Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/dma-buf/dma-buf.c
49255 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Framework for buffer objects that can be shared across devices/subsystems.
4
*
5
* Copyright(C) 2011 Linaro Limited. All rights reserved.
6
* Author: Sumit Semwal <[email protected]>
7
*
8
* Many thanks to linaro-mm-sig list, and specially
9
* Arnd Bergmann <[email protected]>, Rob Clark <[email protected]> and
10
* Daniel Vetter <[email protected]> for their support in creation and
11
* refining of this idea.
12
*/
13
14
#include <linux/fs.h>
15
#include <linux/slab.h>
16
#include <linux/dma-buf.h>
17
#include <linux/dma-fence.h>
18
#include <linux/dma-fence-unwrap.h>
19
#include <linux/anon_inodes.h>
20
#include <linux/export.h>
21
#include <linux/debugfs.h>
22
#include <linux/list.h>
23
#include <linux/module.h>
24
#include <linux/mutex.h>
25
#include <linux/seq_file.h>
26
#include <linux/sync_file.h>
27
#include <linux/poll.h>
28
#include <linux/dma-resv.h>
29
#include <linux/mm.h>
30
#include <linux/mount.h>
31
#include <linux/pseudo_fs.h>
32
33
#include <uapi/linux/dma-buf.h>
34
#include <uapi/linux/magic.h>
35
36
#include "dma-buf-sysfs-stats.h"
37
38
static inline int is_dma_buf_file(struct file *);
39
40
static DEFINE_MUTEX(dmabuf_list_mutex);
41
static LIST_HEAD(dmabuf_list);
42
43
static void __dma_buf_list_add(struct dma_buf *dmabuf)
44
{
45
mutex_lock(&dmabuf_list_mutex);
46
list_add(&dmabuf->list_node, &dmabuf_list);
47
mutex_unlock(&dmabuf_list_mutex);
48
}
49
50
static void __dma_buf_list_del(struct dma_buf *dmabuf)
51
{
52
if (!dmabuf)
53
return;
54
55
mutex_lock(&dmabuf_list_mutex);
56
list_del(&dmabuf->list_node);
57
mutex_unlock(&dmabuf_list_mutex);
58
}
59
60
/**
61
* dma_buf_iter_begin - begin iteration through global list of all DMA buffers
62
*
63
* Returns the first buffer in the global list of DMA-bufs that's not in the
64
* process of being destroyed. Increments that buffer's reference count to
65
* prevent buffer destruction. Callers must release the reference, either by
66
* continuing iteration with dma_buf_iter_next(), or with dma_buf_put().
67
*
68
* Return:
69
* * First buffer from global list, with refcount elevated
70
* * NULL if no active buffers are present
71
*/
72
struct dma_buf *dma_buf_iter_begin(void)
73
{
74
struct dma_buf *ret = NULL, *dmabuf;
75
76
/*
77
* The list mutex does not protect a dmabuf's refcount, so it can be
78
* zeroed while we are iterating. We cannot call get_dma_buf() since the
79
* caller may not already own a reference to the buffer.
80
*/
81
mutex_lock(&dmabuf_list_mutex);
82
list_for_each_entry(dmabuf, &dmabuf_list, list_node) {
83
if (file_ref_get(&dmabuf->file->f_ref)) {
84
ret = dmabuf;
85
break;
86
}
87
}
88
mutex_unlock(&dmabuf_list_mutex);
89
return ret;
90
}
91
92
/**
93
* dma_buf_iter_next - continue iteration through global list of all DMA buffers
94
* @dmabuf: [in] pointer to dma_buf
95
*
96
* Decrements the reference count on the provided buffer. Returns the next
97
* buffer from the remainder of the global list of DMA-bufs with its reference
98
* count incremented. Callers must release the reference, either by continuing
99
* iteration with dma_buf_iter_next(), or with dma_buf_put().
100
*
101
* Return:
102
* * Next buffer from global list, with refcount elevated
103
* * NULL if no additional active buffers are present
104
*/
105
struct dma_buf *dma_buf_iter_next(struct dma_buf *dmabuf)
106
{
107
struct dma_buf *ret = NULL;
108
109
/*
110
* The list mutex does not protect a dmabuf's refcount, so it can be
111
* zeroed while we are iterating. We cannot call get_dma_buf() since the
112
* caller may not already own a reference to the buffer.
113
*/
114
mutex_lock(&dmabuf_list_mutex);
115
dma_buf_put(dmabuf);
116
list_for_each_entry_continue(dmabuf, &dmabuf_list, list_node) {
117
if (file_ref_get(&dmabuf->file->f_ref)) {
118
ret = dmabuf;
119
break;
120
}
121
}
122
mutex_unlock(&dmabuf_list_mutex);
123
return ret;
124
}
125
126
static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
127
{
128
struct dma_buf *dmabuf;
129
char name[DMA_BUF_NAME_LEN];
130
ssize_t ret = 0;
131
132
dmabuf = dentry->d_fsdata;
133
spin_lock(&dmabuf->name_lock);
134
if (dmabuf->name)
135
ret = strscpy(name, dmabuf->name, sizeof(name));
136
spin_unlock(&dmabuf->name_lock);
137
138
return dynamic_dname(buffer, buflen, "/%s:%s",
139
dentry->d_name.name, ret > 0 ? name : "");
140
}
141
142
static void dma_buf_release(struct dentry *dentry)
143
{
144
struct dma_buf *dmabuf;
145
146
dmabuf = dentry->d_fsdata;
147
if (unlikely(!dmabuf))
148
return;
149
150
BUG_ON(dmabuf->vmapping_counter);
151
152
/*
153
* If you hit this BUG() it could mean:
154
* * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
155
* * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
156
*/
157
BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
158
159
dma_buf_stats_teardown(dmabuf);
160
dmabuf->ops->release(dmabuf);
161
162
if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
163
dma_resv_fini(dmabuf->resv);
164
165
WARN_ON(!list_empty(&dmabuf->attachments));
166
module_put(dmabuf->owner);
167
kfree(dmabuf->name);
168
kfree(dmabuf);
169
}
170
171
static int dma_buf_file_release(struct inode *inode, struct file *file)
172
{
173
if (!is_dma_buf_file(file))
174
return -EINVAL;
175
176
__dma_buf_list_del(file->private_data);
177
178
return 0;
179
}
180
181
static const struct dentry_operations dma_buf_dentry_ops = {
182
.d_dname = dmabuffs_dname,
183
.d_release = dma_buf_release,
184
};
185
186
static struct vfsmount *dma_buf_mnt;
187
188
static int dma_buf_fs_init_context(struct fs_context *fc)
189
{
190
struct pseudo_fs_context *ctx;
191
192
ctx = init_pseudo(fc, DMA_BUF_MAGIC);
193
if (!ctx)
194
return -ENOMEM;
195
ctx->dops = &dma_buf_dentry_ops;
196
return 0;
197
}
198
199
static struct file_system_type dma_buf_fs_type = {
200
.name = "dmabuf",
201
.init_fs_context = dma_buf_fs_init_context,
202
.kill_sb = kill_anon_super,
203
};
204
205
static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
206
{
207
struct dma_buf *dmabuf;
208
209
if (!is_dma_buf_file(file))
210
return -EINVAL;
211
212
dmabuf = file->private_data;
213
214
/* check if buffer supports mmap */
215
if (!dmabuf->ops->mmap)
216
return -EINVAL;
217
218
/* check for overflowing the buffer's size */
219
if (vma->vm_pgoff + vma_pages(vma) >
220
dmabuf->size >> PAGE_SHIFT)
221
return -EINVAL;
222
223
return dmabuf->ops->mmap(dmabuf, vma);
224
}
225
226
static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
227
{
228
struct dma_buf *dmabuf;
229
loff_t base;
230
231
if (!is_dma_buf_file(file))
232
return -EBADF;
233
234
dmabuf = file->private_data;
235
236
/* only support discovering the end of the buffer,
237
* but also allow SEEK_SET to maintain the idiomatic
238
* SEEK_END(0), SEEK_CUR(0) pattern.
239
*/
240
if (whence == SEEK_END)
241
base = dmabuf->size;
242
else if (whence == SEEK_SET)
243
base = 0;
244
else
245
return -EINVAL;
246
247
if (offset != 0)
248
return -EINVAL;
249
250
return base + offset;
251
}
252
253
/**
254
* DOC: implicit fence polling
255
*
256
* To support cross-device and cross-driver synchronization of buffer access
257
* implicit fences (represented internally in the kernel with &struct dma_fence)
258
* can be attached to a &dma_buf. The glue for that and a few related things are
259
* provided in the &dma_resv structure.
260
*
261
* Userspace can query the state of these implicitly tracked fences using poll()
262
* and related system calls:
263
*
264
* - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
265
* most recent write or exclusive fence.
266
*
267
* - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
268
* all attached fences, shared and exclusive ones.
269
*
270
* Note that this only signals the completion of the respective fences, i.e. the
271
* DMA transfers are complete. Cache flushing and any other necessary
272
* preparations before CPU access can begin still need to happen.
273
*
274
* As an alternative to poll(), the set of fences on DMA buffer can be
275
* exported as a &sync_file using &dma_buf_sync_file_export.
276
*/
277
278
static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
279
{
280
struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
281
struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
282
unsigned long flags;
283
284
spin_lock_irqsave(&dcb->poll->lock, flags);
285
wake_up_locked_poll(dcb->poll, dcb->active);
286
dcb->active = 0;
287
spin_unlock_irqrestore(&dcb->poll->lock, flags);
288
dma_fence_put(fence);
289
/* Paired with get_file in dma_buf_poll */
290
fput(dmabuf->file);
291
}
292
293
static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
294
struct dma_buf_poll_cb_t *dcb)
295
{
296
struct dma_resv_iter cursor;
297
struct dma_fence *fence;
298
int r;
299
300
dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
301
fence) {
302
dma_fence_get(fence);
303
r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
304
if (!r)
305
return true;
306
dma_fence_put(fence);
307
}
308
309
return false;
310
}
311
312
static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
313
{
314
struct dma_buf *dmabuf;
315
struct dma_resv *resv;
316
__poll_t events;
317
318
dmabuf = file->private_data;
319
if (!dmabuf || !dmabuf->resv)
320
return EPOLLERR;
321
322
resv = dmabuf->resv;
323
324
poll_wait(file, &dmabuf->poll, poll);
325
326
events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
327
if (!events)
328
return 0;
329
330
dma_resv_lock(resv, NULL);
331
332
if (events & EPOLLOUT) {
333
struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
334
335
/* Check that callback isn't busy */
336
spin_lock_irq(&dmabuf->poll.lock);
337
if (dcb->active)
338
events &= ~EPOLLOUT;
339
else
340
dcb->active = EPOLLOUT;
341
spin_unlock_irq(&dmabuf->poll.lock);
342
343
if (events & EPOLLOUT) {
344
/* Paired with fput in dma_buf_poll_cb */
345
get_file(dmabuf->file);
346
347
if (!dma_buf_poll_add_cb(resv, true, dcb))
348
/* No callback queued, wake up any other waiters */
349
dma_buf_poll_cb(NULL, &dcb->cb);
350
else
351
events &= ~EPOLLOUT;
352
}
353
}
354
355
if (events & EPOLLIN) {
356
struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
357
358
/* Check that callback isn't busy */
359
spin_lock_irq(&dmabuf->poll.lock);
360
if (dcb->active)
361
events &= ~EPOLLIN;
362
else
363
dcb->active = EPOLLIN;
364
spin_unlock_irq(&dmabuf->poll.lock);
365
366
if (events & EPOLLIN) {
367
/* Paired with fput in dma_buf_poll_cb */
368
get_file(dmabuf->file);
369
370
if (!dma_buf_poll_add_cb(resv, false, dcb))
371
/* No callback queued, wake up any other waiters */
372
dma_buf_poll_cb(NULL, &dcb->cb);
373
else
374
events &= ~EPOLLIN;
375
}
376
}
377
378
dma_resv_unlock(resv);
379
return events;
380
}
381
382
/**
383
* dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
384
* It could support changing the name of the dma-buf if the same
385
* piece of memory is used for multiple purpose between different devices.
386
*
387
* @dmabuf: [in] dmabuf buffer that will be renamed.
388
* @buf: [in] A piece of userspace memory that contains the name of
389
* the dma-buf.
390
*
391
* Returns 0 on success. If the dma-buf buffer is already attached to
392
* devices, return -EBUSY.
393
*
394
*/
395
static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
396
{
397
char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
398
399
if (IS_ERR(name))
400
return PTR_ERR(name);
401
402
spin_lock(&dmabuf->name_lock);
403
kfree(dmabuf->name);
404
dmabuf->name = name;
405
spin_unlock(&dmabuf->name_lock);
406
407
return 0;
408
}
409
410
#if IS_ENABLED(CONFIG_SYNC_FILE)
411
static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
412
void __user *user_data)
413
{
414
struct dma_buf_export_sync_file arg;
415
enum dma_resv_usage usage;
416
struct dma_fence *fence = NULL;
417
struct sync_file *sync_file;
418
int fd, ret;
419
420
if (copy_from_user(&arg, user_data, sizeof(arg)))
421
return -EFAULT;
422
423
if (arg.flags & ~DMA_BUF_SYNC_RW)
424
return -EINVAL;
425
426
if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
427
return -EINVAL;
428
429
fd = get_unused_fd_flags(O_CLOEXEC);
430
if (fd < 0)
431
return fd;
432
433
usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
434
ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
435
if (ret)
436
goto err_put_fd;
437
438
if (!fence)
439
fence = dma_fence_get_stub();
440
441
sync_file = sync_file_create(fence);
442
443
dma_fence_put(fence);
444
445
if (!sync_file) {
446
ret = -ENOMEM;
447
goto err_put_fd;
448
}
449
450
arg.fd = fd;
451
if (copy_to_user(user_data, &arg, sizeof(arg))) {
452
ret = -EFAULT;
453
goto err_put_file;
454
}
455
456
fd_install(fd, sync_file->file);
457
458
return 0;
459
460
err_put_file:
461
fput(sync_file->file);
462
err_put_fd:
463
put_unused_fd(fd);
464
return ret;
465
}
466
467
static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
468
const void __user *user_data)
469
{
470
struct dma_buf_import_sync_file arg;
471
struct dma_fence *fence, *f;
472
enum dma_resv_usage usage;
473
struct dma_fence_unwrap iter;
474
unsigned int num_fences;
475
int ret = 0;
476
477
if (copy_from_user(&arg, user_data, sizeof(arg)))
478
return -EFAULT;
479
480
if (arg.flags & ~DMA_BUF_SYNC_RW)
481
return -EINVAL;
482
483
if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
484
return -EINVAL;
485
486
fence = sync_file_get_fence(arg.fd);
487
if (!fence)
488
return -EINVAL;
489
490
usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
491
DMA_RESV_USAGE_READ;
492
493
num_fences = 0;
494
dma_fence_unwrap_for_each(f, &iter, fence)
495
++num_fences;
496
497
if (num_fences > 0) {
498
dma_resv_lock(dmabuf->resv, NULL);
499
500
ret = dma_resv_reserve_fences(dmabuf->resv, num_fences);
501
if (!ret) {
502
dma_fence_unwrap_for_each(f, &iter, fence)
503
dma_resv_add_fence(dmabuf->resv, f, usage);
504
}
505
506
dma_resv_unlock(dmabuf->resv);
507
}
508
509
dma_fence_put(fence);
510
511
return ret;
512
}
513
#endif
514
515
static long dma_buf_ioctl(struct file *file,
516
unsigned int cmd, unsigned long arg)
517
{
518
struct dma_buf *dmabuf;
519
struct dma_buf_sync sync;
520
enum dma_data_direction direction;
521
int ret;
522
523
dmabuf = file->private_data;
524
525
switch (cmd) {
526
case DMA_BUF_IOCTL_SYNC:
527
if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
528
return -EFAULT;
529
530
if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
531
return -EINVAL;
532
533
switch (sync.flags & DMA_BUF_SYNC_RW) {
534
case DMA_BUF_SYNC_READ:
535
direction = DMA_FROM_DEVICE;
536
break;
537
case DMA_BUF_SYNC_WRITE:
538
direction = DMA_TO_DEVICE;
539
break;
540
case DMA_BUF_SYNC_RW:
541
direction = DMA_BIDIRECTIONAL;
542
break;
543
default:
544
return -EINVAL;
545
}
546
547
if (sync.flags & DMA_BUF_SYNC_END)
548
ret = dma_buf_end_cpu_access(dmabuf, direction);
549
else
550
ret = dma_buf_begin_cpu_access(dmabuf, direction);
551
552
return ret;
553
554
case DMA_BUF_SET_NAME_A:
555
case DMA_BUF_SET_NAME_B:
556
return dma_buf_set_name(dmabuf, (const char __user *)arg);
557
558
#if IS_ENABLED(CONFIG_SYNC_FILE)
559
case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
560
return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
561
case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
562
return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
563
#endif
564
565
default:
566
return -ENOTTY;
567
}
568
}
569
570
static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
571
{
572
struct dma_buf *dmabuf = file->private_data;
573
574
seq_printf(m, "size:\t%zu\n", dmabuf->size);
575
/* Don't count the temporary reference taken inside procfs seq_show */
576
seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
577
seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
578
spin_lock(&dmabuf->name_lock);
579
if (dmabuf->name)
580
seq_printf(m, "name:\t%s\n", dmabuf->name);
581
spin_unlock(&dmabuf->name_lock);
582
}
583
584
static const struct file_operations dma_buf_fops = {
585
.release = dma_buf_file_release,
586
.mmap = dma_buf_mmap_internal,
587
.llseek = dma_buf_llseek,
588
.poll = dma_buf_poll,
589
.unlocked_ioctl = dma_buf_ioctl,
590
.compat_ioctl = compat_ptr_ioctl,
591
.show_fdinfo = dma_buf_show_fdinfo,
592
};
593
594
/*
595
* is_dma_buf_file - Check if struct file* is associated with dma_buf
596
*/
597
static inline int is_dma_buf_file(struct file *file)
598
{
599
return file->f_op == &dma_buf_fops;
600
}
601
602
static struct file *dma_buf_getfile(size_t size, int flags)
603
{
604
static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
605
struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
606
struct file *file;
607
608
if (IS_ERR(inode))
609
return ERR_CAST(inode);
610
611
inode->i_size = size;
612
inode_set_bytes(inode, size);
613
614
/*
615
* The ->i_ino acquired from get_next_ino() is not unique thus
616
* not suitable for using it as dentry name by dmabuf stats.
617
* Override ->i_ino with the unique and dmabuffs specific
618
* value.
619
*/
620
inode->i_ino = atomic64_inc_return(&dmabuf_inode);
621
flags &= O_ACCMODE | O_NONBLOCK;
622
file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
623
flags, &dma_buf_fops);
624
if (IS_ERR(file))
625
goto err_alloc_file;
626
627
return file;
628
629
err_alloc_file:
630
iput(inode);
631
return file;
632
}
633
634
/**
635
* DOC: dma buf device access
636
*
637
* For device DMA access to a shared DMA buffer the usual sequence of operations
638
* is fairly simple:
639
*
640
* 1. The exporter defines his exporter instance using
641
* DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
642
* buffer object into a &dma_buf. It then exports that &dma_buf to userspace
643
* as a file descriptor by calling dma_buf_fd().
644
*
645
* 2. Userspace passes this file-descriptors to all drivers it wants this buffer
646
* to share with: First the file descriptor is converted to a &dma_buf using
647
* dma_buf_get(). Then the buffer is attached to the device using
648
* dma_buf_attach().
649
*
650
* Up to this stage the exporter is still free to migrate or reallocate the
651
* backing storage.
652
*
653
* 3. Once the buffer is attached to all devices userspace can initiate DMA
654
* access to the shared buffer. In the kernel this is done by calling
655
* dma_buf_map_attachment() and dma_buf_unmap_attachment().
656
*
657
* 4. Once a driver is done with a shared buffer it needs to call
658
* dma_buf_detach() (after cleaning up any mappings) and then release the
659
* reference acquired with dma_buf_get() by calling dma_buf_put().
660
*
661
* For the detailed semantics exporters are expected to implement see
662
* &dma_buf_ops.
663
*/
664
665
/**
666
* dma_buf_export - Creates a new dma_buf, and associates an anon file
667
* with this buffer, so it can be exported.
668
* Also connect the allocator specific data and ops to the buffer.
669
* Additionally, provide a name string for exporter; useful in debugging.
670
*
671
* @exp_info: [in] holds all the export related information provided
672
* by the exporter. see &struct dma_buf_export_info
673
* for further details.
674
*
675
* Returns, on success, a newly created struct dma_buf object, which wraps the
676
* supplied private data and operations for struct dma_buf_ops. On either
677
* missing ops, or error in allocating struct dma_buf, will return negative
678
* error.
679
*
680
* For most cases the easiest way to create @exp_info is through the
681
* %DEFINE_DMA_BUF_EXPORT_INFO macro.
682
*/
683
struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
684
{
685
struct dma_buf *dmabuf;
686
struct dma_resv *resv = exp_info->resv;
687
struct file *file;
688
size_t alloc_size = sizeof(struct dma_buf);
689
int ret;
690
691
if (WARN_ON(!exp_info->priv || !exp_info->ops
692
|| !exp_info->ops->map_dma_buf
693
|| !exp_info->ops->unmap_dma_buf
694
|| !exp_info->ops->release))
695
return ERR_PTR(-EINVAL);
696
697
if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
698
return ERR_PTR(-EINVAL);
699
700
if (!try_module_get(exp_info->owner))
701
return ERR_PTR(-ENOENT);
702
703
file = dma_buf_getfile(exp_info->size, exp_info->flags);
704
if (IS_ERR(file)) {
705
ret = PTR_ERR(file);
706
goto err_module;
707
}
708
709
if (!exp_info->resv)
710
alloc_size += sizeof(struct dma_resv);
711
else
712
/* prevent &dma_buf[1] == dma_buf->resv */
713
alloc_size += 1;
714
dmabuf = kzalloc(alloc_size, GFP_KERNEL);
715
if (!dmabuf) {
716
ret = -ENOMEM;
717
goto err_file;
718
}
719
720
dmabuf->priv = exp_info->priv;
721
dmabuf->ops = exp_info->ops;
722
dmabuf->size = exp_info->size;
723
dmabuf->exp_name = exp_info->exp_name;
724
dmabuf->owner = exp_info->owner;
725
spin_lock_init(&dmabuf->name_lock);
726
init_waitqueue_head(&dmabuf->poll);
727
dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
728
dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
729
INIT_LIST_HEAD(&dmabuf->attachments);
730
731
if (!resv) {
732
dmabuf->resv = (struct dma_resv *)&dmabuf[1];
733
dma_resv_init(dmabuf->resv);
734
} else {
735
dmabuf->resv = resv;
736
}
737
738
ret = dma_buf_stats_setup(dmabuf, file);
739
if (ret)
740
goto err_dmabuf;
741
742
file->private_data = dmabuf;
743
file->f_path.dentry->d_fsdata = dmabuf;
744
dmabuf->file = file;
745
746
__dma_buf_list_add(dmabuf);
747
748
return dmabuf;
749
750
err_dmabuf:
751
if (!resv)
752
dma_resv_fini(dmabuf->resv);
753
kfree(dmabuf);
754
err_file:
755
fput(file);
756
err_module:
757
module_put(exp_info->owner);
758
return ERR_PTR(ret);
759
}
760
EXPORT_SYMBOL_NS_GPL(dma_buf_export, "DMA_BUF");
761
762
/**
763
* dma_buf_fd - returns a file descriptor for the given struct dma_buf
764
* @dmabuf: [in] pointer to dma_buf for which fd is required.
765
* @flags: [in] flags to give to fd
766
*
767
* On success, returns an associated 'fd'. Else, returns error.
768
*/
769
int dma_buf_fd(struct dma_buf *dmabuf, int flags)
770
{
771
if (!dmabuf || !dmabuf->file)
772
return -EINVAL;
773
774
return FD_ADD(flags, dmabuf->file);
775
}
776
EXPORT_SYMBOL_NS_GPL(dma_buf_fd, "DMA_BUF");
777
778
/**
779
* dma_buf_get - returns the struct dma_buf related to an fd
780
* @fd: [in] fd associated with the struct dma_buf to be returned
781
*
782
* On success, returns the struct dma_buf associated with an fd; uses
783
* file's refcounting done by fget to increase refcount. returns ERR_PTR
784
* otherwise.
785
*/
786
struct dma_buf *dma_buf_get(int fd)
787
{
788
struct file *file;
789
790
file = fget(fd);
791
792
if (!file)
793
return ERR_PTR(-EBADF);
794
795
if (!is_dma_buf_file(file)) {
796
fput(file);
797
return ERR_PTR(-EINVAL);
798
}
799
800
return file->private_data;
801
}
802
EXPORT_SYMBOL_NS_GPL(dma_buf_get, "DMA_BUF");
803
804
/**
805
* dma_buf_put - decreases refcount of the buffer
806
* @dmabuf: [in] buffer to reduce refcount of
807
*
808
* Uses file's refcounting done implicitly by fput().
809
*
810
* If, as a result of this call, the refcount becomes 0, the 'release' file
811
* operation related to this fd is called. It calls &dma_buf_ops.release vfunc
812
* in turn, and frees the memory allocated for dmabuf when exported.
813
*/
814
void dma_buf_put(struct dma_buf *dmabuf)
815
{
816
if (WARN_ON(!dmabuf || !dmabuf->file))
817
return;
818
819
fput(dmabuf->file);
820
}
821
EXPORT_SYMBOL_NS_GPL(dma_buf_put, "DMA_BUF");
822
823
static void mangle_sg_table(struct sg_table *sg_table)
824
{
825
#ifdef CONFIG_DMABUF_DEBUG
826
int i;
827
struct scatterlist *sg;
828
829
/* To catch abuse of the underlying struct page by importers mix
830
* up the bits, but take care to preserve the low SG_ bits to
831
* not corrupt the sgt. The mixing is undone on unmap
832
* before passing the sgt back to the exporter.
833
*/
834
for_each_sgtable_sg(sg_table, sg, i)
835
sg->page_link ^= ~0xffUL;
836
#endif
837
838
}
839
840
static inline bool
841
dma_buf_attachment_is_dynamic(struct dma_buf_attachment *attach)
842
{
843
return !!attach->importer_ops;
844
}
845
846
static bool
847
dma_buf_pin_on_map(struct dma_buf_attachment *attach)
848
{
849
return attach->dmabuf->ops->pin &&
850
(!dma_buf_attachment_is_dynamic(attach) ||
851
!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY));
852
}
853
854
/**
855
* DOC: locking convention
856
*
857
* In order to avoid deadlock situations between dma-buf exports and importers,
858
* all dma-buf API users must follow the common dma-buf locking convention.
859
*
860
* Convention for importers
861
*
862
* 1. Importers must hold the dma-buf reservation lock when calling these
863
* functions:
864
*
865
* - dma_buf_pin()
866
* - dma_buf_unpin()
867
* - dma_buf_map_attachment()
868
* - dma_buf_unmap_attachment()
869
* - dma_buf_vmap()
870
* - dma_buf_vunmap()
871
*
872
* 2. Importers must not hold the dma-buf reservation lock when calling these
873
* functions:
874
*
875
* - dma_buf_attach()
876
* - dma_buf_dynamic_attach()
877
* - dma_buf_detach()
878
* - dma_buf_export()
879
* - dma_buf_fd()
880
* - dma_buf_get()
881
* - dma_buf_put()
882
* - dma_buf_mmap()
883
* - dma_buf_begin_cpu_access()
884
* - dma_buf_end_cpu_access()
885
* - dma_buf_map_attachment_unlocked()
886
* - dma_buf_unmap_attachment_unlocked()
887
* - dma_buf_vmap_unlocked()
888
* - dma_buf_vunmap_unlocked()
889
*
890
* Convention for exporters
891
*
892
* 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
893
* reservation and exporter can take the lock:
894
*
895
* - &dma_buf_ops.attach()
896
* - &dma_buf_ops.detach()
897
* - &dma_buf_ops.release()
898
* - &dma_buf_ops.begin_cpu_access()
899
* - &dma_buf_ops.end_cpu_access()
900
* - &dma_buf_ops.mmap()
901
*
902
* 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
903
* reservation and exporter can't take the lock:
904
*
905
* - &dma_buf_ops.pin()
906
* - &dma_buf_ops.unpin()
907
* - &dma_buf_ops.map_dma_buf()
908
* - &dma_buf_ops.unmap_dma_buf()
909
* - &dma_buf_ops.vmap()
910
* - &dma_buf_ops.vunmap()
911
*
912
* 3. Exporters must hold the dma-buf reservation lock when calling these
913
* functions:
914
*
915
* - dma_buf_move_notify()
916
*/
917
918
/**
919
* dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
920
* @dmabuf: [in] buffer to attach device to.
921
* @dev: [in] device to be attached.
922
* @importer_ops: [in] importer operations for the attachment
923
* @importer_priv: [in] importer private pointer for the attachment
924
*
925
* Returns struct dma_buf_attachment pointer for this attachment. Attachments
926
* must be cleaned up by calling dma_buf_detach().
927
*
928
* Optionally this calls &dma_buf_ops.attach to allow device-specific attach
929
* functionality.
930
*
931
* Returns:
932
*
933
* A pointer to newly created &dma_buf_attachment on success, or a negative
934
* error code wrapped into a pointer on failure.
935
*
936
* Note that this can fail if the backing storage of @dmabuf is in a place not
937
* accessible to @dev, and cannot be moved to a more suitable place. This is
938
* indicated with the error code -EBUSY.
939
*/
940
struct dma_buf_attachment *
941
dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
942
const struct dma_buf_attach_ops *importer_ops,
943
void *importer_priv)
944
{
945
struct dma_buf_attachment *attach;
946
int ret;
947
948
if (WARN_ON(!dmabuf || !dev))
949
return ERR_PTR(-EINVAL);
950
951
if (WARN_ON(importer_ops && !importer_ops->move_notify))
952
return ERR_PTR(-EINVAL);
953
954
attach = kzalloc(sizeof(*attach), GFP_KERNEL);
955
if (!attach)
956
return ERR_PTR(-ENOMEM);
957
958
attach->dev = dev;
959
attach->dmabuf = dmabuf;
960
if (importer_ops)
961
attach->peer2peer = importer_ops->allow_peer2peer;
962
attach->importer_ops = importer_ops;
963
attach->importer_priv = importer_priv;
964
965
if (dmabuf->ops->attach) {
966
ret = dmabuf->ops->attach(dmabuf, attach);
967
if (ret)
968
goto err_attach;
969
}
970
dma_resv_lock(dmabuf->resv, NULL);
971
list_add(&attach->node, &dmabuf->attachments);
972
dma_resv_unlock(dmabuf->resv);
973
974
return attach;
975
976
err_attach:
977
kfree(attach);
978
return ERR_PTR(ret);
979
}
980
EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, "DMA_BUF");
981
982
/**
983
* dma_buf_attach - Wrapper for dma_buf_dynamic_attach
984
* @dmabuf: [in] buffer to attach device to.
985
* @dev: [in] device to be attached.
986
*
987
* Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
988
* mapping.
989
*/
990
struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
991
struct device *dev)
992
{
993
return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
994
}
995
EXPORT_SYMBOL_NS_GPL(dma_buf_attach, "DMA_BUF");
996
997
/**
998
* dma_buf_detach - Remove the given attachment from dmabuf's attachments list
999
* @dmabuf: [in] buffer to detach from.
1000
* @attach: [in] attachment to be detached; is free'd after this call.
1001
*
1002
* Clean up a device attachment obtained by calling dma_buf_attach().
1003
*
1004
* Optionally this calls &dma_buf_ops.detach for device-specific detach.
1005
*/
1006
void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
1007
{
1008
if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf))
1009
return;
1010
1011
dma_resv_lock(dmabuf->resv, NULL);
1012
list_del(&attach->node);
1013
dma_resv_unlock(dmabuf->resv);
1014
1015
if (dmabuf->ops->detach)
1016
dmabuf->ops->detach(dmabuf, attach);
1017
1018
kfree(attach);
1019
}
1020
EXPORT_SYMBOL_NS_GPL(dma_buf_detach, "DMA_BUF");
1021
1022
/**
1023
* dma_buf_pin - Lock down the DMA-buf
1024
* @attach: [in] attachment which should be pinned
1025
*
1026
* Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1027
* call this, and only for limited use cases like scanout and not for temporary
1028
* pin operations. It is not permitted to allow userspace to pin arbitrary
1029
* amounts of buffers through this interface.
1030
*
1031
* Buffers must be unpinned by calling dma_buf_unpin().
1032
*
1033
* Returns:
1034
* 0 on success, negative error code on failure.
1035
*/
1036
int dma_buf_pin(struct dma_buf_attachment *attach)
1037
{
1038
struct dma_buf *dmabuf = attach->dmabuf;
1039
int ret = 0;
1040
1041
WARN_ON(!attach->importer_ops);
1042
1043
dma_resv_assert_held(dmabuf->resv);
1044
1045
if (dmabuf->ops->pin)
1046
ret = dmabuf->ops->pin(attach);
1047
1048
return ret;
1049
}
1050
EXPORT_SYMBOL_NS_GPL(dma_buf_pin, "DMA_BUF");
1051
1052
/**
1053
* dma_buf_unpin - Unpin a DMA-buf
1054
* @attach: [in] attachment which should be unpinned
1055
*
1056
* This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1057
* any mapping of @attach again and inform the importer through
1058
* &dma_buf_attach_ops.move_notify.
1059
*/
1060
void dma_buf_unpin(struct dma_buf_attachment *attach)
1061
{
1062
struct dma_buf *dmabuf = attach->dmabuf;
1063
1064
WARN_ON(!attach->importer_ops);
1065
1066
dma_resv_assert_held(dmabuf->resv);
1067
1068
if (dmabuf->ops->unpin)
1069
dmabuf->ops->unpin(attach);
1070
}
1071
EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, "DMA_BUF");
1072
1073
/**
1074
* dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1075
* mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1076
* dma_buf_ops.
1077
* @attach: [in] attachment whose scatterlist is to be returned
1078
* @direction: [in] direction of DMA transfer
1079
*
1080
* Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1081
* on error. May return -EINTR if it is interrupted by a signal.
1082
*
1083
* On success, the DMA addresses and lengths in the returned scatterlist are
1084
* PAGE_SIZE aligned.
1085
*
1086
* A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1087
* the underlying backing storage is pinned for as long as a mapping exists,
1088
* therefore users/importers should not hold onto a mapping for undue amounts of
1089
* time.
1090
*
1091
* Important: Dynamic importers must wait for the exclusive fence of the struct
1092
* dma_resv attached to the DMA-BUF first.
1093
*/
1094
struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1095
enum dma_data_direction direction)
1096
{
1097
struct sg_table *sg_table;
1098
signed long ret;
1099
1100
might_sleep();
1101
1102
if (WARN_ON(!attach || !attach->dmabuf))
1103
return ERR_PTR(-EINVAL);
1104
1105
dma_resv_assert_held(attach->dmabuf->resv);
1106
1107
if (dma_buf_pin_on_map(attach)) {
1108
ret = attach->dmabuf->ops->pin(attach);
1109
/*
1110
* Catch exporters making buffers inaccessible even when
1111
* attachments preventing that exist.
1112
*/
1113
WARN_ON_ONCE(ret == -EBUSY);
1114
if (ret)
1115
return ERR_PTR(ret);
1116
}
1117
1118
sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
1119
if (!sg_table)
1120
sg_table = ERR_PTR(-ENOMEM);
1121
if (IS_ERR(sg_table))
1122
goto error_unpin;
1123
1124
/*
1125
* Importers with static attachments don't wait for fences.
1126
*/
1127
if (!dma_buf_attachment_is_dynamic(attach)) {
1128
ret = dma_resv_wait_timeout(attach->dmabuf->resv,
1129
DMA_RESV_USAGE_KERNEL, true,
1130
MAX_SCHEDULE_TIMEOUT);
1131
if (ret < 0)
1132
goto error_unmap;
1133
}
1134
mangle_sg_table(sg_table);
1135
1136
#ifdef CONFIG_DMA_API_DEBUG
1137
{
1138
struct scatterlist *sg;
1139
u64 addr;
1140
int len;
1141
int i;
1142
1143
for_each_sgtable_dma_sg(sg_table, sg, i) {
1144
addr = sg_dma_address(sg);
1145
len = sg_dma_len(sg);
1146
if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1147
pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1148
__func__, addr, len);
1149
}
1150
}
1151
}
1152
#endif /* CONFIG_DMA_API_DEBUG */
1153
return sg_table;
1154
1155
error_unmap:
1156
attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
1157
sg_table = ERR_PTR(ret);
1158
1159
error_unpin:
1160
if (dma_buf_pin_on_map(attach))
1161
attach->dmabuf->ops->unpin(attach);
1162
1163
return sg_table;
1164
}
1165
EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, "DMA_BUF");
1166
1167
/**
1168
* dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1169
* mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1170
* dma_buf_ops.
1171
* @attach: [in] attachment whose scatterlist is to be returned
1172
* @direction: [in] direction of DMA transfer
1173
*
1174
* Unlocked variant of dma_buf_map_attachment().
1175
*/
1176
struct sg_table *
1177
dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach,
1178
enum dma_data_direction direction)
1179
{
1180
struct sg_table *sg_table;
1181
1182
might_sleep();
1183
1184
if (WARN_ON(!attach || !attach->dmabuf))
1185
return ERR_PTR(-EINVAL);
1186
1187
dma_resv_lock(attach->dmabuf->resv, NULL);
1188
sg_table = dma_buf_map_attachment(attach, direction);
1189
dma_resv_unlock(attach->dmabuf->resv);
1190
1191
return sg_table;
1192
}
1193
EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, "DMA_BUF");
1194
1195
/**
1196
* dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1197
* deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1198
* dma_buf_ops.
1199
* @attach: [in] attachment to unmap buffer from
1200
* @sg_table: [in] scatterlist info of the buffer to unmap
1201
* @direction: [in] direction of DMA transfer
1202
*
1203
* This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1204
*/
1205
void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1206
struct sg_table *sg_table,
1207
enum dma_data_direction direction)
1208
{
1209
might_sleep();
1210
1211
if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1212
return;
1213
1214
dma_resv_assert_held(attach->dmabuf->resv);
1215
1216
mangle_sg_table(sg_table);
1217
attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
1218
1219
if (dma_buf_pin_on_map(attach))
1220
attach->dmabuf->ops->unpin(attach);
1221
}
1222
EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, "DMA_BUF");
1223
1224
/**
1225
* dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1226
* deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1227
* dma_buf_ops.
1228
* @attach: [in] attachment to unmap buffer from
1229
* @sg_table: [in] scatterlist info of the buffer to unmap
1230
* @direction: [in] direction of DMA transfer
1231
*
1232
* Unlocked variant of dma_buf_unmap_attachment().
1233
*/
1234
void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach,
1235
struct sg_table *sg_table,
1236
enum dma_data_direction direction)
1237
{
1238
might_sleep();
1239
1240
if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1241
return;
1242
1243
dma_resv_lock(attach->dmabuf->resv, NULL);
1244
dma_buf_unmap_attachment(attach, sg_table, direction);
1245
dma_resv_unlock(attach->dmabuf->resv);
1246
}
1247
EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, "DMA_BUF");
1248
1249
/**
1250
* dma_buf_move_notify - notify attachments that DMA-buf is moving
1251
*
1252
* @dmabuf: [in] buffer which is moving
1253
*
1254
* Informs all attachments that they need to destroy and recreate all their
1255
* mappings.
1256
*/
1257
void dma_buf_move_notify(struct dma_buf *dmabuf)
1258
{
1259
struct dma_buf_attachment *attach;
1260
1261
dma_resv_assert_held(dmabuf->resv);
1262
1263
list_for_each_entry(attach, &dmabuf->attachments, node)
1264
if (attach->importer_ops)
1265
attach->importer_ops->move_notify(attach);
1266
}
1267
EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, "DMA_BUF");
1268
1269
/**
1270
* DOC: cpu access
1271
*
1272
* There are multiple reasons for supporting CPU access to a dma buffer object:
1273
*
1274
* - Fallback operations in the kernel, for example when a device is connected
1275
* over USB and the kernel needs to shuffle the data around first before
1276
* sending it away. Cache coherency is handled by bracketing any transactions
1277
* with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1278
* access.
1279
*
1280
* Since for most kernel internal dma-buf accesses need the entire buffer, a
1281
* vmap interface is introduced. Note that on very old 32-bit architectures
1282
* vmalloc space might be limited and result in vmap calls failing.
1283
*
1284
* Interfaces:
1285
*
1286
* .. code-block:: c
1287
*
1288
* void *dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1289
* void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1290
*
1291
* The vmap call can fail if there is no vmap support in the exporter, or if
1292
* it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1293
* count for all vmap access and calls down into the exporter's vmap function
1294
* only when no vmapping exists, and only unmaps it once. Protection against
1295
* concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1296
*
1297
* - For full compatibility on the importer side with existing userspace
1298
* interfaces, which might already support mmap'ing buffers. This is needed in
1299
* many processing pipelines (e.g. feeding a software rendered image into a
1300
* hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1301
* framework already supported this and for DMA buffer file descriptors to
1302
* replace ION buffers mmap support was needed.
1303
*
1304
* There is no special interfaces, userspace simply calls mmap on the dma-buf
1305
* fd. But like for CPU access there's a need to bracket the actual access,
1306
* which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1307
* DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1308
* be restarted.
1309
*
1310
* Some systems might need some sort of cache coherency management e.g. when
1311
* CPU and GPU domains are being accessed through dma-buf at the same time.
1312
* To circumvent this problem there are begin/end coherency markers, that
1313
* forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1314
* can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1315
* sequence would be used like following:
1316
*
1317
* - mmap dma-buf fd
1318
* - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1319
* to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1320
* want (with the new data being consumed by say the GPU or the scanout
1321
* device)
1322
* - munmap once you don't need the buffer any more
1323
*
1324
* For correctness and optimal performance, it is always required to use
1325
* SYNC_START and SYNC_END before and after, respectively, when accessing the
1326
* mapped address. Userspace cannot rely on coherent access, even when there
1327
* are systems where it just works without calling these ioctls.
1328
*
1329
* - And as a CPU fallback in userspace processing pipelines.
1330
*
1331
* Similar to the motivation for kernel cpu access it is again important that
1332
* the userspace code of a given importing subsystem can use the same
1333
* interfaces with a imported dma-buf buffer object as with a native buffer
1334
* object. This is especially important for drm where the userspace part of
1335
* contemporary OpenGL, X, and other drivers is huge, and reworking them to
1336
* use a different way to mmap a buffer rather invasive.
1337
*
1338
* The assumption in the current dma-buf interfaces is that redirecting the
1339
* initial mmap is all that's needed. A survey of some of the existing
1340
* subsystems shows that no driver seems to do any nefarious thing like
1341
* syncing up with outstanding asynchronous processing on the device or
1342
* allocating special resources at fault time. So hopefully this is good
1343
* enough, since adding interfaces to intercept pagefaults and allow pte
1344
* shootdowns would increase the complexity quite a bit.
1345
*
1346
* Interface:
1347
*
1348
* .. code-block:: c
1349
*
1350
* int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *, unsigned long);
1351
*
1352
* If the importing subsystem simply provides a special-purpose mmap call to
1353
* set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1354
* equally achieve that for a dma-buf object.
1355
*/
1356
1357
static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1358
enum dma_data_direction direction)
1359
{
1360
bool write = (direction == DMA_BIDIRECTIONAL ||
1361
direction == DMA_TO_DEVICE);
1362
struct dma_resv *resv = dmabuf->resv;
1363
long ret;
1364
1365
/* Wait on any implicit rendering fences */
1366
ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1367
true, MAX_SCHEDULE_TIMEOUT);
1368
if (ret < 0)
1369
return ret;
1370
1371
return 0;
1372
}
1373
1374
/**
1375
* dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1376
* cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1377
* preparations. Coherency is only guaranteed in the specified range for the
1378
* specified access direction.
1379
* @dmabuf: [in] buffer to prepare cpu access for.
1380
* @direction: [in] direction of access.
1381
*
1382
* After the cpu access is complete the caller should call
1383
* dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is
1384
* it guaranteed to be coherent with other DMA access.
1385
*
1386
* This function will also wait for any DMA transactions tracked through
1387
* implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1388
* synchronization this function will only ensure cache coherency, callers must
1389
* ensure synchronization with such DMA transactions on their own.
1390
*
1391
* Can return negative error values, returns 0 on success.
1392
*/
1393
int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1394
enum dma_data_direction direction)
1395
{
1396
int ret = 0;
1397
1398
if (WARN_ON(!dmabuf))
1399
return -EINVAL;
1400
1401
might_lock(&dmabuf->resv->lock.base);
1402
1403
if (dmabuf->ops->begin_cpu_access)
1404
ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1405
1406
/* Ensure that all fences are waited upon - but we first allow
1407
* the native handler the chance to do so more efficiently if it
1408
* chooses. A double invocation here will be reasonably cheap no-op.
1409
*/
1410
if (ret == 0)
1411
ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1412
1413
return ret;
1414
}
1415
EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, "DMA_BUF");
1416
1417
/**
1418
* dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1419
* cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1420
* actions. Coherency is only guaranteed in the specified range for the
1421
* specified access direction.
1422
* @dmabuf: [in] buffer to complete cpu access for.
1423
* @direction: [in] direction of access.
1424
*
1425
* This terminates CPU access started with dma_buf_begin_cpu_access().
1426
*
1427
* Can return negative error values, returns 0 on success.
1428
*/
1429
int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1430
enum dma_data_direction direction)
1431
{
1432
int ret = 0;
1433
1434
WARN_ON(!dmabuf);
1435
1436
might_lock(&dmabuf->resv->lock.base);
1437
1438
if (dmabuf->ops->end_cpu_access)
1439
ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1440
1441
return ret;
1442
}
1443
EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, "DMA_BUF");
1444
1445
1446
/**
1447
* dma_buf_mmap - Setup up a userspace mmap with the given vma
1448
* @dmabuf: [in] buffer that should back the vma
1449
* @vma: [in] vma for the mmap
1450
* @pgoff: [in] offset in pages where this mmap should start within the
1451
* dma-buf buffer.
1452
*
1453
* This function adjusts the passed in vma so that it points at the file of the
1454
* dma_buf operation. It also adjusts the starting pgoff and does bounds
1455
* checking on the size of the vma. Then it calls the exporters mmap function to
1456
* set up the mapping.
1457
*
1458
* Can return negative error values, returns 0 on success.
1459
*/
1460
int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1461
unsigned long pgoff)
1462
{
1463
if (WARN_ON(!dmabuf || !vma))
1464
return -EINVAL;
1465
1466
/* check if buffer supports mmap */
1467
if (!dmabuf->ops->mmap)
1468
return -EINVAL;
1469
1470
/* check for offset overflow */
1471
if (pgoff + vma_pages(vma) < pgoff)
1472
return -EOVERFLOW;
1473
1474
/* check for overflowing the buffer's size */
1475
if (pgoff + vma_pages(vma) >
1476
dmabuf->size >> PAGE_SHIFT)
1477
return -EINVAL;
1478
1479
/* readjust the vma */
1480
vma_set_file(vma, dmabuf->file);
1481
vma->vm_pgoff = pgoff;
1482
1483
return dmabuf->ops->mmap(dmabuf, vma);
1484
}
1485
EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, "DMA_BUF");
1486
1487
/**
1488
* dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1489
* address space. Same restrictions as for vmap and friends apply.
1490
* @dmabuf: [in] buffer to vmap
1491
* @map: [out] returns the vmap pointer
1492
*
1493
* This call may fail due to lack of virtual mapping address space.
1494
* These calls are optional in drivers. The intended use for them
1495
* is for mapping objects linear in kernel space for high use objects.
1496
*
1497
* To ensure coherency users must call dma_buf_begin_cpu_access() and
1498
* dma_buf_end_cpu_access() around any cpu access performed through this
1499
* mapping.
1500
*
1501
* Returns 0 on success, or a negative errno code otherwise.
1502
*/
1503
int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1504
{
1505
struct iosys_map ptr;
1506
int ret;
1507
1508
iosys_map_clear(map);
1509
1510
if (WARN_ON(!dmabuf))
1511
return -EINVAL;
1512
1513
dma_resv_assert_held(dmabuf->resv);
1514
1515
if (!dmabuf->ops->vmap)
1516
return -EINVAL;
1517
1518
if (dmabuf->vmapping_counter) {
1519
dmabuf->vmapping_counter++;
1520
BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1521
*map = dmabuf->vmap_ptr;
1522
return 0;
1523
}
1524
1525
BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1526
1527
ret = dmabuf->ops->vmap(dmabuf, &ptr);
1528
if (WARN_ON_ONCE(ret))
1529
return ret;
1530
1531
dmabuf->vmap_ptr = ptr;
1532
dmabuf->vmapping_counter = 1;
1533
1534
*map = dmabuf->vmap_ptr;
1535
1536
return 0;
1537
}
1538
EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, "DMA_BUF");
1539
1540
/**
1541
* dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1542
* address space. Same restrictions as for vmap and friends apply.
1543
* @dmabuf: [in] buffer to vmap
1544
* @map: [out] returns the vmap pointer
1545
*
1546
* Unlocked version of dma_buf_vmap()
1547
*
1548
* Returns 0 on success, or a negative errno code otherwise.
1549
*/
1550
int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1551
{
1552
int ret;
1553
1554
iosys_map_clear(map);
1555
1556
if (WARN_ON(!dmabuf))
1557
return -EINVAL;
1558
1559
dma_resv_lock(dmabuf->resv, NULL);
1560
ret = dma_buf_vmap(dmabuf, map);
1561
dma_resv_unlock(dmabuf->resv);
1562
1563
return ret;
1564
}
1565
EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, "DMA_BUF");
1566
1567
/**
1568
* dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1569
* @dmabuf: [in] buffer to vunmap
1570
* @map: [in] vmap pointer to vunmap
1571
*/
1572
void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1573
{
1574
if (WARN_ON(!dmabuf))
1575
return;
1576
1577
dma_resv_assert_held(dmabuf->resv);
1578
1579
BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1580
BUG_ON(dmabuf->vmapping_counter == 0);
1581
BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1582
1583
if (--dmabuf->vmapping_counter == 0) {
1584
if (dmabuf->ops->vunmap)
1585
dmabuf->ops->vunmap(dmabuf, map);
1586
iosys_map_clear(&dmabuf->vmap_ptr);
1587
}
1588
}
1589
EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, "DMA_BUF");
1590
1591
/**
1592
* dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1593
* @dmabuf: [in] buffer to vunmap
1594
* @map: [in] vmap pointer to vunmap
1595
*/
1596
void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1597
{
1598
if (WARN_ON(!dmabuf))
1599
return;
1600
1601
dma_resv_lock(dmabuf->resv, NULL);
1602
dma_buf_vunmap(dmabuf, map);
1603
dma_resv_unlock(dmabuf->resv);
1604
}
1605
EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, "DMA_BUF");
1606
1607
#ifdef CONFIG_DEBUG_FS
1608
static int dma_buf_debug_show(struct seq_file *s, void *unused)
1609
{
1610
struct dma_buf *buf_obj;
1611
struct dma_buf_attachment *attach_obj;
1612
int count = 0, attach_count;
1613
size_t size = 0;
1614
int ret;
1615
1616
ret = mutex_lock_interruptible(&dmabuf_list_mutex);
1617
1618
if (ret)
1619
return ret;
1620
1621
seq_puts(s, "\nDma-buf Objects:\n");
1622
seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1623
"size", "flags", "mode", "count", "ino");
1624
1625
list_for_each_entry(buf_obj, &dmabuf_list, list_node) {
1626
1627
ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1628
if (ret)
1629
goto error_unlock;
1630
1631
1632
spin_lock(&buf_obj->name_lock);
1633
seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1634
buf_obj->size,
1635
buf_obj->file->f_flags, buf_obj->file->f_mode,
1636
file_count(buf_obj->file),
1637
buf_obj->exp_name,
1638
file_inode(buf_obj->file)->i_ino,
1639
buf_obj->name ?: "<none>");
1640
spin_unlock(&buf_obj->name_lock);
1641
1642
dma_resv_describe(buf_obj->resv, s);
1643
1644
seq_puts(s, "\tAttached Devices:\n");
1645
attach_count = 0;
1646
1647
list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1648
seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1649
attach_count++;
1650
}
1651
dma_resv_unlock(buf_obj->resv);
1652
1653
seq_printf(s, "Total %d devices attached\n\n",
1654
attach_count);
1655
1656
count++;
1657
size += buf_obj->size;
1658
}
1659
1660
seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1661
1662
mutex_unlock(&dmabuf_list_mutex);
1663
return 0;
1664
1665
error_unlock:
1666
mutex_unlock(&dmabuf_list_mutex);
1667
return ret;
1668
}
1669
1670
DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1671
1672
static struct dentry *dma_buf_debugfs_dir;
1673
1674
static int dma_buf_init_debugfs(void)
1675
{
1676
struct dentry *d;
1677
int err = 0;
1678
1679
d = debugfs_create_dir("dma_buf", NULL);
1680
if (IS_ERR(d))
1681
return PTR_ERR(d);
1682
1683
dma_buf_debugfs_dir = d;
1684
1685
d = debugfs_create_file("bufinfo", 0444, dma_buf_debugfs_dir,
1686
NULL, &dma_buf_debug_fops);
1687
if (IS_ERR(d)) {
1688
pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1689
debugfs_remove_recursive(dma_buf_debugfs_dir);
1690
dma_buf_debugfs_dir = NULL;
1691
err = PTR_ERR(d);
1692
}
1693
1694
return err;
1695
}
1696
1697
static void dma_buf_uninit_debugfs(void)
1698
{
1699
debugfs_remove_recursive(dma_buf_debugfs_dir);
1700
}
1701
#else
1702
static inline int dma_buf_init_debugfs(void)
1703
{
1704
return 0;
1705
}
1706
static inline void dma_buf_uninit_debugfs(void)
1707
{
1708
}
1709
#endif
1710
1711
static int __init dma_buf_init(void)
1712
{
1713
int ret;
1714
1715
ret = dma_buf_init_sysfs_statistics();
1716
if (ret)
1717
return ret;
1718
1719
dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1720
if (IS_ERR(dma_buf_mnt))
1721
return PTR_ERR(dma_buf_mnt);
1722
1723
dma_buf_init_debugfs();
1724
return 0;
1725
}
1726
subsys_initcall(dma_buf_init);
1727
1728
static void __exit dma_buf_deinit(void)
1729
{
1730
dma_buf_uninit_debugfs();
1731
kern_unmount(dma_buf_mnt);
1732
dma_buf_uninit_sysfs_statistics();
1733
}
1734
__exitcall(dma_buf_deinit);
1735
1736