Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/devfreq/tegra30-devfreq.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* A devfreq driver for NVIDIA Tegra SoCs
4
*
5
* Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved.
6
* Copyright (C) 2014 Google, Inc
7
*/
8
9
#include <linux/clk.h>
10
#include <linux/cpufreq.h>
11
#include <linux/devfreq.h>
12
#include <linux/interrupt.h>
13
#include <linux/io.h>
14
#include <linux/irq.h>
15
#include <linux/module.h>
16
#include <linux/of.h>
17
#include <linux/platform_device.h>
18
#include <linux/pm_opp.h>
19
#include <linux/reset.h>
20
#include <linux/workqueue.h>
21
22
#include <soc/tegra/fuse.h>
23
24
#include "governor.h"
25
26
#define ACTMON_GLB_STATUS 0x0
27
#define ACTMON_GLB_PERIOD_CTRL 0x4
28
29
#define ACTMON_DEV_CTRL 0x0
30
#define ACTMON_DEV_CTRL_K_VAL_SHIFT 10
31
#define ACTMON_DEV_CTRL_ENB_PERIODIC BIT(18)
32
#define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN BIT(20)
33
#define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN BIT(21)
34
#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT 23
35
#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT 26
36
#define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN BIT(29)
37
#define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN BIT(30)
38
#define ACTMON_DEV_CTRL_ENB BIT(31)
39
40
#define ACTMON_DEV_CTRL_STOP 0x00000000
41
42
#define ACTMON_DEV_UPPER_WMARK 0x4
43
#define ACTMON_DEV_LOWER_WMARK 0x8
44
#define ACTMON_DEV_INIT_AVG 0xc
45
#define ACTMON_DEV_AVG_UPPER_WMARK 0x10
46
#define ACTMON_DEV_AVG_LOWER_WMARK 0x14
47
#define ACTMON_DEV_COUNT_WEIGHT 0x18
48
#define ACTMON_DEV_AVG_COUNT 0x20
49
#define ACTMON_DEV_INTR_STATUS 0x24
50
51
#define ACTMON_INTR_STATUS_CLEAR 0xffffffff
52
53
#define ACTMON_DEV_INTR_CONSECUTIVE_UPPER BIT(31)
54
#define ACTMON_DEV_INTR_CONSECUTIVE_LOWER BIT(30)
55
56
#define ACTMON_ABOVE_WMARK_WINDOW 1
57
#define ACTMON_BELOW_WMARK_WINDOW 3
58
#define ACTMON_BOOST_FREQ_STEP 16000
59
60
/*
61
* ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which
62
* translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128
63
*/
64
#define ACTMON_AVERAGE_WINDOW_LOG2 6
65
#define ACTMON_SAMPLING_PERIOD 12 /* ms */
66
#define ACTMON_DEFAULT_AVG_BAND 6 /* 1/10 of % */
67
68
#define KHZ 1000
69
70
#define KHZ_MAX (ULONG_MAX / KHZ)
71
72
/* Assume that the bus is saturated if the utilization is 25% */
73
#define BUS_SATURATION_RATIO 25
74
75
/**
76
* struct tegra_devfreq_device_config - configuration specific to an ACTMON
77
* device
78
*
79
* Coefficients and thresholds are percentages unless otherwise noted
80
*/
81
struct tegra_devfreq_device_config {
82
u32 offset;
83
u32 irq_mask;
84
85
/* Factors applied to boost_freq every consecutive watermark breach */
86
unsigned int boost_up_coeff;
87
unsigned int boost_down_coeff;
88
89
/* Define the watermark bounds when applied to the current avg */
90
unsigned int boost_up_threshold;
91
unsigned int boost_down_threshold;
92
93
/*
94
* Threshold of activity (cycles translated to kHz) below which the
95
* CPU frequency isn't to be taken into account. This is to avoid
96
* increasing the EMC frequency when the CPU is very busy but not
97
* accessing the bus often.
98
*/
99
u32 avg_dependency_threshold;
100
};
101
102
enum tegra_actmon_device {
103
MCALL = 0,
104
MCCPU,
105
};
106
107
static const struct tegra_devfreq_device_config tegra124_device_configs[] = {
108
{
109
/* MCALL: All memory accesses (including from the CPUs) */
110
.offset = 0x1c0,
111
.irq_mask = 1 << 26,
112
.boost_up_coeff = 200,
113
.boost_down_coeff = 50,
114
.boost_up_threshold = 60,
115
.boost_down_threshold = 40,
116
},
117
{
118
/* MCCPU: memory accesses from the CPUs */
119
.offset = 0x200,
120
.irq_mask = 1 << 25,
121
.boost_up_coeff = 800,
122
.boost_down_coeff = 40,
123
.boost_up_threshold = 27,
124
.boost_down_threshold = 10,
125
.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
126
},
127
};
128
129
static const struct tegra_devfreq_device_config tegra30_device_configs[] = {
130
{
131
/* MCALL: All memory accesses (including from the CPUs) */
132
.offset = 0x1c0,
133
.irq_mask = 1 << 26,
134
.boost_up_coeff = 200,
135
.boost_down_coeff = 50,
136
.boost_up_threshold = 20,
137
.boost_down_threshold = 10,
138
},
139
{
140
/* MCCPU: memory accesses from the CPUs */
141
.offset = 0x200,
142
.irq_mask = 1 << 25,
143
.boost_up_coeff = 800,
144
.boost_down_coeff = 40,
145
.boost_up_threshold = 27,
146
.boost_down_threshold = 10,
147
.avg_dependency_threshold = 16000, /* 16MHz in kHz units */
148
},
149
};
150
151
/**
152
* struct tegra_devfreq_device - state specific to an ACTMON device
153
*
154
* Frequencies are in kHz.
155
*/
156
struct tegra_devfreq_device {
157
const struct tegra_devfreq_device_config *config;
158
void __iomem *regs;
159
160
/* Average event count sampled in the last interrupt */
161
u32 avg_count;
162
163
/*
164
* Extra frequency to increase the target by due to consecutive
165
* watermark breaches.
166
*/
167
unsigned long boost_freq;
168
169
/* Optimal frequency calculated from the stats for this device */
170
unsigned long target_freq;
171
};
172
173
struct tegra_devfreq_soc_data {
174
const struct tegra_devfreq_device_config *configs;
175
/* Weight value for count measurements */
176
unsigned int count_weight;
177
};
178
179
struct tegra_devfreq {
180
struct devfreq *devfreq;
181
182
struct reset_control *reset;
183
struct clk *clock;
184
void __iomem *regs;
185
186
struct clk *emc_clock;
187
unsigned long max_freq;
188
unsigned long cur_freq;
189
struct notifier_block clk_rate_change_nb;
190
191
struct delayed_work cpufreq_update_work;
192
struct notifier_block cpu_rate_change_nb;
193
194
struct tegra_devfreq_device devices[2];
195
196
unsigned int irq;
197
198
bool started;
199
200
const struct tegra_devfreq_soc_data *soc;
201
};
202
203
struct tegra_actmon_emc_ratio {
204
unsigned long cpu_freq;
205
unsigned long emc_freq;
206
};
207
208
static const struct tegra_actmon_emc_ratio actmon_emc_ratios[] = {
209
{ 1400000, KHZ_MAX },
210
{ 1200000, 750000 },
211
{ 1100000, 600000 },
212
{ 1000000, 500000 },
213
{ 800000, 375000 },
214
{ 500000, 200000 },
215
{ 250000, 100000 },
216
};
217
218
static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset)
219
{
220
return readl_relaxed(tegra->regs + offset);
221
}
222
223
static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset)
224
{
225
writel_relaxed(val, tegra->regs + offset);
226
}
227
228
static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset)
229
{
230
return readl_relaxed(dev->regs + offset);
231
}
232
233
static void device_writel(struct tegra_devfreq_device *dev, u32 val,
234
u32 offset)
235
{
236
writel_relaxed(val, dev->regs + offset);
237
}
238
239
static unsigned long do_percent(unsigned long long val, unsigned int pct)
240
{
241
val = val * pct;
242
do_div(val, 100);
243
244
/*
245
* High freq + high boosting percent + large polling interval are
246
* resulting in integer overflow when watermarks are calculated.
247
*/
248
return min_t(u64, val, U32_MAX);
249
}
250
251
static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra,
252
struct tegra_devfreq_device *dev)
253
{
254
u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ;
255
u32 band = avg_band_freq * tegra->devfreq->profile->polling_ms;
256
u32 avg;
257
258
avg = min(dev->avg_count, U32_MAX - band);
259
device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK);
260
261
avg = max(dev->avg_count, band);
262
device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK);
263
}
264
265
static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra,
266
struct tegra_devfreq_device *dev)
267
{
268
u32 val = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
269
270
device_writel(dev, do_percent(val, dev->config->boost_up_threshold),
271
ACTMON_DEV_UPPER_WMARK);
272
273
device_writel(dev, do_percent(val, dev->config->boost_down_threshold),
274
ACTMON_DEV_LOWER_WMARK);
275
}
276
277
static void actmon_isr_device(struct tegra_devfreq *tegra,
278
struct tegra_devfreq_device *dev)
279
{
280
u32 intr_status, dev_ctrl;
281
282
dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT);
283
tegra_devfreq_update_avg_wmark(tegra, dev);
284
285
intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS);
286
dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL);
287
288
if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) {
289
/*
290
* new_boost = min(old_boost * up_coef + step, max_freq)
291
*/
292
dev->boost_freq = do_percent(dev->boost_freq,
293
dev->config->boost_up_coeff);
294
dev->boost_freq += ACTMON_BOOST_FREQ_STEP;
295
296
dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
297
298
if (dev->boost_freq >= tegra->max_freq) {
299
dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
300
dev->boost_freq = tegra->max_freq;
301
}
302
} else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) {
303
/*
304
* new_boost = old_boost * down_coef
305
* or 0 if (old_boost * down_coef < step / 2)
306
*/
307
dev->boost_freq = do_percent(dev->boost_freq,
308
dev->config->boost_down_coeff);
309
310
dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
311
312
if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1)) {
313
dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
314
dev->boost_freq = 0;
315
}
316
}
317
318
device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL);
319
320
device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
321
}
322
323
static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra,
324
unsigned long cpu_freq)
325
{
326
unsigned int i;
327
const struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios;
328
329
for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++) {
330
if (cpu_freq >= ratio->cpu_freq) {
331
if (ratio->emc_freq >= tegra->max_freq)
332
return tegra->max_freq;
333
else
334
return ratio->emc_freq;
335
}
336
}
337
338
return 0;
339
}
340
341
static unsigned long actmon_device_target_freq(struct tegra_devfreq *tegra,
342
struct tegra_devfreq_device *dev)
343
{
344
unsigned int avg_sustain_coef;
345
unsigned long target_freq;
346
347
target_freq = dev->avg_count / tegra->devfreq->profile->polling_ms;
348
avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold;
349
target_freq = do_percent(target_freq, avg_sustain_coef);
350
351
return target_freq;
352
}
353
354
static void actmon_update_target(struct tegra_devfreq *tegra,
355
struct tegra_devfreq_device *dev)
356
{
357
unsigned long cpu_freq = 0;
358
unsigned long static_cpu_emc_freq = 0;
359
360
dev->target_freq = actmon_device_target_freq(tegra, dev);
361
362
if (dev->config->avg_dependency_threshold &&
363
dev->config->avg_dependency_threshold <= dev->target_freq) {
364
cpu_freq = cpufreq_quick_get(0);
365
static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
366
367
dev->target_freq += dev->boost_freq;
368
dev->target_freq = max(dev->target_freq, static_cpu_emc_freq);
369
} else {
370
dev->target_freq += dev->boost_freq;
371
}
372
}
373
374
static irqreturn_t actmon_thread_isr(int irq, void *data)
375
{
376
struct tegra_devfreq *tegra = data;
377
bool handled = false;
378
unsigned int i;
379
u32 val;
380
381
mutex_lock(&tegra->devfreq->lock);
382
383
val = actmon_readl(tegra, ACTMON_GLB_STATUS);
384
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
385
if (val & tegra->devices[i].config->irq_mask) {
386
actmon_isr_device(tegra, tegra->devices + i);
387
handled = true;
388
}
389
}
390
391
if (handled)
392
update_devfreq(tegra->devfreq);
393
394
mutex_unlock(&tegra->devfreq->lock);
395
396
return handled ? IRQ_HANDLED : IRQ_NONE;
397
}
398
399
static int tegra_actmon_clk_notify_cb(struct notifier_block *nb,
400
unsigned long action, void *ptr)
401
{
402
struct clk_notifier_data *data = ptr;
403
struct tegra_devfreq *tegra;
404
struct tegra_devfreq_device *dev;
405
unsigned int i;
406
407
if (action != POST_RATE_CHANGE)
408
return NOTIFY_OK;
409
410
tegra = container_of(nb, struct tegra_devfreq, clk_rate_change_nb);
411
412
tegra->cur_freq = data->new_rate / KHZ;
413
414
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
415
dev = &tegra->devices[i];
416
417
tegra_devfreq_update_wmark(tegra, dev);
418
}
419
420
return NOTIFY_OK;
421
}
422
423
static void tegra_actmon_delayed_update(struct work_struct *work)
424
{
425
struct tegra_devfreq *tegra = container_of(work, struct tegra_devfreq,
426
cpufreq_update_work.work);
427
428
mutex_lock(&tegra->devfreq->lock);
429
update_devfreq(tegra->devfreq);
430
mutex_unlock(&tegra->devfreq->lock);
431
}
432
433
static unsigned long
434
tegra_actmon_cpufreq_contribution(struct tegra_devfreq *tegra,
435
unsigned int cpu_freq)
436
{
437
struct tegra_devfreq_device *actmon_dev = &tegra->devices[MCCPU];
438
unsigned long static_cpu_emc_freq, dev_freq;
439
440
dev_freq = actmon_device_target_freq(tegra, actmon_dev);
441
442
/* check whether CPU's freq is taken into account at all */
443
if (dev_freq < actmon_dev->config->avg_dependency_threshold)
444
return 0;
445
446
static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
447
448
if (dev_freq + actmon_dev->boost_freq >= static_cpu_emc_freq)
449
return 0;
450
451
return static_cpu_emc_freq;
452
}
453
454
static int tegra_actmon_cpu_notify_cb(struct notifier_block *nb,
455
unsigned long action, void *ptr)
456
{
457
struct cpufreq_freqs *freqs = ptr;
458
struct tegra_devfreq *tegra;
459
unsigned long old, new, delay;
460
461
if (action != CPUFREQ_POSTCHANGE)
462
return NOTIFY_OK;
463
464
tegra = container_of(nb, struct tegra_devfreq, cpu_rate_change_nb);
465
466
/*
467
* Quickly check whether CPU frequency should be taken into account
468
* at all, without blocking CPUFreq's core.
469
*/
470
if (mutex_trylock(&tegra->devfreq->lock)) {
471
old = tegra_actmon_cpufreq_contribution(tegra, freqs->old);
472
new = tegra_actmon_cpufreq_contribution(tegra, freqs->new);
473
mutex_unlock(&tegra->devfreq->lock);
474
475
/*
476
* If CPU's frequency shouldn't be taken into account at
477
* the moment, then there is no need to update the devfreq's
478
* state because ISR will re-check CPU's frequency on the
479
* next interrupt.
480
*/
481
if (old == new)
482
return NOTIFY_OK;
483
}
484
485
/*
486
* CPUFreq driver should support CPUFREQ_ASYNC_NOTIFICATION in order
487
* to allow asynchronous notifications. This means we can't block
488
* here for too long, otherwise CPUFreq's core will complain with a
489
* warning splat.
490
*/
491
delay = msecs_to_jiffies(ACTMON_SAMPLING_PERIOD);
492
schedule_delayed_work(&tegra->cpufreq_update_work, delay);
493
494
return NOTIFY_OK;
495
}
496
497
static void tegra_actmon_configure_device(struct tegra_devfreq *tegra,
498
struct tegra_devfreq_device *dev)
499
{
500
u32 val = 0;
501
502
/* reset boosting on governor's restart */
503
dev->boost_freq = 0;
504
505
dev->target_freq = tegra->cur_freq;
506
507
dev->avg_count = tegra->cur_freq * tegra->devfreq->profile->polling_ms;
508
device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG);
509
510
tegra_devfreq_update_avg_wmark(tegra, dev);
511
tegra_devfreq_update_wmark(tegra, dev);
512
513
device_writel(dev, tegra->soc->count_weight, ACTMON_DEV_COUNT_WEIGHT);
514
device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
515
516
val |= ACTMON_DEV_CTRL_ENB_PERIODIC;
517
val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1)
518
<< ACTMON_DEV_CTRL_K_VAL_SHIFT;
519
val |= (ACTMON_BELOW_WMARK_WINDOW - 1)
520
<< ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT;
521
val |= (ACTMON_ABOVE_WMARK_WINDOW - 1)
522
<< ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT;
523
val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN;
524
val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN;
525
val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
526
val |= ACTMON_DEV_CTRL_ENB;
527
528
device_writel(dev, val, ACTMON_DEV_CTRL);
529
}
530
531
static void tegra_actmon_stop_devices(struct tegra_devfreq *tegra)
532
{
533
struct tegra_devfreq_device *dev = tegra->devices;
534
unsigned int i;
535
536
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++, dev++) {
537
device_writel(dev, ACTMON_DEV_CTRL_STOP, ACTMON_DEV_CTRL);
538
device_writel(dev, ACTMON_INTR_STATUS_CLEAR,
539
ACTMON_DEV_INTR_STATUS);
540
}
541
}
542
543
static int tegra_actmon_resume(struct tegra_devfreq *tegra)
544
{
545
unsigned int i;
546
int err;
547
548
if (!tegra->devfreq->profile->polling_ms || !tegra->started)
549
return 0;
550
551
actmon_writel(tegra, tegra->devfreq->profile->polling_ms - 1,
552
ACTMON_GLB_PERIOD_CTRL);
553
554
/*
555
* CLK notifications are needed in order to reconfigure the upper
556
* consecutive watermark in accordance to the actual clock rate
557
* to avoid unnecessary upper interrupts.
558
*/
559
err = clk_notifier_register(tegra->emc_clock,
560
&tegra->clk_rate_change_nb);
561
if (err) {
562
dev_err(tegra->devfreq->dev.parent,
563
"Failed to register rate change notifier\n");
564
return err;
565
}
566
567
tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ;
568
569
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++)
570
tegra_actmon_configure_device(tegra, &tegra->devices[i]);
571
572
/*
573
* We are estimating CPU's memory bandwidth requirement based on
574
* amount of memory accesses and system's load, judging by CPU's
575
* frequency. We also don't want to receive events about CPU's
576
* frequency transaction when governor is stopped, hence notifier
577
* is registered dynamically.
578
*/
579
err = cpufreq_register_notifier(&tegra->cpu_rate_change_nb,
580
CPUFREQ_TRANSITION_NOTIFIER);
581
if (err) {
582
dev_err(tegra->devfreq->dev.parent,
583
"Failed to register rate change notifier: %d\n", err);
584
goto err_stop;
585
}
586
587
enable_irq(tegra->irq);
588
589
return 0;
590
591
err_stop:
592
tegra_actmon_stop_devices(tegra);
593
594
clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
595
596
return err;
597
}
598
599
static int tegra_actmon_start(struct tegra_devfreq *tegra)
600
{
601
int ret = 0;
602
603
if (!tegra->started) {
604
tegra->started = true;
605
606
ret = tegra_actmon_resume(tegra);
607
if (ret)
608
tegra->started = false;
609
}
610
611
return ret;
612
}
613
614
static void tegra_actmon_pause(struct tegra_devfreq *tegra)
615
{
616
if (!tegra->devfreq->profile->polling_ms || !tegra->started)
617
return;
618
619
disable_irq(tegra->irq);
620
621
cpufreq_unregister_notifier(&tegra->cpu_rate_change_nb,
622
CPUFREQ_TRANSITION_NOTIFIER);
623
624
cancel_delayed_work_sync(&tegra->cpufreq_update_work);
625
626
tegra_actmon_stop_devices(tegra);
627
628
clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb);
629
}
630
631
static void tegra_actmon_stop(struct tegra_devfreq *tegra)
632
{
633
tegra_actmon_pause(tegra);
634
tegra->started = false;
635
}
636
637
static int tegra_devfreq_target(struct device *dev, unsigned long *freq,
638
u32 flags)
639
{
640
struct dev_pm_opp *opp;
641
int ret;
642
643
opp = devfreq_recommended_opp(dev, freq, flags);
644
if (IS_ERR(opp)) {
645
dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
646
return PTR_ERR(opp);
647
}
648
649
ret = dev_pm_opp_set_opp(dev, opp);
650
dev_pm_opp_put(opp);
651
652
return ret;
653
}
654
655
static int tegra_devfreq_get_dev_status(struct device *dev,
656
struct devfreq_dev_status *stat)
657
{
658
struct tegra_devfreq *tegra = dev_get_drvdata(dev);
659
struct tegra_devfreq_device *actmon_dev;
660
unsigned long cur_freq;
661
662
cur_freq = READ_ONCE(tegra->cur_freq);
663
664
/* To be used by the tegra governor */
665
stat->private_data = tegra;
666
667
/* The below are to be used by the other governors */
668
stat->current_frequency = cur_freq * KHZ;
669
670
actmon_dev = &tegra->devices[MCALL];
671
672
/* Number of cycles spent on memory access */
673
stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT);
674
675
/* The bus can be considered to be saturated way before 100% */
676
stat->busy_time *= 100 / BUS_SATURATION_RATIO;
677
678
/* Number of cycles in a sampling period */
679
stat->total_time = tegra->devfreq->profile->polling_ms * cur_freq;
680
681
stat->busy_time = min(stat->busy_time, stat->total_time);
682
683
return 0;
684
}
685
686
static struct devfreq_dev_profile tegra_devfreq_profile = {
687
.polling_ms = ACTMON_SAMPLING_PERIOD,
688
.target = tegra_devfreq_target,
689
.get_dev_status = tegra_devfreq_get_dev_status,
690
.is_cooling_device = true,
691
};
692
693
static int tegra_governor_get_target(struct devfreq *devfreq,
694
unsigned long *freq)
695
{
696
struct devfreq_dev_status *stat;
697
struct tegra_devfreq *tegra;
698
struct tegra_devfreq_device *dev;
699
unsigned long target_freq = 0;
700
unsigned int i;
701
int err;
702
703
err = devfreq_update_stats(devfreq);
704
if (err)
705
return err;
706
707
stat = &devfreq->last_status;
708
709
tegra = stat->private_data;
710
711
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
712
dev = &tegra->devices[i];
713
714
actmon_update_target(tegra, dev);
715
716
target_freq = max(target_freq, dev->target_freq);
717
}
718
719
/*
720
* tegra-devfreq driver operates with KHz units, while OPP table
721
* entries use Hz units. Hence we need to convert the units for the
722
* devfreq core.
723
*/
724
*freq = target_freq * KHZ;
725
726
return 0;
727
}
728
729
static int tegra_governor_event_handler(struct devfreq *devfreq,
730
unsigned int event, void *data)
731
{
732
struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent);
733
unsigned int *new_delay = data;
734
int ret = 0;
735
736
/*
737
* Couple devfreq-device with the governor early because it is
738
* needed at the moment of governor's start (used by ISR).
739
*/
740
tegra->devfreq = devfreq;
741
742
switch (event) {
743
case DEVFREQ_GOV_START:
744
devfreq_monitor_start(devfreq);
745
ret = tegra_actmon_start(tegra);
746
break;
747
748
case DEVFREQ_GOV_STOP:
749
tegra_actmon_stop(tegra);
750
devfreq_monitor_stop(devfreq);
751
break;
752
753
case DEVFREQ_GOV_UPDATE_INTERVAL:
754
/*
755
* ACTMON hardware supports up to 256 milliseconds for the
756
* sampling period.
757
*/
758
if (*new_delay > 256) {
759
ret = -EINVAL;
760
break;
761
}
762
763
tegra_actmon_pause(tegra);
764
devfreq_update_interval(devfreq, new_delay);
765
ret = tegra_actmon_resume(tegra);
766
break;
767
768
case DEVFREQ_GOV_SUSPEND:
769
tegra_actmon_stop(tegra);
770
devfreq_monitor_suspend(devfreq);
771
break;
772
773
case DEVFREQ_GOV_RESUME:
774
devfreq_monitor_resume(devfreq);
775
ret = tegra_actmon_start(tegra);
776
break;
777
}
778
779
return ret;
780
}
781
782
static struct devfreq_governor tegra_devfreq_governor = {
783
.name = "tegra_actmon",
784
.attrs = DEVFREQ_GOV_ATTR_POLLING_INTERVAL,
785
.flags = DEVFREQ_GOV_FLAG_IMMUTABLE
786
| DEVFREQ_GOV_FLAG_IRQ_DRIVEN,
787
.get_target_freq = tegra_governor_get_target,
788
.event_handler = tegra_governor_event_handler,
789
};
790
791
static void devm_tegra_devfreq_deinit_hw(void *data)
792
{
793
struct tegra_devfreq *tegra = data;
794
795
reset_control_reset(tegra->reset);
796
clk_disable_unprepare(tegra->clock);
797
}
798
799
static int devm_tegra_devfreq_init_hw(struct device *dev,
800
struct tegra_devfreq *tegra)
801
{
802
int err;
803
804
err = clk_prepare_enable(tegra->clock);
805
if (err) {
806
dev_err(dev, "Failed to prepare and enable ACTMON clock\n");
807
return err;
808
}
809
810
err = devm_add_action_or_reset(dev, devm_tegra_devfreq_deinit_hw,
811
tegra);
812
if (err)
813
return err;
814
815
err = reset_control_reset(tegra->reset);
816
if (err) {
817
dev_err(dev, "Failed to reset hardware: %d\n", err);
818
return err;
819
}
820
821
return err;
822
}
823
824
static int tegra_devfreq_config_clks_nop(struct device *dev,
825
struct opp_table *opp_table,
826
struct dev_pm_opp *opp, void *data,
827
bool scaling_down)
828
{
829
/* We want to skip clk configuration via dev_pm_opp_set_opp() */
830
return 0;
831
}
832
833
static int tegra_devfreq_probe(struct platform_device *pdev)
834
{
835
u32 hw_version = BIT(tegra_sku_info.soc_speedo_id);
836
struct tegra_devfreq_device *dev;
837
struct tegra_devfreq *tegra;
838
struct devfreq *devfreq;
839
unsigned int i;
840
long rate;
841
int err;
842
const char *clk_names[] = { "actmon", NULL };
843
struct dev_pm_opp_config config = {
844
.supported_hw = &hw_version,
845
.supported_hw_count = 1,
846
.clk_names = clk_names,
847
.config_clks = tegra_devfreq_config_clks_nop,
848
};
849
850
tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
851
if (!tegra)
852
return -ENOMEM;
853
854
tegra->soc = of_device_get_match_data(&pdev->dev);
855
856
tegra->regs = devm_platform_ioremap_resource(pdev, 0);
857
if (IS_ERR(tegra->regs))
858
return PTR_ERR(tegra->regs);
859
860
tegra->reset = devm_reset_control_get(&pdev->dev, "actmon");
861
if (IS_ERR(tegra->reset)) {
862
dev_err(&pdev->dev, "Failed to get reset\n");
863
return PTR_ERR(tegra->reset);
864
}
865
866
tegra->clock = devm_clk_get(&pdev->dev, "actmon");
867
if (IS_ERR(tegra->clock)) {
868
dev_err(&pdev->dev, "Failed to get actmon clock\n");
869
return PTR_ERR(tegra->clock);
870
}
871
872
tegra->emc_clock = devm_clk_get(&pdev->dev, "emc");
873
if (IS_ERR(tegra->emc_clock))
874
return dev_err_probe(&pdev->dev, PTR_ERR(tegra->emc_clock),
875
"Failed to get emc clock\n");
876
877
err = platform_get_irq(pdev, 0);
878
if (err < 0)
879
return err;
880
881
tegra->irq = err;
882
883
irq_set_status_flags(tegra->irq, IRQ_NOAUTOEN);
884
885
err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL,
886
actmon_thread_isr, IRQF_ONESHOT,
887
"tegra-devfreq", tegra);
888
if (err) {
889
dev_err(&pdev->dev, "Interrupt request failed: %d\n", err);
890
return err;
891
}
892
893
err = devm_pm_opp_set_config(&pdev->dev, &config);
894
if (err) {
895
dev_err(&pdev->dev, "Failed to set OPP config: %d\n", err);
896
return err;
897
}
898
899
err = devm_pm_opp_of_add_table_indexed(&pdev->dev, 0);
900
if (err) {
901
dev_err(&pdev->dev, "Failed to add OPP table: %d\n", err);
902
return err;
903
}
904
905
err = devm_tegra_devfreq_init_hw(&pdev->dev, tegra);
906
if (err)
907
return err;
908
909
rate = clk_round_rate(tegra->emc_clock, ULONG_MAX);
910
if (rate <= 0) {
911
dev_err(&pdev->dev, "Failed to round clock rate: %ld\n", rate);
912
return rate ?: -EINVAL;
913
}
914
915
tegra->max_freq = rate / KHZ;
916
917
for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
918
dev = tegra->devices + i;
919
dev->config = tegra->soc->configs + i;
920
dev->regs = tegra->regs + dev->config->offset;
921
}
922
923
platform_set_drvdata(pdev, tegra);
924
925
tegra->clk_rate_change_nb.notifier_call = tegra_actmon_clk_notify_cb;
926
tegra->cpu_rate_change_nb.notifier_call = tegra_actmon_cpu_notify_cb;
927
928
INIT_DELAYED_WORK(&tegra->cpufreq_update_work,
929
tegra_actmon_delayed_update);
930
931
err = devm_devfreq_add_governor(&pdev->dev, &tegra_devfreq_governor);
932
if (err) {
933
dev_err(&pdev->dev, "Failed to add governor: %d\n", err);
934
return err;
935
}
936
937
tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock);
938
939
devfreq = devm_devfreq_add_device(&pdev->dev, &tegra_devfreq_profile,
940
"tegra_actmon", NULL);
941
if (IS_ERR(devfreq)) {
942
dev_err(&pdev->dev, "Failed to add device: %pe\n", devfreq);
943
return PTR_ERR(devfreq);
944
}
945
946
return 0;
947
}
948
949
static const struct tegra_devfreq_soc_data tegra124_soc = {
950
.configs = tegra124_device_configs,
951
952
/*
953
* Activity counter is incremented every 256 memory transactions,
954
* and each transaction takes 4 EMC clocks.
955
*/
956
.count_weight = 4 * 256,
957
};
958
959
static const struct tegra_devfreq_soc_data tegra30_soc = {
960
.configs = tegra30_device_configs,
961
.count_weight = 2 * 256,
962
};
963
964
static const struct of_device_id tegra_devfreq_of_match[] = {
965
{ .compatible = "nvidia,tegra30-actmon", .data = &tegra30_soc, },
966
{ .compatible = "nvidia,tegra124-actmon", .data = &tegra124_soc, },
967
{ },
968
};
969
970
MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match);
971
972
static struct platform_driver tegra_devfreq_driver = {
973
.probe = tegra_devfreq_probe,
974
.driver = {
975
.name = "tegra-devfreq",
976
.of_match_table = tegra_devfreq_of_match,
977
},
978
};
979
module_platform_driver(tegra_devfreq_driver);
980
981
MODULE_LICENSE("GPL v2");
982
MODULE_DESCRIPTION("Tegra devfreq driver");
983
MODULE_AUTHOR("Tomeu Vizoso <[email protected]>");
984
985