Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/devfreq/tegra30-devfreq.c
49568 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* A devfreq driver for NVIDIA Tegra SoCs
4
*
5
* Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved.
6
* Copyright (C) 2014 Google, Inc
7
*/
8
9
#include <linux/clk.h>
10
#include <linux/cpufreq.h>
11
#include <linux/devfreq.h>
12
#include <linux/devfreq-governor.h>
13
#include <linux/interrupt.h>
14
#include <linux/io.h>
15
#include <linux/irq.h>
16
#include <linux/minmax.h>
17
#include <linux/module.h>
18
#include <linux/of.h>
19
#include <linux/platform_device.h>
20
#include <linux/pm_opp.h>
21
#include <linux/reset.h>
22
#include <linux/workqueue.h>
23
24
#include <soc/tegra/fuse.h>
25
26
#define ACTMON_GLB_STATUS 0x0
27
#define ACTMON_GLB_PERIOD_CTRL 0x4
28
29
#define ACTMON_DEV_CTRL 0x0
30
#define ACTMON_DEV_CTRL_K_VAL_SHIFT 10
31
#define ACTMON_DEV_CTRL_ENB_PERIODIC BIT(18)
32
#define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN BIT(20)
33
#define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN BIT(21)
34
#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT 23
35
#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT 26
36
#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN BIT(29)
37
#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN BIT(30)
38
#define ACTMON_DEV_CTRL_ENB BIT(31)
39
40
#define ACTMON_DEV_CTRL_STOP 0x00000000
41
42
#define ACTMON_DEV_UPPER_WMARK 0x4
43
#define ACTMON_DEV_LOWER_WMARK 0x8
44
#define ACTMON_DEV_INIT_AVG 0xc
45
#define ACTMON_DEV_AVG_UPPER_WMARK 0x10
46
#define ACTMON_DEV_AVG_LOWER_WMARK 0x14
47
#define ACTMON_DEV_COUNT_WEIGHT 0x18
48
#define ACTMON_DEV_AVG_COUNT 0x20
49
#define ACTMON_DEV_INTR_STATUS 0x24
50
51
#define ACTMON_INTR_STATUS_CLEAR 0xffffffff
52
53
#define ACTMON_DEV_INTR_CONSECUTIVE_UPPER BIT(31)
54
#define ACTMON_DEV_INTR_CONSECUTIVE_LOWER BIT(30)
55
56
#define ACTMON_ABOVE_WMARK_WINDOW 1
57
#define ACTMON_BELOW_WMARK_WINDOW 3
58
#define ACTMON_BOOST_FREQ_STEP 16000
59
60
/*
61
* ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which
62
* translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128
63
*/
64
#define ACTMON_AVERAGE_WINDOW_LOG2 6
65
#define ACTMON_SAMPLING_PERIOD 12 /* ms */
66
#define ACTMON_DEFAULT_AVG_BAND 6 /* 1/10 of % */
67
68
#define KHZ 1000
69
70
#define KHZ_MAX (ULONG_MAX / KHZ)
71
72
/* Assume that the bus is saturated if the utilization is 25% */
73
#define BUS_SATURATION_RATIO 25
74
75
/**
76
* struct tegra_devfreq_device_config - configuration specific to an ACTMON
77
* device
78
*
79
* Coefficients and thresholds are percentages unless otherwise noted
80
*/
81
struct tegra_devfreq_device_config {
82
u32 offset;
83
u32 irq_mask;
84
85
/* Factors applied to boost_freq every consecutive watermark breach */
86
unsigned int boost_up_coeff;
87
unsigned int boost_down_coeff;
88
89
/* Define the watermark bounds when applied to the current avg */
90
unsigned int boost_up_threshold;
91
unsigned int boost_down_threshold;
92
93
/*
94
* Threshold of activity (cycles translated to kHz) below which the
95
* CPU frequency isn't to be taken into account. This is to avoid
96
* increasing the EMC frequency when the CPU is very busy but not
97
* accessing the bus often.
98
*/
99
u32 avg_dependency_threshold;
100
};
101
102
enum tegra_actmon_device {
103
MCALL = 0,
104
MCCPU,
105
};
106
107
static const struct tegra_devfreq_device_config tegra124_device_configs[] = {
108
{
109
/* MCALL: All memory accesses (including from the CPUs) */
110
.offset = 0x1c0,
111
.irq_mask = 1 << 26,
112
.boost_up_coeff = 200,
113
.boost_down_coeff = 50,
114
.boost_up_threshold = 60,
115
.boost_down_threshold = 40,
116
},
117
{
118
/* MCCPU: memory accesses from the CPUs */
119
.offset = 0x200,
120
.irq_mask = 1 << 25,
121
.boost_up_coeff = 800,
122
.boost_down_coeff = 40,
123
.boost_up_threshold = 27,
124
.boost_down_threshold = 10,
125
.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
126
},
127
};
128
129
static const struct tegra_devfreq_device_config tegra30_device_configs[] = {
130
{
131
/* MCALL: All memory accesses (including from the CPUs) */
132
.offset = 0x1c0,
133
.irq_mask = 1 << 26,
134
.boost_up_coeff = 200,
135
.boost_down_coeff = 50,
136
.boost_up_threshold = 20,
137
.boost_down_threshold = 10,
138
},
139
{
140
/* MCCPU: memory accesses from the CPUs */
141
.offset = 0x200,
142
.irq_mask = 1 << 25,
143
.boost_up_coeff = 800,
144
.boost_down_coeff = 40,
145
.boost_up_threshold = 27,
146
.boost_down_threshold = 10,
147
.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
148
},
149
};
150
151
/**
152
* struct tegra_devfreq_device - state specific to an ACTMON device
153
*
154
* Frequencies are in kHz.
155
*/
156
struct tegra_devfreq_device {
157
const struct tegra_devfreq_device_config *config;
158
void __iomem *regs;
159
160
/* Average event count sampled in the last interrupt */
161
u32 avg_count;
162
163
/*
164
* Extra frequency to increase the target by due to consecutive
165
* watermark breaches.
166
*/
167
unsigned long boost_freq;
168
169
/* Optimal frequency calculated from the stats for this device */
170
unsigned long target_freq;
171
};
172
173
struct tegra_devfreq_soc_data {
174
const struct tegra_devfreq_device_config *configs;
175
/* Weight value for count measurements */
176
unsigned int count_weight;
177
};
178
179
struct tegra_devfreq {
180
struct devfreq *devfreq;
181
182
struct reset_control *reset;
183
struct clk *clock;
184
void __iomem *regs;
185
186
struct clk *emc_clock;
187
unsigned long max_freq;
188
unsigned long cur_freq;
189
struct notifier_block clk_rate_change_nb;
190
191
struct delayed_work cpufreq_update_work;
192
struct notifier_block cpu_rate_change_nb;
193
194
struct tegra_devfreq_device devices[2];
195
196
unsigned int irq;
197
198
bool started;
199
200
const struct tegra_devfreq_soc_data *soc;
201
};
202
203
struct tegra_actmon_emc_ratio {
204
unsigned long cpu_freq;
205
unsigned long emc_freq;
206
};
207
208
static const struct tegra_actmon_emc_ratio actmon_emc_ratios[] = {
209
{ 1400000, KHZ_MAX },
210
{ 1200000, 750000 },
211
{ 1100000, 600000 },
212
{ 1000000, 500000 },
213
{ 800000, 375000 },
214
{ 500000, 200000 },
215
{ 250000, 100000 },
216
};
217
218
static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset)
219
{
220
return readl_relaxed(tegra->regs + offset);
221
}
222
223
static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset)
224
{
225
writel_relaxed(val, tegra->regs + offset);
226
}
227
228
static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset)
229
{
230
return readl_relaxed(dev->regs + offset);
231
}
232
233
static void device_writel(struct tegra_devfreq_device *dev, u32 val,
234
u32 offset)
235
{
236
writel_relaxed(val, dev->regs + offset);
237
}
238
239
static unsigned long do_percent(unsigned long long val, unsigned int pct)
240
{
241
val = val * pct;
242
do_div(val, 100);
243
244
/*
245
* High freq + high boosting percent + large polling interval are
246
* resulting in integer overflow when watermarks are calculated.
247
*/
248
return min_t(u64, val, U32_MAX);
249
}
250
251
static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra,
252
struct tegra_devfreq_device *dev)
253
{
254
u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ;
255
u32 band = avg_band_freq * tegra->devfreq->profile->polling_ms;
256
u32 avg;
257
258
avg = min(dev->avg_count, U32_MAX - band);
259
device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK);
260
261
avg = max(dev->avg_count, band);
262
device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK);
263
}
264
265
static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra,
266
struct tegra_devfreq_device *dev)
267
{
268
u32 val = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
269
270
device_writel(dev, do_percent(val, dev->config->boost_up_threshold),
271
ACTMON_DEV_UPPER_WMARK);
272
273
device_writel(dev, do_percent(val, dev->config->boost_down_threshold),
274
ACTMON_DEV_LOWER_WMARK);
275
}
276
277
static void actmon_isr_device(struct tegra_devfreq *tegra,
278
struct tegra_devfreq_device *dev)
279
{
280
u32 intr_status, dev_ctrl;
281
282
dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT);
283
tegra_devfreq_update_avg_wmark(tegra, dev);
284
285
intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS);
286
dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL);
287
288
if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) {
289
/*
290
* new_boost = min(old_boost * up_coef + step, max_freq)
291
*/
292
dev->boost_freq = do_percent(dev->boost_freq,
293
dev->config->boost_up_coeff);
294
dev->boost_freq += ACTMON_BOOST_FREQ_STEP;
295
296
dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
297
298
if (dev->boost_freq >= tegra->max_freq) {
299
dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
300
dev->boost_freq = tegra->max_freq;
301
}
302
} else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) {
303
/*
304
* new_boost = old_boost * down_coef
305
* or 0 if (old_boost * down_coef < step / 2)
306
*/
307
dev->boost_freq = do_percent(dev->boost_freq,
308
dev->config->boost_down_coeff);
309
310
dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
311
312
if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1)) {
313
dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
314
dev->boost_freq = 0;
315
}
316
}
317
318
device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL);
319
320
device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
321
}
322
323
static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra,
324
unsigned long cpu_freq)
325
{
326
unsigned int i;
327
const struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios;
328
329
for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++)
330
if (cpu_freq >= ratio->cpu_freq)
331
return min(ratio->emc_freq, tegra->max_freq);
332
333
return 0;
334
}
335
336
static unsigned long actmon_device_target_freq(struct tegra_devfreq *tegra,
337
struct tegra_devfreq_device *dev)
338
{
339
unsigned int avg_sustain_coef;
340
unsigned long target_freq;
341
342
target_freq = dev->avg_count / tegra->devfreq->profile->polling_ms;
343
avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold;
344
target_freq = do_percent(target_freq, avg_sustain_coef);
345
346
return target_freq;
347
}
348
349
static void actmon_update_target(struct tegra_devfreq *tegra,
350
struct tegra_devfreq_device *dev)
351
{
352
unsigned long cpu_freq = 0;
353
unsigned long static_cpu_emc_freq = 0;
354
355
dev->target_freq = actmon_device_target_freq(tegra, dev);
356
357
if (dev->config->avg_dependency_threshold &&
358
dev->config->avg_dependency_threshold <= dev->target_freq) {
359
cpu_freq = cpufreq_quick_get(0);
360
static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
361
362
dev->target_freq += dev->boost_freq;
363
dev->target_freq = max(dev->target_freq, static_cpu_emc_freq);
364
} else {
365
dev->target_freq += dev->boost_freq;
366
}
367
}
368
369
static irqreturn_t actmon_thread_isr(int irq, void *data)
370
{
371
struct tegra_devfreq *tegra = data;
372
bool handled = false;
373
unsigned int i;
374
u32 val;
375
376
mutex_lock(&tegra->devfreq->lock);
377
378
val = actmon_readl(tegra, ACTMON_GLB_STATUS);
379
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
380
if (val & tegra->devices[i].config->irq_mask) {
381
actmon_isr_device(tegra, tegra->devices + i);
382
handled = true;
383
}
384
}
385
386
if (handled)
387
update_devfreq(tegra->devfreq);
388
389
mutex_unlock(&tegra->devfreq->lock);
390
391
return handled ? IRQ_HANDLED : IRQ_NONE;
392
}
393
394
static int tegra_actmon_clk_notify_cb(struct notifier_block *nb,
395
unsigned long action, void *ptr)
396
{
397
struct clk_notifier_data *data = ptr;
398
struct tegra_devfreq *tegra;
399
struct tegra_devfreq_device *dev;
400
unsigned int i;
401
402
if (action != POST_RATE_CHANGE)
403
return NOTIFY_OK;
404
405
tegra = container_of(nb, struct tegra_devfreq, clk_rate_change_nb);
406
407
tegra->cur_freq = data->new_rate / KHZ;
408
409
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
410
dev = &tegra->devices[i];
411
412
tegra_devfreq_update_wmark(tegra, dev);
413
}
414
415
return NOTIFY_OK;
416
}
417
418
static void tegra_actmon_delayed_update(struct work_struct *work)
419
{
420
struct tegra_devfreq *tegra = container_of(work, struct tegra_devfreq,
421
cpufreq_update_work.work);
422
423
mutex_lock(&tegra->devfreq->lock);
424
update_devfreq(tegra->devfreq);
425
mutex_unlock(&tegra->devfreq->lock);
426
}
427
428
static unsigned long
429
tegra_actmon_cpufreq_contribution(struct tegra_devfreq *tegra,
430
unsigned int cpu_freq)
431
{
432
struct tegra_devfreq_device *actmon_dev = &tegra->devices[MCCPU];
433
unsigned long static_cpu_emc_freq, dev_freq;
434
435
dev_freq = actmon_device_target_freq(tegra, actmon_dev);
436
437
/* check whether CPU's freq is taken into account at all */
438
if (dev_freq < actmon_dev->config->avg_dependency_threshold)
439
return 0;
440
441
static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
442
443
if (dev_freq + actmon_dev->boost_freq >= static_cpu_emc_freq)
444
return 0;
445
446
return static_cpu_emc_freq;
447
}
448
449
static int tegra_actmon_cpu_notify_cb(struct notifier_block *nb,
450
unsigned long action, void *ptr)
451
{
452
struct cpufreq_freqs *freqs = ptr;
453
struct tegra_devfreq *tegra;
454
unsigned long old, new, delay;
455
456
if (action != CPUFREQ_POSTCHANGE)
457
return NOTIFY_OK;
458
459
tegra = container_of(nb, struct tegra_devfreq, cpu_rate_change_nb);
460
461
/*
462
* Quickly check whether CPU frequency should be taken into account
463
* at all, without blocking CPUFreq's core.
464
*/
465
if (mutex_trylock(&tegra->devfreq->lock)) {
466
old = tegra_actmon_cpufreq_contribution(tegra, freqs->old);
467
new = tegra_actmon_cpufreq_contribution(tegra, freqs->new);
468
mutex_unlock(&tegra->devfreq->lock);
469
470
/*
471
* If CPU's frequency shouldn't be taken into account at
472
* the moment, then there is no need to update the devfreq's
473
* state because ISR will re-check CPU's frequency on the
474
* next interrupt.
475
*/
476
if (old == new)
477
return NOTIFY_OK;
478
}
479
480
/*
481
* CPUFreq driver should support CPUFREQ_ASYNC_NOTIFICATION in order
482
* to allow asynchronous notifications. This means we can't block
483
* here for too long, otherwise CPUFreq's core will complain with a
484
* warning splat.
485
*/
486
delay = msecs_to_jiffies(ACTMON_SAMPLING_PERIOD);
487
schedule_delayed_work(&tegra->cpufreq_update_work, delay);
488
489
return NOTIFY_OK;
490
}
491
492
static void tegra_actmon_configure_device(struct tegra_devfreq *tegra,
493
struct tegra_devfreq_device *dev)
494
{
495
u32 val = 0;
496
497
/* reset boosting on governor's restart */
498
dev->boost_freq = 0;
499
500
dev->target_freq = tegra->cur_freq;
501
502
dev->avg_count = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
503
device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG);
504
505
tegra_devfreq_update_avg_wmark(tegra, dev);
506
tegra_devfreq_update_wmark(tegra, dev);
507
508
device_writel(dev, tegra->soc->count_weight, ACTMON_DEV_COUNT_WEIGHT);
509
device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
510
511
val |= ACTMON_DEV_CTRL_ENB_PERIODIC;
512
val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1)
513
<< ACTMON_DEV_CTRL_K_VAL_SHIFT;
514
val |= (ACTMON_BELOW_WMARK_WINDOW - 1)
515
<< ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT;
516
val |= (ACTMON_ABOVE_WMARK_WINDOW - 1)
517
<< ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT;
518
val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN;
519
val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN;
520
val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
521
val |= ACTMON_DEV_CTRL_ENB;
522
523
device_writel(dev, val, ACTMON_DEV_CTRL);
524
}
525
526
static void tegra_actmon_stop_devices(struct tegra_devfreq *tegra)
527
{
528
struct tegra_devfreq_device *dev = tegra->devices;
529
unsigned int i;
530
531
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++, dev++) {
532
device_writel(dev, ACTMON_DEV_CTRL_STOP, ACTMON_DEV_CTRL);
533
device_writel(dev, ACTMON_INTR_STATUS_CLEAR,
534
ACTMON_DEV_INTR_STATUS);
535
}
536
}
537
538
static int tegra_actmon_resume(struct tegra_devfreq *tegra)
539
{
540
unsigned int i;
541
int err;
542
543
if (!tegra->devfreq->profile->polling_ms || !tegra->started)
544
return 0;
545
546
actmon_writel(tegra, tegra->devfreq->profile->polling_ms - 1,
547
ACTMON_GLB_PERIOD_CTRL);
548
549
/*
550
* CLK notifications are needed in order to reconfigure the upper
551
* consecutive watermark in accordance to the actual clock rate
552
* to avoid unnecessary upper interrupts.
553
*/
554
err = clk_notifier_register(tegra->emc_clock,
555
&tegra->clk_rate_change_nb);
556
if (err) {
557
dev_err(tegra->devfreq->dev.parent,
558
"Failed to register rate change notifier\n");
559
return err;
560
}
561
562
tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ;
563
564
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++)
565
tegra_actmon_configure_device(tegra, &tegra->devices[i]);
566
567
/*
568
* We are estimating CPU's memory bandwidth requirement based on
569
* amount of memory accesses and system's load, judging by CPU's
570
* frequency. We also don't want to receive events about CPU's
571
* frequency transaction when governor is stopped, hence notifier
572
* is registered dynamically.
573
*/
574
err = cpufreq_register_notifier(&tegra->cpu_rate_change_nb,
575
CPUFREQ_TRANSITION_NOTIFIER);
576
if (err) {
577
dev_err(tegra->devfreq->dev.parent,
578
"Failed to register rate change notifier: %d\n", err);
579
goto err_stop;
580
}
581
582
enable_irq(tegra->irq);
583
584
return 0;
585
586
err_stop:
587
tegra_actmon_stop_devices(tegra);
588
589
clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
590
591
return err;
592
}
593
594
static int tegra_actmon_start(struct tegra_devfreq *tegra)
595
{
596
int ret = 0;
597
598
if (!tegra->started) {
599
tegra->started = true;
600
601
ret = tegra_actmon_resume(tegra);
602
if (ret)
603
tegra->started = false;
604
}
605
606
return ret;
607
}
608
609
static void tegra_actmon_pause(struct tegra_devfreq *tegra)
610
{
611
if (!tegra->devfreq->profile->polling_ms || !tegra->started)
612
return;
613
614
disable_irq(tegra->irq);
615
616
cpufreq_unregister_notifier(&tegra->cpu_rate_change_nb,
617
CPUFREQ_TRANSITION_NOTIFIER);
618
619
cancel_delayed_work_sync(&tegra->cpufreq_update_work);
620
621
tegra_actmon_stop_devices(tegra);
622
623
clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
624
}
625
626
static void tegra_actmon_stop(struct tegra_devfreq *tegra)
627
{
628
tegra_actmon_pause(tegra);
629
tegra->started = false;
630
}
631
632
static int tegra_devfreq_target(struct device *dev, unsigned long *freq,
633
u32 flags)
634
{
635
struct dev_pm_opp *opp;
636
int ret;
637
638
opp = devfreq_recommended_opp(dev, freq, flags);
639
if (IS_ERR(opp)) {
640
dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
641
return PTR_ERR(opp);
642
}
643
644
ret = dev_pm_opp_set_opp(dev, opp);
645
dev_pm_opp_put(opp);
646
647
return ret;
648
}
649
650
static int tegra_devfreq_get_dev_status(struct device *dev,
651
struct devfreq_dev_status *stat)
652
{
653
struct tegra_devfreq *tegra = dev_get_drvdata(dev);
654
struct tegra_devfreq_device *actmon_dev;
655
unsigned long cur_freq;
656
657
cur_freq = READ_ONCE(tegra->cur_freq);
658
659
/* To be used by the tegra governor */
660
stat->private_data = tegra;
661
662
/* The below are to be used by the other governors */
663
stat->current_frequency = cur_freq * KHZ;
664
665
actmon_dev = &tegra->devices[MCALL];
666
667
/* Number of cycles spent on memory access */
668
stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT);
669
670
/* The bus can be considered to be saturated way before 100% */
671
stat->busy_time *= 100 / BUS_SATURATION_RATIO;
672
673
/* Number of cycles in a sampling period */
674
stat->total_time = tegra->devfreq->profile->polling_ms * cur_freq;
675
676
stat->busy_time = min(stat->busy_time, stat->total_time);
677
678
return 0;
679
}
680
681
static struct devfreq_dev_profile tegra_devfreq_profile = {
682
.polling_ms = ACTMON_SAMPLING_PERIOD,
683
.target = tegra_devfreq_target,
684
.get_dev_status = tegra_devfreq_get_dev_status,
685
.is_cooling_device = true,
686
};
687
688
static int tegra_governor_get_target(struct devfreq *devfreq,
689
unsigned long *freq)
690
{
691
struct devfreq_dev_status *stat;
692
struct tegra_devfreq *tegra;
693
struct tegra_devfreq_device *dev;
694
unsigned long target_freq = 0;
695
unsigned int i;
696
int err;
697
698
err = devfreq_update_stats(devfreq);
699
if (err)
700
return err;
701
702
stat = &devfreq->last_status;
703
704
tegra = stat->private_data;
705
706
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
707
dev = &tegra->devices[i];
708
709
actmon_update_target(tegra, dev);
710
711
target_freq = max(target_freq, dev->target_freq);
712
}
713
714
/*
715
* tegra-devfreq driver operates with KHz units, while OPP table
716
* entries use Hz units. Hence we need to convert the units for the
717
* devfreq core.
718
*/
719
*freq = target_freq * KHZ;
720
721
return 0;
722
}
723
724
static int tegra_governor_event_handler(struct devfreq *devfreq,
725
unsigned int event, void *data)
726
{
727
struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent);
728
unsigned int *new_delay = data;
729
int ret = 0;
730
731
/*
732
* Couple devfreq-device with the governor early because it is
733
* needed at the moment of governor's start (used by ISR).
734
*/
735
tegra->devfreq = devfreq;
736
737
switch (event) {
738
case DEVFREQ_GOV_START:
739
devfreq_monitor_start(devfreq);
740
ret = tegra_actmon_start(tegra);
741
break;
742
743
case DEVFREQ_GOV_STOP:
744
tegra_actmon_stop(tegra);
745
devfreq_monitor_stop(devfreq);
746
break;
747
748
case DEVFREQ_GOV_UPDATE_INTERVAL:
749
/*
750
* ACTMON hardware supports up to 256 milliseconds for the
751
* sampling period.
752
*/
753
if (*new_delay > 256) {
754
ret = -EINVAL;
755
break;
756
}
757
758
tegra_actmon_pause(tegra);
759
devfreq_update_interval(devfreq, new_delay);
760
ret = tegra_actmon_resume(tegra);
761
break;
762
763
case DEVFREQ_GOV_SUSPEND:
764
tegra_actmon_stop(tegra);
765
devfreq_monitor_suspend(devfreq);
766
break;
767
768
case DEVFREQ_GOV_RESUME:
769
devfreq_monitor_resume(devfreq);
770
ret = tegra_actmon_start(tegra);
771
break;
772
}
773
774
return ret;
775
}
776
777
static struct devfreq_governor tegra_devfreq_governor = {
778
.name = "tegra_actmon",
779
.attrs = DEVFREQ_GOV_ATTR_POLLING_INTERVAL,
780
.flags = DEVFREQ_GOV_FLAG_IMMUTABLE
781
| DEVFREQ_GOV_FLAG_IRQ_DRIVEN,
782
.get_target_freq = tegra_governor_get_target,
783
.event_handler = tegra_governor_event_handler,
784
};
785
786
static void devm_tegra_devfreq_deinit_hw(void *data)
787
{
788
struct tegra_devfreq *tegra = data;
789
790
reset_control_reset(tegra->reset);
791
clk_disable_unprepare(tegra->clock);
792
}
793
794
static int devm_tegra_devfreq_init_hw(struct device *dev,
795
struct tegra_devfreq *tegra)
796
{
797
int err;
798
799
err = clk_prepare_enable(tegra->clock);
800
if (err) {
801
dev_err(dev, "Failed to prepare and enable ACTMON clock\n");
802
return err;
803
}
804
805
err = devm_add_action_or_reset(dev, devm_tegra_devfreq_deinit_hw,
806
tegra);
807
if (err)
808
return err;
809
810
err = reset_control_reset(tegra->reset);
811
if (err) {
812
dev_err(dev, "Failed to reset hardware: %d\n", err);
813
return err;
814
}
815
816
return err;
817
}
818
819
static int tegra_devfreq_config_clks_nop(struct device *dev,
820
struct opp_table *opp_table,
821
struct dev_pm_opp *opp, void *data,
822
bool scaling_down)
823
{
824
/* We want to skip clk configuration via dev_pm_opp_set_opp() */
825
return 0;
826
}
827
828
static int tegra_devfreq_probe(struct platform_device *pdev)
829
{
830
u32 hw_version = BIT(tegra_sku_info.soc_speedo_id);
831
struct tegra_devfreq_device *dev;
832
struct tegra_devfreq *tegra;
833
struct devfreq *devfreq;
834
unsigned int i;
835
long rate;
836
int err;
837
const char *clk_names[] = { "actmon", NULL };
838
struct dev_pm_opp_config config = {
839
.supported_hw = &hw_version,
840
.supported_hw_count = 1,
841
.clk_names = clk_names,
842
.config_clks = tegra_devfreq_config_clks_nop,
843
};
844
845
tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
846
if (!tegra)
847
return -ENOMEM;
848
849
tegra->soc = of_device_get_match_data(&pdev->dev);
850
851
tegra->regs = devm_platform_ioremap_resource(pdev, 0);
852
if (IS_ERR(tegra->regs))
853
return PTR_ERR(tegra->regs);
854
855
tegra->reset = devm_reset_control_get(&pdev->dev, "actmon");
856
if (IS_ERR(tegra->reset)) {
857
dev_err(&pdev->dev, "Failed to get reset\n");
858
return PTR_ERR(tegra->reset);
859
}
860
861
tegra->clock = devm_clk_get(&pdev->dev, "actmon");
862
if (IS_ERR(tegra->clock)) {
863
dev_err(&pdev->dev, "Failed to get actmon clock\n");
864
return PTR_ERR(tegra->clock);
865
}
866
867
tegra->emc_clock = devm_clk_get(&pdev->dev, "emc");
868
if (IS_ERR(tegra->emc_clock))
869
return dev_err_probe(&pdev->dev, PTR_ERR(tegra->emc_clock),
870
"Failed to get emc clock\n");
871
872
err = platform_get_irq(pdev, 0);
873
if (err < 0)
874
return err;
875
876
tegra->irq = err;
877
878
irq_set_status_flags(tegra->irq, IRQ_NOAUTOEN);
879
880
err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL,
881
actmon_thread_isr, IRQF_ONESHOT,
882
"tegra-devfreq", tegra);
883
if (err) {
884
dev_err(&pdev->dev, "Interrupt request failed: %d\n", err);
885
return err;
886
}
887
888
err = devm_pm_opp_set_config(&pdev->dev, &config);
889
if (err) {
890
dev_err(&pdev->dev, "Failed to set OPP config: %d\n", err);
891
return err;
892
}
893
894
err = devm_pm_opp_of_add_table_indexed(&pdev->dev, 0);
895
if (err) {
896
dev_err(&pdev->dev, "Failed to add OPP table: %d\n", err);
897
return err;
898
}
899
900
err = devm_tegra_devfreq_init_hw(&pdev->dev, tegra);
901
if (err)
902
return err;
903
904
rate = clk_round_rate(tegra->emc_clock, ULONG_MAX);
905
if (rate <= 0) {
906
dev_err(&pdev->dev, "Failed to round clock rate: %ld\n", rate);
907
return rate ?: -EINVAL;
908
}
909
910
tegra->max_freq = rate / KHZ;
911
912
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
913
dev = tegra->devices + i;
914
dev->config = tegra->soc->configs + i;
915
dev->regs = tegra->regs + dev->config->offset;
916
}
917
918
platform_set_drvdata(pdev, tegra);
919
920
tegra->clk_rate_change_nb.notifier_call = tegra_actmon_clk_notify_cb;
921
tegra->cpu_rate_change_nb.notifier_call = tegra_actmon_cpu_notify_cb;
922
923
INIT_DELAYED_WORK(&tegra->cpufreq_update_work,
924
tegra_actmon_delayed_update);
925
926
err = devm_devfreq_add_governor(&pdev->dev, &tegra_devfreq_governor);
927
if (err) {
928
dev_err(&pdev->dev, "Failed to add governor: %d\n", err);
929
return err;
930
}
931
932
tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock);
933
934
devfreq = devm_devfreq_add_device(&pdev->dev, &tegra_devfreq_profile,
935
"tegra_actmon", NULL);
936
if (IS_ERR(devfreq)) {
937
dev_err(&pdev->dev, "Failed to add device: %pe\n", devfreq);
938
return PTR_ERR(devfreq);
939
}
940
941
return 0;
942
}
943
944
static const struct tegra_devfreq_soc_data tegra124_soc = {
945
.configs = tegra124_device_configs,
946
947
/*
948
* Activity counter is incremented every 256 memory transactions,
949
* and each transaction takes 4 EMC clocks.
950
*/
951
.count_weight = 4 * 256,
952
};
953
954
static const struct tegra_devfreq_soc_data tegra30_soc = {
955
.configs = tegra30_device_configs,
956
.count_weight = 2 * 256,
957
};
958
959
static const struct of_device_id tegra_devfreq_of_match[] = {
960
{ .compatible = "nvidia,tegra30-actmon", .data = &tegra30_soc, },
961
{ .compatible = "nvidia,tegra124-actmon", .data = &tegra124_soc, },
962
{ },
963
};
964
965
MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match);
966
967
static struct platform_driver tegra_devfreq_driver = {
968
.probe = tegra_devfreq_probe,
969
.driver = {
970
.name = "tegra-devfreq",
971
.of_match_table = tegra_devfreq_of_match,
972
},
973
};
974
module_platform_driver(tegra_devfreq_driver);
975
976
MODULE_LICENSE("GPL v2");
977
MODULE_DESCRIPTION("Tegra devfreq driver");
978
MODULE_AUTHOR("Tomeu Vizoso <[email protected]>");
979
980