Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/dma-buf/heaps/system_heap.c
49695 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* DMABUF System heap exporter
4
*
5
* Copyright (C) 2011 Google, Inc.
6
* Copyright (C) 2019, 2020 Linaro Ltd.
7
*
8
* Portions based off of Andrew Davis' SRAM heap:
9
* Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
10
* Andrew F. Davis <[email protected]>
11
*/
12
13
#include <linux/dma-buf.h>
14
#include <linux/dma-mapping.h>
15
#include <linux/dma-heap.h>
16
#include <linux/err.h>
17
#include <linux/highmem.h>
18
#include <linux/mm.h>
19
#include <linux/module.h>
20
#include <linux/scatterlist.h>
21
#include <linux/slab.h>
22
#include <linux/vmalloc.h>
23
24
struct system_heap_buffer {
25
struct dma_heap *heap;
26
struct list_head attachments;
27
struct mutex lock;
28
unsigned long len;
29
struct sg_table sg_table;
30
int vmap_cnt;
31
void *vaddr;
32
};
33
34
struct dma_heap_attachment {
35
struct device *dev;
36
struct sg_table table;
37
struct list_head list;
38
bool mapped;
39
};
40
41
#define LOW_ORDER_GFP (GFP_HIGHUSER | __GFP_ZERO)
42
#define HIGH_ORDER_GFP (((GFP_HIGHUSER | __GFP_ZERO | __GFP_NOWARN \
43
| __GFP_NORETRY) & ~__GFP_RECLAIM) \
44
| __GFP_COMP)
45
static gfp_t order_flags[] = {HIGH_ORDER_GFP, HIGH_ORDER_GFP, LOW_ORDER_GFP};
46
/*
47
* The selection of the orders used for allocation (1MB, 64K, 4K) is designed
48
* to match with the sizes often found in IOMMUs. Using order 4 pages instead
49
* of order 0 pages can significantly improve the performance of many IOMMUs
50
* by reducing TLB pressure and time spent updating page tables.
51
*/
52
static const unsigned int orders[] = {8, 4, 0};
53
#define NUM_ORDERS ARRAY_SIZE(orders)
54
55
static int dup_sg_table(struct sg_table *from, struct sg_table *to)
56
{
57
struct scatterlist *sg, *new_sg;
58
int ret, i;
59
60
ret = sg_alloc_table(to, from->orig_nents, GFP_KERNEL);
61
if (ret)
62
return ret;
63
64
new_sg = to->sgl;
65
for_each_sgtable_sg(from, sg, i) {
66
sg_set_page(new_sg, sg_page(sg), sg->length, sg->offset);
67
new_sg = sg_next(new_sg);
68
}
69
70
return 0;
71
}
72
73
static int system_heap_attach(struct dma_buf *dmabuf,
74
struct dma_buf_attachment *attachment)
75
{
76
struct system_heap_buffer *buffer = dmabuf->priv;
77
struct dma_heap_attachment *a;
78
int ret;
79
80
a = kzalloc(sizeof(*a), GFP_KERNEL);
81
if (!a)
82
return -ENOMEM;
83
84
ret = dup_sg_table(&buffer->sg_table, &a->table);
85
if (ret) {
86
kfree(a);
87
return ret;
88
}
89
90
a->dev = attachment->dev;
91
INIT_LIST_HEAD(&a->list);
92
a->mapped = false;
93
94
attachment->priv = a;
95
96
mutex_lock(&buffer->lock);
97
list_add(&a->list, &buffer->attachments);
98
mutex_unlock(&buffer->lock);
99
100
return 0;
101
}
102
103
static void system_heap_detach(struct dma_buf *dmabuf,
104
struct dma_buf_attachment *attachment)
105
{
106
struct system_heap_buffer *buffer = dmabuf->priv;
107
struct dma_heap_attachment *a = attachment->priv;
108
109
mutex_lock(&buffer->lock);
110
list_del(&a->list);
111
mutex_unlock(&buffer->lock);
112
113
sg_free_table(&a->table);
114
kfree(a);
115
}
116
117
static struct sg_table *system_heap_map_dma_buf(struct dma_buf_attachment *attachment,
118
enum dma_data_direction direction)
119
{
120
struct dma_heap_attachment *a = attachment->priv;
121
struct sg_table *table = &a->table;
122
int ret;
123
124
ret = dma_map_sgtable(attachment->dev, table, direction, 0);
125
if (ret)
126
return ERR_PTR(ret);
127
128
a->mapped = true;
129
return table;
130
}
131
132
static void system_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
133
struct sg_table *table,
134
enum dma_data_direction direction)
135
{
136
struct dma_heap_attachment *a = attachment->priv;
137
138
a->mapped = false;
139
dma_unmap_sgtable(attachment->dev, table, direction, 0);
140
}
141
142
static int system_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
143
enum dma_data_direction direction)
144
{
145
struct system_heap_buffer *buffer = dmabuf->priv;
146
struct dma_heap_attachment *a;
147
148
mutex_lock(&buffer->lock);
149
150
if (buffer->vmap_cnt)
151
invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
152
153
list_for_each_entry(a, &buffer->attachments, list) {
154
if (!a->mapped)
155
continue;
156
dma_sync_sgtable_for_cpu(a->dev, &a->table, direction);
157
}
158
mutex_unlock(&buffer->lock);
159
160
return 0;
161
}
162
163
static int system_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
164
enum dma_data_direction direction)
165
{
166
struct system_heap_buffer *buffer = dmabuf->priv;
167
struct dma_heap_attachment *a;
168
169
mutex_lock(&buffer->lock);
170
171
if (buffer->vmap_cnt)
172
flush_kernel_vmap_range(buffer->vaddr, buffer->len);
173
174
list_for_each_entry(a, &buffer->attachments, list) {
175
if (!a->mapped)
176
continue;
177
dma_sync_sgtable_for_device(a->dev, &a->table, direction);
178
}
179
mutex_unlock(&buffer->lock);
180
181
return 0;
182
}
183
184
static int system_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
185
{
186
struct system_heap_buffer *buffer = dmabuf->priv;
187
struct sg_table *table = &buffer->sg_table;
188
unsigned long addr = vma->vm_start;
189
unsigned long pgoff = vma->vm_pgoff;
190
struct scatterlist *sg;
191
int i, ret;
192
193
for_each_sgtable_sg(table, sg, i) {
194
unsigned long n = sg->length >> PAGE_SHIFT;
195
196
if (pgoff < n)
197
break;
198
pgoff -= n;
199
}
200
201
for (; sg && addr < vma->vm_end; sg = sg_next(sg)) {
202
unsigned long n = (sg->length >> PAGE_SHIFT) - pgoff;
203
struct page *page = sg_page(sg) + pgoff;
204
unsigned long size = n << PAGE_SHIFT;
205
206
if (addr + size > vma->vm_end)
207
size = vma->vm_end - addr;
208
209
ret = remap_pfn_range(vma, addr, page_to_pfn(page),
210
size, vma->vm_page_prot);
211
if (ret)
212
return ret;
213
214
addr += size;
215
pgoff = 0;
216
}
217
218
return 0;
219
}
220
221
static void *system_heap_do_vmap(struct system_heap_buffer *buffer)
222
{
223
struct sg_table *table = &buffer->sg_table;
224
int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;
225
struct page **pages = vmalloc(sizeof(struct page *) * npages);
226
struct page **tmp = pages;
227
struct sg_page_iter piter;
228
void *vaddr;
229
230
if (!pages)
231
return ERR_PTR(-ENOMEM);
232
233
for_each_sgtable_page(table, &piter, 0) {
234
WARN_ON(tmp - pages >= npages);
235
*tmp++ = sg_page_iter_page(&piter);
236
}
237
238
vaddr = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
239
vfree(pages);
240
241
if (!vaddr)
242
return ERR_PTR(-ENOMEM);
243
244
return vaddr;
245
}
246
247
static int system_heap_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
248
{
249
struct system_heap_buffer *buffer = dmabuf->priv;
250
void *vaddr;
251
int ret = 0;
252
253
mutex_lock(&buffer->lock);
254
if (buffer->vmap_cnt) {
255
buffer->vmap_cnt++;
256
iosys_map_set_vaddr(map, buffer->vaddr);
257
goto out;
258
}
259
260
vaddr = system_heap_do_vmap(buffer);
261
if (IS_ERR(vaddr)) {
262
ret = PTR_ERR(vaddr);
263
goto out;
264
}
265
266
buffer->vaddr = vaddr;
267
buffer->vmap_cnt++;
268
iosys_map_set_vaddr(map, buffer->vaddr);
269
out:
270
mutex_unlock(&buffer->lock);
271
272
return ret;
273
}
274
275
static void system_heap_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
276
{
277
struct system_heap_buffer *buffer = dmabuf->priv;
278
279
mutex_lock(&buffer->lock);
280
if (!--buffer->vmap_cnt) {
281
vunmap(buffer->vaddr);
282
buffer->vaddr = NULL;
283
}
284
mutex_unlock(&buffer->lock);
285
iosys_map_clear(map);
286
}
287
288
static void system_heap_dma_buf_release(struct dma_buf *dmabuf)
289
{
290
struct system_heap_buffer *buffer = dmabuf->priv;
291
struct sg_table *table;
292
struct scatterlist *sg;
293
int i;
294
295
table = &buffer->sg_table;
296
for_each_sgtable_sg(table, sg, i) {
297
struct page *page = sg_page(sg);
298
299
__free_pages(page, compound_order(page));
300
}
301
sg_free_table(table);
302
kfree(buffer);
303
}
304
305
static const struct dma_buf_ops system_heap_buf_ops = {
306
.attach = system_heap_attach,
307
.detach = system_heap_detach,
308
.map_dma_buf = system_heap_map_dma_buf,
309
.unmap_dma_buf = system_heap_unmap_dma_buf,
310
.begin_cpu_access = system_heap_dma_buf_begin_cpu_access,
311
.end_cpu_access = system_heap_dma_buf_end_cpu_access,
312
.mmap = system_heap_mmap,
313
.vmap = system_heap_vmap,
314
.vunmap = system_heap_vunmap,
315
.release = system_heap_dma_buf_release,
316
};
317
318
static struct page *alloc_largest_available(unsigned long size,
319
unsigned int max_order)
320
{
321
struct page *page;
322
int i;
323
324
for (i = 0; i < NUM_ORDERS; i++) {
325
if (size < (PAGE_SIZE << orders[i]))
326
continue;
327
if (max_order < orders[i])
328
continue;
329
330
page = alloc_pages(order_flags[i], orders[i]);
331
if (!page)
332
continue;
333
return page;
334
}
335
return NULL;
336
}
337
338
static struct dma_buf *system_heap_allocate(struct dma_heap *heap,
339
unsigned long len,
340
u32 fd_flags,
341
u64 heap_flags)
342
{
343
struct system_heap_buffer *buffer;
344
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
345
unsigned long size_remaining = len;
346
unsigned int max_order = orders[0];
347
struct dma_buf *dmabuf;
348
struct sg_table *table;
349
struct scatterlist *sg;
350
struct list_head pages;
351
struct page *page, *tmp_page;
352
int i, ret = -ENOMEM;
353
354
buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
355
if (!buffer)
356
return ERR_PTR(-ENOMEM);
357
358
INIT_LIST_HEAD(&buffer->attachments);
359
mutex_init(&buffer->lock);
360
buffer->heap = heap;
361
buffer->len = len;
362
363
INIT_LIST_HEAD(&pages);
364
i = 0;
365
while (size_remaining > 0) {
366
/*
367
* Avoid trying to allocate memory if the process
368
* has been killed by SIGKILL
369
*/
370
if (fatal_signal_pending(current)) {
371
ret = -EINTR;
372
goto free_buffer;
373
}
374
375
page = alloc_largest_available(size_remaining, max_order);
376
if (!page)
377
goto free_buffer;
378
379
list_add_tail(&page->lru, &pages);
380
size_remaining -= page_size(page);
381
max_order = compound_order(page);
382
i++;
383
}
384
385
table = &buffer->sg_table;
386
if (sg_alloc_table(table, i, GFP_KERNEL))
387
goto free_buffer;
388
389
sg = table->sgl;
390
list_for_each_entry_safe(page, tmp_page, &pages, lru) {
391
sg_set_page(sg, page, page_size(page), 0);
392
sg = sg_next(sg);
393
list_del(&page->lru);
394
}
395
396
/* create the dmabuf */
397
exp_info.exp_name = dma_heap_get_name(heap);
398
exp_info.ops = &system_heap_buf_ops;
399
exp_info.size = buffer->len;
400
exp_info.flags = fd_flags;
401
exp_info.priv = buffer;
402
dmabuf = dma_buf_export(&exp_info);
403
if (IS_ERR(dmabuf)) {
404
ret = PTR_ERR(dmabuf);
405
goto free_pages;
406
}
407
return dmabuf;
408
409
free_pages:
410
for_each_sgtable_sg(table, sg, i) {
411
struct page *p = sg_page(sg);
412
413
__free_pages(p, compound_order(p));
414
}
415
sg_free_table(table);
416
free_buffer:
417
list_for_each_entry_safe(page, tmp_page, &pages, lru)
418
__free_pages(page, compound_order(page));
419
kfree(buffer);
420
421
return ERR_PTR(ret);
422
}
423
424
static const struct dma_heap_ops system_heap_ops = {
425
.allocate = system_heap_allocate,
426
};
427
428
static int __init system_heap_create(void)
429
{
430
struct dma_heap_export_info exp_info;
431
struct dma_heap *sys_heap;
432
433
exp_info.name = "system";
434
exp_info.ops = &system_heap_ops;
435
exp_info.priv = NULL;
436
437
sys_heap = dma_heap_add(&exp_info);
438
if (IS_ERR(sys_heap))
439
return PTR_ERR(sys_heap);
440
441
return 0;
442
}
443
module_init(system_heap_create);
444
445