058
{
2059
return s5p_aes_crypt(req, FLAGS_AES_CTR);
2060
}
2061
2062
static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2063
{
2064
struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2065
2066
ctx->dev = s5p_dev;
2067
crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2068
2069
return 0;
2070
}
2071
2072
static struct skcipher_alg algs[] = {
2073
{
2074
.base.cra_name = "ecb(aes)",
2075
.base.cra_driver_name = "ecb-aes-s5p",
2076
.base.cra_priority = 100,
2077
.base.cra_flags = CRYPTO_ALG_ASYNC |
2078
CRYPTO_ALG_KERN_DRIVER_ONLY,
2079
.base.cra_blocksize = AES_BLOCK_SIZE,
2080
.base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2081
.base.cra_alignmask = 0x0f,
2082
.base.cra_module = THIS_MODULE,
2083
2084
.min_keysize = AES_MIN_KEY_SIZE,
2085
.max_keysize = AES_MAX_KEY_SIZE,
2086
.setkey = s5p_aes_setkey,
2087
.encrypt = s5p_aes_ecb_encrypt,
2088
.decrypt = s5p_aes_ecb_decrypt,
2089
.init = s5p_aes_init_tfm,
2090
},
2091
{
2092
.base.cra_name = "cbc(aes)",
2093
.base.cra_driver_name = "cbc-aes-s5p",
2094
.base.cra_priority = 100,
2095
.base.cra_flags = CRYPTO_ALG_ASYNC |
2096
CRYPTO_ALG_KERN_DRIVER_ONLY,
2097
.base.cra_blocksize = AES_BLOCK_SIZE,
2098
.base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2099
.base.cra_alignmask = 0x0f,
2100
.base.cra_module = THIS_MODULE,
2101
2102
.min_keysize = AES_MIN_KEY_SIZE,
2103
.max_keysize = AES_MAX_KEY_SIZE,
2104
.ivsize = AES_BLOCK_SIZE,
2105
.setkey = s5p_aes_setkey,
2106
.encrypt = s5p_aes_cbc_encrypt,
2107
.decrypt = s5p_aes_cbc_decrypt,
2108
.init = s5p_aes_init_tfm,
2109
},
2110
{
2111
.base.cra_name = "ctr(aes)",
2112
.base.cra_driver_name = "ctr-aes-s5p",
2113
.base.cra_priority = 100,
2114
.base.cra_flags = CRYPTO_ALG_ASYNC |
2115
CRYPTO_ALG_KERN_DRIVER_ONLY,
2116
.base.cra_blocksize = 1,
2117
.base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2118
.base.cra_alignmask = 0x0f,
2119
.base.cra_module = THIS_MODULE,
2120
2121
.min_keysize = AES_MIN_KEY_SIZE,
2122
.max_keysize = AES_MAX_KEY_SIZE,
2123
.ivsize = AES_BLOCK_SIZE,
2124
.setkey = s5p_aes_setkey,
2125
.encrypt = s5p_aes_ctr_crypt,
2126
.decrypt = s5p_aes_ctr_crypt,
2127
.init = s5p_aes_init_tfm,
2128
},
2129
};
2130
2131
static int s5p_aes_probe(struct platform_device *pdev)
2132
{
2133
struct device *dev = &pdev->dev;
2134
int i, j, err;
2135
const struct samsung_aes_variant *variant;
2136
struct s5p_aes_dev *pdata;
2137
struct resource *res;
2138
unsigned int hash_i;
2139
2140
if (s5p_dev)
2141
return -EEXIST;
2142
2143
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2144
if (!pdata)
2145
return -ENOMEM;
2146
2147
variant = find_s5p_sss_version(pdev);
2148
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2149
if (!res)
2150
return -EINVAL;
2151
2152
/*
2153
* Note: HASH and PRNG uses the same registers in secss, avoid
2154
* overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2155
* is enabled in config. We need larger size for HASH registers in
2156
* secss, current describe only AES/DES
2157
*/
2158
if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2159
if (variant == &exynos_aes_data) {
2160
res->end += 0x300;
2161
pdata->use_hash = true;
2162
}
2163
}
2164
2165
pdata->res = res;
2166
pdata->ioaddr = devm_ioremap_resource(dev, res);
2167
if (IS_ERR(pdata->ioaddr)) {
2168
if (!pdata->use_hash)
2169
return PTR_ERR(pdata->ioaddr);
2170
/* try AES without HASH */
2171
res->end -= 0x300;
2172
pdata->use_hash = false;
2173
pdata->ioaddr = devm_ioremap_resource(dev, res);
2174
if (IS_ERR(pdata->ioaddr))
2175
return PTR_ERR(pdata->ioaddr);
2176
}
2177
2178
pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2179
if (IS_ERR(pdata->clk))
2180
return dev_err_probe(dev, PTR_ERR(pdata->clk),
2181
"failed to find secss clock %s\n",
2182
variant->clk_names[0]);
2183
2184
err = clk_prepare_enable(pdata->clk);
2185
if (err < 0) {
2186
dev_err(dev, "Enabling clock %s failed, err %d\n",
2187
variant->clk_names[0], err);
2188
return err;
2189
}
2190
2191
if (variant->clk_names[1]) {
2192
pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2193
if (IS_ERR(pdata->pclk)) {
2194
err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2195
"failed to find clock %s\n",
2196
variant->clk_names[1]);
2197
goto err_clk;
2198
}
2199
2200
err = clk_prepare_enable(pdata->pclk);
2201
if (err < 0) {
2202
dev_err(dev, "Enabling clock %s failed, err %d\n",
2203
variant->clk_names[0], err);
2204
goto err_clk;
2205
}
2206
} else {
2207
pdata->pclk = NULL;
2208
}
2209
2210
spin_lock_init(&pdata->lock);
2211
spin_lock_init(&pdata->hash_lock);
2212
2213
pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2214
pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2215
2216
pdata->irq_fc = platform_get_irq(pdev, 0);
2217
if (pdata->irq_fc < 0) {
2218
err = pdata->irq_fc;
2219
dev_warn(dev, "feed control interrupt is not available.\n");
2220
goto err_irq;
2221
}
2222
err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2223
s5p_aes_interrupt, IRQF_ONESHOT,
2224
pdev->name, pdev);
2225
if (err < 0) {
2226
dev_warn(dev, "feed control interrupt is not available.\n");
2227
goto err_irq;
2228
}
2229
2230
pdata->busy = false;
2231
pdata->dev = dev;
2232
platform_set_drvdata(pdev, pdata);
2233
s5p_dev = pdata;
2234
2235
tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2236
crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2237
2238
for (i = 0; i < ARRAY_SIZE(algs); i++) {
2239
err = crypto_register_skcipher(&algs[i]);
2240
if (err)
2241
goto err_algs;
2242
}
2243
2244
if (pdata->use_hash) {
2245
tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2246
(unsigned long)pdata);
2247
crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2248
2249
for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2250
hash_i++) {
2251
struct ahash_alg *alg;
2252
2253
alg = &algs_sha1_md5_sha256[hash_i];
2254
err = crypto_register_ahash(alg);
2255
if (err) {
2256
dev_err(dev, "can't register '%s': %d\n",
2257
alg->halg.base.cra_driver_name, err);
2258
goto err_hash;
2259
}
2260
}
2261
}
2262
2263
dev_info(dev, "s5p-sss driver registered\n");
2264
2265
return 0;
2266
2267
err_hash:
2268
for (j = hash_i - 1; j >= 0; j--)
2269
crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2270
2271
tasklet_kill(&pdata->hash_tasklet);
2272
res->end -= 0x300;
2273
2274
err_algs:
2275
if (i < ARRAY_SIZE(algs))
2276
dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2277
err);
2278
2279
for (j = 0; j < i; j++)
2280
crypto_unregister_skcipher(&algs[j]);
2281
2282
tasklet_kill(&pdata->tasklet);
2283
2284
err_irq:
2285
clk_disable_unprepare(pdata->pclk);
2286
2287
err_clk:
2288
clk_disable_unprepare(pdata->clk);
2289
s5p_dev = NULL;
2290
2291
return err;
2292
}
2293
2294
static void s5p_aes_remove(struct platform_device *pdev)
2295
{
2296
struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2297
int i;
2298
2299
for (i = 0; i < ARRAY_SIZE(algs); i++)
2300
crypto_unregister_skcipher(&algs[i]);
2301
2302
tasklet_kill(&pdata->tasklet);
2303
if (pdata->use_hash) {
2304
for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2305
crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2306
2307
pdata->res->end -= 0x300;
2308
tasklet_kill(&pdata->hash_tasklet);
2309
pdata->use_hash = false;
2310
}
2311
2312
clk_disable_unprepare(pdata->pclk);
2313
2314
clk_disable_unprepare(pdata->clk);
2315
s5p_dev = NULL;
2316
}
2317
2318
static struct platform_driver s5p_aes_crypto = {
2319
.probe = s5p_aes_probe,
2320
.remove = s5p_aes_remove,
2321
.driver = {
2322
.name = "s5p-secss",
2323
.of_match_table = s5p_sss_dt_match,
2324
},
2325
};
2326
2327
module_platform_driver(s5p_aes_crypto);
2328
2329
MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2330
MODULE_LICENSE("GPL v2");
2331
MODULE_AUTHOR("Vladimir Zapolskiy <[email protected]>");
2332
MODULE_AUTHOR("Kamil Konieczny <[email protected]>");
2333
2334