Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/dma/amba-pl08x.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright (c) 2006 ARM Ltd.
4
* Copyright (c) 2010 ST-Ericsson SA
5
* Copyright (c) 2017 Linaro Ltd.
6
*
7
* Author: Peter Pearse <[email protected]>
8
* Author: Linus Walleij <[email protected]>
9
*
10
* Documentation: ARM DDI 0196G == PL080
11
* Documentation: ARM DDI 0218E == PL081
12
* Documentation: S3C6410 User's Manual == PL080S
13
*
14
* PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
15
* channel.
16
*
17
* The PL080 has 8 channels available for simultaneous use, and the PL081
18
* has only two channels. So on these DMA controllers the number of channels
19
* and the number of incoming DMA signals are two totally different things.
20
* It is usually not possible to theoretically handle all physical signals,
21
* so a multiplexing scheme with possible denial of use is necessary.
22
*
23
* The PL080 has a dual bus master, PL081 has a single master.
24
*
25
* PL080S is a version modified by Samsung and used in S3C64xx SoCs.
26
* It differs in following aspects:
27
* - CH_CONFIG register at different offset,
28
* - separate CH_CONTROL2 register for transfer size,
29
* - bigger maximum transfer size,
30
* - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
31
* - no support for peripheral flow control.
32
*
33
* Memory to peripheral transfer may be visualized as
34
* Get data from memory to DMAC
35
* Until no data left
36
* On burst request from peripheral
37
* Destination burst from DMAC to peripheral
38
* Clear burst request
39
* Raise terminal count interrupt
40
*
41
* For peripherals with a FIFO:
42
* Source burst size == half the depth of the peripheral FIFO
43
* Destination burst size == the depth of the peripheral FIFO
44
*
45
* (Bursts are irrelevant for mem to mem transfers - there are no burst
46
* signals, the DMA controller will simply facilitate its AHB master.)
47
*
48
* ASSUMES default (little) endianness for DMA transfers
49
*
50
* The PL08x has two flow control settings:
51
* - DMAC flow control: the transfer size defines the number of transfers
52
* which occur for the current LLI entry, and the DMAC raises TC at the
53
* end of every LLI entry. Observed behaviour shows the DMAC listening
54
* to both the BREQ and SREQ signals (contrary to documented),
55
* transferring data if either is active. The LBREQ and LSREQ signals
56
* are ignored.
57
*
58
* - Peripheral flow control: the transfer size is ignored (and should be
59
* zero). The data is transferred from the current LLI entry, until
60
* after the final transfer signalled by LBREQ or LSREQ. The DMAC
61
* will then move to the next LLI entry. Unsupported by PL080S.
62
*/
63
#include <linux/amba/bus.h>
64
#include <linux/amba/pl08x.h>
65
#include <linux/debugfs.h>
66
#include <linux/delay.h>
67
#include <linux/device.h>
68
#include <linux/dmaengine.h>
69
#include <linux/dmapool.h>
70
#include <linux/dma-mapping.h>
71
#include <linux/export.h>
72
#include <linux/init.h>
73
#include <linux/interrupt.h>
74
#include <linux/module.h>
75
#include <linux/of.h>
76
#include <linux/of_dma.h>
77
#include <linux/pm_runtime.h>
78
#include <linux/seq_file.h>
79
#include <linux/slab.h>
80
#include <linux/amba/pl080.h>
81
82
#include "dmaengine.h"
83
#include "virt-dma.h"
84
85
#define DRIVER_NAME "pl08xdmac"
86
87
#define PL80X_DMA_BUSWIDTHS \
88
BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
89
BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
90
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
91
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
92
93
static struct amba_driver pl08x_amba_driver;
94
struct pl08x_driver_data;
95
96
/**
97
* struct vendor_data - vendor-specific config parameters for PL08x derivatives
98
* @config_offset: offset to the configuration register
99
* @channels: the number of channels available in this variant
100
* @signals: the number of request signals available from the hardware
101
* @dualmaster: whether this version supports dual AHB masters or not.
102
* @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
103
* channels have Nomadik security extension bits that need to be checked
104
* for permission before use and some registers are missing
105
* @pl080s: whether this variant is a Samsung PL080S, which has separate
106
* register and LLI word for transfer size.
107
* @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
108
* @max_transfer_size: the maximum single element transfer size for this
109
* PL08x variant.
110
*/
111
struct vendor_data {
112
u8 config_offset;
113
u8 channels;
114
u8 signals;
115
bool dualmaster;
116
bool nomadik;
117
bool pl080s;
118
bool ftdmac020;
119
u32 max_transfer_size;
120
};
121
122
/**
123
* struct pl08x_bus_data - information of source or destination
124
* busses for a transfer
125
* @addr: current address
126
* @maxwidth: the maximum width of a transfer on this bus
127
* @buswidth: the width of this bus in bytes: 1, 2 or 4
128
*/
129
struct pl08x_bus_data {
130
dma_addr_t addr;
131
u8 maxwidth;
132
u8 buswidth;
133
};
134
135
#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
136
137
/**
138
* struct pl08x_phy_chan - holder for the physical channels
139
* @id: physical index to this channel
140
* @base: memory base address for this physical channel
141
* @reg_config: configuration address for this physical channel
142
* @reg_control: control address for this physical channel
143
* @reg_src: transfer source address register
144
* @reg_dst: transfer destination address register
145
* @reg_lli: transfer LLI address register
146
* @reg_busy: if the variant has a special per-channel busy register,
147
* this contains a pointer to it
148
* @lock: a lock to use when altering an instance of this struct
149
* @serving: the virtual channel currently being served by this physical
150
* channel
151
* @locked: channel unavailable for the system, e.g. dedicated to secure
152
* world
153
* @ftdmac020: channel is on a FTDMAC020
154
* @pl080s: channel is on a PL08s
155
*/
156
struct pl08x_phy_chan {
157
unsigned int id;
158
void __iomem *base;
159
void __iomem *reg_config;
160
void __iomem *reg_control;
161
void __iomem *reg_src;
162
void __iomem *reg_dst;
163
void __iomem *reg_lli;
164
void __iomem *reg_busy;
165
spinlock_t lock;
166
struct pl08x_dma_chan *serving;
167
bool locked;
168
bool ftdmac020;
169
bool pl080s;
170
};
171
172
/**
173
* struct pl08x_sg - structure containing data per sg
174
* @src_addr: src address of sg
175
* @dst_addr: dst address of sg
176
* @len: transfer len in bytes
177
* @node: node for txd's dsg_list
178
*/
179
struct pl08x_sg {
180
dma_addr_t src_addr;
181
dma_addr_t dst_addr;
182
size_t len;
183
struct list_head node;
184
};
185
186
/**
187
* struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
188
* @vd: virtual DMA descriptor
189
* @dsg_list: list of children sg's
190
* @llis_bus: DMA memory address (physical) start for the LLIs
191
* @llis_va: virtual memory address start for the LLIs
192
* @cctl: control reg values for current txd
193
* @ccfg: config reg values for current txd
194
* @done: this marks completed descriptors, which should not have their
195
* mux released.
196
* @cyclic: indicate cyclic transfers
197
*/
198
struct pl08x_txd {
199
struct virt_dma_desc vd;
200
struct list_head dsg_list;
201
dma_addr_t llis_bus;
202
u32 *llis_va;
203
/* Default cctl value for LLIs */
204
u32 cctl;
205
/*
206
* Settings to be put into the physical channel when we
207
* trigger this txd. Other registers are in llis_va[0].
208
*/
209
u32 ccfg;
210
bool done;
211
bool cyclic;
212
};
213
214
/**
215
* enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
216
* states
217
* @PL08X_CHAN_IDLE: the channel is idle
218
* @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
219
* channel and is running a transfer on it
220
* @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
221
* channel, but the transfer is currently paused
222
* @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
223
* channel to become available (only pertains to memcpy channels)
224
*/
225
enum pl08x_dma_chan_state {
226
PL08X_CHAN_IDLE,
227
PL08X_CHAN_RUNNING,
228
PL08X_CHAN_PAUSED,
229
PL08X_CHAN_WAITING,
230
};
231
232
/**
233
* struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
234
* @vc: wrapped virtual channel
235
* @phychan: the physical channel utilized by this channel, if there is one
236
* @name: name of channel
237
* @cd: channel platform data
238
* @cfg: slave configuration
239
* @at: active transaction on this channel
240
* @host: a pointer to the host (internal use)
241
* @state: whether the channel is idle, paused, running etc
242
* @slave: whether this channel is a device (slave) or for memcpy
243
* @signal: the physical DMA request signal which this channel is using
244
* @mux_use: count of descriptors using this DMA request signal setting
245
* @waiting_at: time in jiffies when this channel moved to waiting state
246
*/
247
struct pl08x_dma_chan {
248
struct virt_dma_chan vc;
249
struct pl08x_phy_chan *phychan;
250
const char *name;
251
struct pl08x_channel_data *cd;
252
struct dma_slave_config cfg;
253
struct pl08x_txd *at;
254
struct pl08x_driver_data *host;
255
enum pl08x_dma_chan_state state;
256
bool slave;
257
int signal;
258
unsigned mux_use;
259
unsigned long waiting_at;
260
};
261
262
/**
263
* struct pl08x_driver_data - the local state holder for the PL08x
264
* @slave: optional slave engine for this instance
265
* @memcpy: memcpy engine for this instance
266
* @has_slave: the PL08x has a slave engine (routed signals)
267
* @base: virtual memory base (remapped) for the PL08x
268
* @adev: the corresponding AMBA (PrimeCell) bus entry
269
* @vd: vendor data for this PL08x variant
270
* @pd: platform data passed in from the platform/machine
271
* @phy_chans: array of data for the physical channels
272
* @pool: a pool for the LLI descriptors
273
* @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
274
* fetches
275
* @mem_buses: set to indicate memory transfers on AHB2.
276
* @lli_words: how many words are used in each LLI item for this variant
277
*/
278
struct pl08x_driver_data {
279
struct dma_device slave;
280
struct dma_device memcpy;
281
bool has_slave;
282
void __iomem *base;
283
struct amba_device *adev;
284
const struct vendor_data *vd;
285
struct pl08x_platform_data *pd;
286
struct pl08x_phy_chan *phy_chans;
287
struct dma_pool *pool;
288
u8 lli_buses;
289
u8 mem_buses;
290
u8 lli_words;
291
};
292
293
/*
294
* PL08X specific defines
295
*/
296
297
/* The order of words in an LLI. */
298
#define PL080_LLI_SRC 0
299
#define PL080_LLI_DST 1
300
#define PL080_LLI_LLI 2
301
#define PL080_LLI_CCTL 3
302
#define PL080S_LLI_CCTL2 4
303
304
/* Total words in an LLI. */
305
#define PL080_LLI_WORDS 4
306
#define PL080S_LLI_WORDS 8
307
308
/*
309
* Number of LLIs in each LLI buffer allocated for one transfer
310
* (maximum times we call dma_pool_alloc on this pool without freeing)
311
*/
312
#define MAX_NUM_TSFR_LLIS 512
313
#define PL08X_ALIGN 8
314
315
static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
316
{
317
return container_of(chan, struct pl08x_dma_chan, vc.chan);
318
}
319
320
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
321
{
322
return container_of(tx, struct pl08x_txd, vd.tx);
323
}
324
325
/*
326
* Mux handling.
327
*
328
* This gives us the DMA request input to the PL08x primecell which the
329
* peripheral described by the channel data will be routed to, possibly
330
* via a board/SoC specific external MUX. One important point to note
331
* here is that this does not depend on the physical channel.
332
*/
333
static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
334
{
335
const struct pl08x_platform_data *pd = plchan->host->pd;
336
int ret;
337
338
if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
339
ret = pd->get_xfer_signal(plchan->cd);
340
if (ret < 0) {
341
plchan->mux_use = 0;
342
return ret;
343
}
344
345
plchan->signal = ret;
346
}
347
return 0;
348
}
349
350
static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
351
{
352
const struct pl08x_platform_data *pd = plchan->host->pd;
353
354
if (plchan->signal >= 0) {
355
WARN_ON(plchan->mux_use == 0);
356
357
if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
358
pd->put_xfer_signal(plchan->cd, plchan->signal);
359
plchan->signal = -1;
360
}
361
}
362
}
363
364
/*
365
* Physical channel handling
366
*/
367
368
/* Whether a certain channel is busy or not */
369
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
370
{
371
unsigned int val;
372
373
/* If we have a special busy register, take a shortcut */
374
if (ch->reg_busy) {
375
val = readl(ch->reg_busy);
376
return !!(val & BIT(ch->id));
377
}
378
val = readl(ch->reg_config);
379
return val & PL080_CONFIG_ACTIVE;
380
}
381
382
/*
383
* pl08x_write_lli() - Write an LLI into the DMA controller.
384
*
385
* The PL08x derivatives support linked lists, but the first item of the
386
* list containing the source, destination, control word and next LLI is
387
* ignored. Instead the driver has to write those values directly into the
388
* SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
389
* register need to be set up for the first transfer.
390
*/
391
static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
392
struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
393
{
394
if (pl08x->vd->pl080s)
395
dev_vdbg(&pl08x->adev->dev,
396
"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
397
"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
398
phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
399
lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
400
lli[PL080S_LLI_CCTL2], ccfg);
401
else
402
dev_vdbg(&pl08x->adev->dev,
403
"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
404
"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
405
phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
406
lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
407
408
writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
409
writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
410
writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
411
412
/*
413
* The FTMAC020 has a different layout in the CCTL word of the LLI
414
* and the CCTL register which is split in CSR and SIZE registers.
415
* Convert the LLI item CCTL into the proper values to write into
416
* the CSR and SIZE registers.
417
*/
418
if (phychan->ftdmac020) {
419
u32 llictl = lli[PL080_LLI_CCTL];
420
u32 val = 0;
421
422
/* Write the transfer size (12 bits) to the size register */
423
writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
424
phychan->base + FTDMAC020_CH_SIZE);
425
/*
426
* Then write the control bits 28..16 to the control register
427
* by shuffleing the bits around to where they are in the
428
* main register. The mapping is as follows:
429
* Bit 28: TC_MSK - mask on all except last LLI
430
* Bit 27..25: SRC_WIDTH
431
* Bit 24..22: DST_WIDTH
432
* Bit 21..20: SRCAD_CTRL
433
* Bit 19..17: DSTAD_CTRL
434
* Bit 17: SRC_SEL
435
* Bit 16: DST_SEL
436
*/
437
if (llictl & FTDMAC020_LLI_TC_MSK)
438
val |= FTDMAC020_CH_CSR_TC_MSK;
439
val |= ((llictl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
440
(FTDMAC020_LLI_SRC_WIDTH_SHIFT -
441
FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
442
val |= ((llictl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
443
(FTDMAC020_LLI_DST_WIDTH_SHIFT -
444
FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
445
val |= ((llictl & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
446
(FTDMAC020_LLI_SRCAD_CTL_SHIFT -
447
FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
448
val |= ((llictl & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
449
(FTDMAC020_LLI_DSTAD_CTL_SHIFT -
450
FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
451
if (llictl & FTDMAC020_LLI_SRC_SEL)
452
val |= FTDMAC020_CH_CSR_SRC_SEL;
453
if (llictl & FTDMAC020_LLI_DST_SEL)
454
val |= FTDMAC020_CH_CSR_DST_SEL;
455
456
/*
457
* Set up the bits that exist in the CSR but are not
458
* part the LLI, i.e. only gets written to the control
459
* register right here.
460
*
461
* FIXME: do not just handle memcpy, also handle slave DMA.
462
*/
463
switch (pl08x->pd->memcpy_burst_size) {
464
default:
465
case PL08X_BURST_SZ_1:
466
val |= PL080_BSIZE_1 <<
467
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
468
break;
469
case PL08X_BURST_SZ_4:
470
val |= PL080_BSIZE_4 <<
471
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
472
break;
473
case PL08X_BURST_SZ_8:
474
val |= PL080_BSIZE_8 <<
475
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
476
break;
477
case PL08X_BURST_SZ_16:
478
val |= PL080_BSIZE_16 <<
479
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
480
break;
481
case PL08X_BURST_SZ_32:
482
val |= PL080_BSIZE_32 <<
483
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
484
break;
485
case PL08X_BURST_SZ_64:
486
val |= PL080_BSIZE_64 <<
487
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
488
break;
489
case PL08X_BURST_SZ_128:
490
val |= PL080_BSIZE_128 <<
491
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
492
break;
493
case PL08X_BURST_SZ_256:
494
val |= PL080_BSIZE_256 <<
495
FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
496
break;
497
}
498
499
/* Protection flags */
500
if (pl08x->pd->memcpy_prot_buff)
501
val |= FTDMAC020_CH_CSR_PROT2;
502
if (pl08x->pd->memcpy_prot_cache)
503
val |= FTDMAC020_CH_CSR_PROT3;
504
/* We are the kernel, so we are in privileged mode */
505
val |= FTDMAC020_CH_CSR_PROT1;
506
507
writel_relaxed(val, phychan->reg_control);
508
} else {
509
/* Bits are just identical */
510
writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
511
}
512
513
/* Second control word on the PL080s */
514
if (pl08x->vd->pl080s)
515
writel_relaxed(lli[PL080S_LLI_CCTL2],
516
phychan->base + PL080S_CH_CONTROL2);
517
518
writel(ccfg, phychan->reg_config);
519
}
520
521
/*
522
* Set the initial DMA register values i.e. those for the first LLI
523
* The next LLI pointer and the configuration interrupt bit have
524
* been set when the LLIs were constructed. Poke them into the hardware
525
* and start the transfer.
526
*/
527
static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
528
{
529
struct pl08x_driver_data *pl08x = plchan->host;
530
struct pl08x_phy_chan *phychan = plchan->phychan;
531
struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
532
struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
533
u32 val;
534
535
list_del(&txd->vd.node);
536
537
plchan->at = txd;
538
539
/* Wait for channel inactive */
540
while (pl08x_phy_channel_busy(phychan))
541
cpu_relax();
542
543
pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
544
545
/* Enable the DMA channel */
546
/* Do not access config register until channel shows as disabled */
547
while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
548
cpu_relax();
549
550
/* Do not access config register until channel shows as inactive */
551
if (phychan->ftdmac020) {
552
val = readl(phychan->reg_config);
553
while (val & FTDMAC020_CH_CFG_BUSY)
554
val = readl(phychan->reg_config);
555
556
val = readl(phychan->reg_control);
557
while (val & FTDMAC020_CH_CSR_EN)
558
val = readl(phychan->reg_control);
559
560
writel(val | FTDMAC020_CH_CSR_EN,
561
phychan->reg_control);
562
} else {
563
val = readl(phychan->reg_config);
564
while ((val & PL080_CONFIG_ACTIVE) ||
565
(val & PL080_CONFIG_ENABLE))
566
val = readl(phychan->reg_config);
567
568
writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
569
}
570
}
571
572
/*
573
* Pause the channel by setting the HALT bit.
574
*
575
* For M->P transfers, pause the DMAC first and then stop the peripheral -
576
* the FIFO can only drain if the peripheral is still requesting data.
577
* (note: this can still timeout if the DMAC FIFO never drains of data.)
578
*
579
* For P->M transfers, disable the peripheral first to stop it filling
580
* the DMAC FIFO, and then pause the DMAC.
581
*/
582
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
583
{
584
u32 val;
585
int timeout;
586
587
if (ch->ftdmac020) {
588
/* Use the enable bit on the FTDMAC020 */
589
val = readl(ch->reg_control);
590
val &= ~FTDMAC020_CH_CSR_EN;
591
writel(val, ch->reg_control);
592
return;
593
}
594
595
/* Set the HALT bit and wait for the FIFO to drain */
596
val = readl(ch->reg_config);
597
val |= PL080_CONFIG_HALT;
598
writel(val, ch->reg_config);
599
600
/* Wait for channel inactive */
601
for (timeout = 1000; timeout; timeout--) {
602
if (!pl08x_phy_channel_busy(ch))
603
break;
604
udelay(1);
605
}
606
if (pl08x_phy_channel_busy(ch))
607
pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
608
}
609
610
static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
611
{
612
u32 val;
613
614
/* Use the enable bit on the FTDMAC020 */
615
if (ch->ftdmac020) {
616
val = readl(ch->reg_control);
617
val |= FTDMAC020_CH_CSR_EN;
618
writel(val, ch->reg_control);
619
return;
620
}
621
622
/* Clear the HALT bit */
623
val = readl(ch->reg_config);
624
val &= ~PL080_CONFIG_HALT;
625
writel(val, ch->reg_config);
626
}
627
628
/*
629
* pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
630
* clears any pending interrupt status. This should not be used for
631
* an on-going transfer, but as a method of shutting down a channel
632
* (eg, when it's no longer used) or terminating a transfer.
633
*/
634
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
635
struct pl08x_phy_chan *ch)
636
{
637
u32 val;
638
639
/* The layout for the FTDMAC020 is different */
640
if (ch->ftdmac020) {
641
/* Disable all interrupts */
642
val = readl(ch->reg_config);
643
val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
644
FTDMAC020_CH_CFG_INT_ERR_MASK |
645
FTDMAC020_CH_CFG_INT_TC_MASK);
646
writel(val, ch->reg_config);
647
648
/* Abort and disable channel */
649
val = readl(ch->reg_control);
650
val &= ~FTDMAC020_CH_CSR_EN;
651
val |= FTDMAC020_CH_CSR_ABT;
652
writel(val, ch->reg_control);
653
654
/* Clear ABT and ERR interrupt flags */
655
writel(BIT(ch->id) | BIT(ch->id + 16),
656
pl08x->base + PL080_ERR_CLEAR);
657
writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
658
659
return;
660
}
661
662
val = readl(ch->reg_config);
663
val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
664
PL080_CONFIG_TC_IRQ_MASK);
665
writel(val, ch->reg_config);
666
667
writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
668
writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
669
}
670
671
static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
672
{
673
u32 val;
674
u32 bytes;
675
676
if (ch->ftdmac020) {
677
bytes = readl(ch->base + FTDMAC020_CH_SIZE);
678
679
val = readl(ch->reg_control);
680
val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
681
val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
682
} else if (ch->pl080s) {
683
val = readl(ch->base + PL080S_CH_CONTROL2);
684
bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
685
686
val = readl(ch->reg_control);
687
val &= PL080_CONTROL_SWIDTH_MASK;
688
val >>= PL080_CONTROL_SWIDTH_SHIFT;
689
} else {
690
/* Plain PL08x */
691
val = readl(ch->reg_control);
692
bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
693
694
val &= PL080_CONTROL_SWIDTH_MASK;
695
val >>= PL080_CONTROL_SWIDTH_SHIFT;
696
}
697
698
switch (val) {
699
case PL080_WIDTH_8BIT:
700
break;
701
case PL080_WIDTH_16BIT:
702
bytes *= 2;
703
break;
704
case PL080_WIDTH_32BIT:
705
bytes *= 4;
706
break;
707
}
708
return bytes;
709
}
710
711
static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
712
{
713
u32 val;
714
u32 bytes;
715
716
if (ch->ftdmac020) {
717
val = llis_va[PL080_LLI_CCTL];
718
bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
719
720
val = llis_va[PL080_LLI_CCTL];
721
val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
722
val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
723
} else if (ch->pl080s) {
724
val = llis_va[PL080S_LLI_CCTL2];
725
bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
726
727
val = llis_va[PL080_LLI_CCTL];
728
val &= PL080_CONTROL_SWIDTH_MASK;
729
val >>= PL080_CONTROL_SWIDTH_SHIFT;
730
} else {
731
/* Plain PL08x */
732
val = llis_va[PL080_LLI_CCTL];
733
bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
734
735
val &= PL080_CONTROL_SWIDTH_MASK;
736
val >>= PL080_CONTROL_SWIDTH_SHIFT;
737
}
738
739
switch (val) {
740
case PL080_WIDTH_8BIT:
741
break;
742
case PL080_WIDTH_16BIT:
743
bytes *= 2;
744
break;
745
case PL080_WIDTH_32BIT:
746
bytes *= 4;
747
break;
748
}
749
return bytes;
750
}
751
752
/* The channel should be paused when calling this */
753
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
754
{
755
struct pl08x_driver_data *pl08x = plchan->host;
756
const u32 *llis_va, *llis_va_limit;
757
struct pl08x_phy_chan *ch;
758
dma_addr_t llis_bus;
759
struct pl08x_txd *txd;
760
u32 llis_max_words;
761
size_t bytes;
762
u32 clli;
763
764
ch = plchan->phychan;
765
txd = plchan->at;
766
767
if (!ch || !txd)
768
return 0;
769
770
/*
771
* Follow the LLIs to get the number of remaining
772
* bytes in the currently active transaction.
773
*/
774
clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
775
776
/* First get the remaining bytes in the active transfer */
777
bytes = get_bytes_in_phy_channel(ch);
778
779
if (!clli)
780
return bytes;
781
782
llis_va = txd->llis_va;
783
llis_bus = txd->llis_bus;
784
785
llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
786
BUG_ON(clli < llis_bus || clli >= llis_bus +
787
sizeof(u32) * llis_max_words);
788
789
/*
790
* Locate the next LLI - as this is an array,
791
* it's simple maths to find.
792
*/
793
llis_va += (clli - llis_bus) / sizeof(u32);
794
795
llis_va_limit = llis_va + llis_max_words;
796
797
for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
798
bytes += get_bytes_in_lli(ch, llis_va);
799
800
/*
801
* A LLI pointer going backward terminates the LLI list
802
*/
803
if (llis_va[PL080_LLI_LLI] <= clli)
804
break;
805
}
806
807
return bytes;
808
}
809
810
/*
811
* Allocate a physical channel for a virtual channel
812
*
813
* Try to locate a physical channel to be used for this transfer. If all
814
* are taken return NULL and the requester will have to cope by using
815
* some fallback PIO mode or retrying later.
816
*/
817
static struct pl08x_phy_chan *
818
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
819
struct pl08x_dma_chan *virt_chan)
820
{
821
struct pl08x_phy_chan *ch = NULL;
822
unsigned long flags;
823
int i;
824
825
for (i = 0; i < pl08x->vd->channels; i++) {
826
ch = &pl08x->phy_chans[i];
827
828
spin_lock_irqsave(&ch->lock, flags);
829
830
if (!ch->locked && !ch->serving) {
831
ch->serving = virt_chan;
832
spin_unlock_irqrestore(&ch->lock, flags);
833
break;
834
}
835
836
spin_unlock_irqrestore(&ch->lock, flags);
837
}
838
839
if (i == pl08x->vd->channels) {
840
/* No physical channel available, cope with it */
841
return NULL;
842
}
843
844
return ch;
845
}
846
847
/* Mark the physical channel as free. Note, this write is atomic. */
848
static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
849
struct pl08x_phy_chan *ch)
850
{
851
ch->serving = NULL;
852
}
853
854
/*
855
* Try to allocate a physical channel. When successful, assign it to
856
* this virtual channel, and initiate the next descriptor. The
857
* virtual channel lock must be held at this point.
858
*/
859
static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
860
{
861
struct pl08x_driver_data *pl08x = plchan->host;
862
struct pl08x_phy_chan *ch;
863
864
ch = pl08x_get_phy_channel(pl08x, plchan);
865
if (!ch) {
866
dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
867
plchan->state = PL08X_CHAN_WAITING;
868
plchan->waiting_at = jiffies;
869
return;
870
}
871
872
dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
873
ch->id, plchan->name);
874
875
plchan->phychan = ch;
876
plchan->state = PL08X_CHAN_RUNNING;
877
pl08x_start_next_txd(plchan);
878
}
879
880
static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
881
struct pl08x_dma_chan *plchan)
882
{
883
struct pl08x_driver_data *pl08x = plchan->host;
884
885
dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
886
ch->id, plchan->name);
887
888
/*
889
* We do this without taking the lock; we're really only concerned
890
* about whether this pointer is NULL or not, and we're guaranteed
891
* that this will only be called when it _already_ is non-NULL.
892
*/
893
ch->serving = plchan;
894
plchan->phychan = ch;
895
plchan->state = PL08X_CHAN_RUNNING;
896
pl08x_start_next_txd(plchan);
897
}
898
899
/*
900
* Free a physical DMA channel, potentially reallocating it to another
901
* virtual channel if we have any pending.
902
*/
903
static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
904
{
905
struct pl08x_driver_data *pl08x = plchan->host;
906
struct pl08x_dma_chan *p, *next;
907
unsigned long waiting_at;
908
retry:
909
next = NULL;
910
waiting_at = jiffies;
911
912
/*
913
* Find a waiting virtual channel for the next transfer.
914
* To be fair, time when each channel reached waiting state is compared
915
* to select channel that is waiting for the longest time.
916
*/
917
list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
918
if (p->state == PL08X_CHAN_WAITING &&
919
p->waiting_at <= waiting_at) {
920
next = p;
921
waiting_at = p->waiting_at;
922
}
923
924
if (!next && pl08x->has_slave) {
925
list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
926
if (p->state == PL08X_CHAN_WAITING &&
927
p->waiting_at <= waiting_at) {
928
next = p;
929
waiting_at = p->waiting_at;
930
}
931
}
932
933
/* Ensure that the physical channel is stopped */
934
pl08x_terminate_phy_chan(pl08x, plchan->phychan);
935
936
if (next) {
937
bool success;
938
939
/*
940
* Eww. We know this isn't going to deadlock
941
* but lockdep probably doesn't.
942
*/
943
spin_lock(&next->vc.lock);
944
/* Re-check the state now that we have the lock */
945
success = next->state == PL08X_CHAN_WAITING;
946
if (success)
947
pl08x_phy_reassign_start(plchan->phychan, next);
948
spin_unlock(&next->vc.lock);
949
950
/* If the state changed, try to find another channel */
951
if (!success)
952
goto retry;
953
} else {
954
/* No more jobs, so free up the physical channel */
955
pl08x_put_phy_channel(pl08x, plchan->phychan);
956
}
957
958
plchan->phychan = NULL;
959
plchan->state = PL08X_CHAN_IDLE;
960
}
961
962
/*
963
* LLI handling
964
*/
965
966
static inline unsigned int
967
pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
968
u32 cctl,
969
bool source)
970
{
971
u32 val;
972
973
if (pl08x->vd->ftdmac020) {
974
if (source)
975
val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
976
FTDMAC020_LLI_SRC_WIDTH_SHIFT;
977
else
978
val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
979
FTDMAC020_LLI_DST_WIDTH_SHIFT;
980
} else {
981
if (source)
982
val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
983
PL080_CONTROL_SWIDTH_SHIFT;
984
else
985
val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
986
PL080_CONTROL_DWIDTH_SHIFT;
987
}
988
989
switch (val) {
990
case PL080_WIDTH_8BIT:
991
return 1;
992
case PL080_WIDTH_16BIT:
993
return 2;
994
case PL080_WIDTH_32BIT:
995
return 4;
996
default:
997
break;
998
}
999
BUG();
1000
return 0;
1001
}
1002
1003
static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1004
u32 cctl,
1005
u8 srcwidth, u8 dstwidth,
1006
size_t tsize)
1007
{
1008
u32 retbits = cctl;
1009
1010
/*
1011
* Remove all src, dst and transfer size bits, then set the
1012
* width and size according to the parameters. The bit offsets
1013
* are different in the FTDMAC020 so we need to accound for this.
1014
*/
1015
if (pl08x->vd->ftdmac020) {
1016
retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1017
retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1018
retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1019
1020
switch (srcwidth) {
1021
case 1:
1022
retbits |= PL080_WIDTH_8BIT <<
1023
FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1024
break;
1025
case 2:
1026
retbits |= PL080_WIDTH_16BIT <<
1027
FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1028
break;
1029
case 4:
1030
retbits |= PL080_WIDTH_32BIT <<
1031
FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1032
break;
1033
default:
1034
BUG();
1035
break;
1036
}
1037
1038
switch (dstwidth) {
1039
case 1:
1040
retbits |= PL080_WIDTH_8BIT <<
1041
FTDMAC020_LLI_DST_WIDTH_SHIFT;
1042
break;
1043
case 2:
1044
retbits |= PL080_WIDTH_16BIT <<
1045
FTDMAC020_LLI_DST_WIDTH_SHIFT;
1046
break;
1047
case 4:
1048
retbits |= PL080_WIDTH_32BIT <<
1049
FTDMAC020_LLI_DST_WIDTH_SHIFT;
1050
break;
1051
default:
1052
BUG();
1053
break;
1054
}
1055
1056
tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1057
retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1058
} else {
1059
retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1060
retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1061
retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1062
1063
switch (srcwidth) {
1064
case 1:
1065
retbits |= PL080_WIDTH_8BIT <<
1066
PL080_CONTROL_SWIDTH_SHIFT;
1067
break;
1068
case 2:
1069
retbits |= PL080_WIDTH_16BIT <<
1070
PL080_CONTROL_SWIDTH_SHIFT;
1071
break;
1072
case 4:
1073
retbits |= PL080_WIDTH_32BIT <<
1074
PL080_CONTROL_SWIDTH_SHIFT;
1075
break;
1076
default:
1077
BUG();
1078
break;
1079
}
1080
1081
switch (dstwidth) {
1082
case 1:
1083
retbits |= PL080_WIDTH_8BIT <<
1084
PL080_CONTROL_DWIDTH_SHIFT;
1085
break;
1086
case 2:
1087
retbits |= PL080_WIDTH_16BIT <<
1088
PL080_CONTROL_DWIDTH_SHIFT;
1089
break;
1090
case 4:
1091
retbits |= PL080_WIDTH_32BIT <<
1092
PL080_CONTROL_DWIDTH_SHIFT;
1093
break;
1094
default:
1095
BUG();
1096
break;
1097
}
1098
1099
tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1100
retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
1101
}
1102
1103
return retbits;
1104
}
1105
1106
struct pl08x_lli_build_data {
1107
struct pl08x_txd *txd;
1108
struct pl08x_bus_data srcbus;
1109
struct pl08x_bus_data dstbus;
1110
size_t remainder;
1111
u32 lli_bus;
1112
};
1113
1114
/*
1115
* Autoselect a master bus to use for the transfer. Slave will be the chosen as
1116
* victim in case src & dest are not similarly aligned. i.e. If after aligning
1117
* masters address with width requirements of transfer (by sending few byte by
1118
* byte data), slave is still not aligned, then its width will be reduced to
1119
* BYTE.
1120
* - prefers the destination bus if both available
1121
* - prefers bus with fixed address (i.e. peripheral)
1122
*/
1123
static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1124
struct pl08x_lli_build_data *bd,
1125
struct pl08x_bus_data **mbus,
1126
struct pl08x_bus_data **sbus,
1127
u32 cctl)
1128
{
1129
bool dst_incr;
1130
bool src_incr;
1131
1132
/*
1133
* The FTDMAC020 only supports memory-to-memory transfer, so
1134
* source and destination always increase.
1135
*/
1136
if (pl08x->vd->ftdmac020) {
1137
dst_incr = true;
1138
src_incr = true;
1139
} else {
1140
dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1141
src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1142
}
1143
1144
/*
1145
* If either bus is not advancing, i.e. it is a peripheral, that
1146
* one becomes master
1147
*/
1148
if (!dst_incr) {
1149
*mbus = &bd->dstbus;
1150
*sbus = &bd->srcbus;
1151
} else if (!src_incr) {
1152
*mbus = &bd->srcbus;
1153
*sbus = &bd->dstbus;
1154
} else {
1155
if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1156
*mbus = &bd->dstbus;
1157
*sbus = &bd->srcbus;
1158
} else {
1159
*mbus = &bd->srcbus;
1160
*sbus = &bd->dstbus;
1161
}
1162
}
1163
}
1164
1165
/*
1166
* Fills in one LLI for a certain transfer descriptor and advance the counter
1167
*/
1168
static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1169
struct pl08x_lli_build_data *bd,
1170
int num_llis, int len, u32 cctl, u32 cctl2)
1171
{
1172
u32 offset = num_llis * pl08x->lli_words;
1173
u32 *llis_va = bd->txd->llis_va + offset;
1174
dma_addr_t llis_bus = bd->txd->llis_bus;
1175
1176
BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1177
1178
/* Advance the offset to next LLI. */
1179
offset += pl08x->lli_words;
1180
1181
llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1182
llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1183
llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1184
llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1185
llis_va[PL080_LLI_CCTL] = cctl;
1186
if (pl08x->vd->pl080s)
1187
llis_va[PL080S_LLI_CCTL2] = cctl2;
1188
1189
if (pl08x->vd->ftdmac020) {
1190
/* FIXME: only memcpy so far so both increase */
1191
bd->srcbus.addr += len;
1192
bd->dstbus.addr += len;
1193
} else {
1194
if (cctl & PL080_CONTROL_SRC_INCR)
1195
bd->srcbus.addr += len;
1196
if (cctl & PL080_CONTROL_DST_INCR)
1197
bd->dstbus.addr += len;
1198
}
1199
1200
BUG_ON(bd->remainder < len);
1201
1202
bd->remainder -= len;
1203
}
1204
1205
static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1206
struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1207
int num_llis, size_t *total_bytes)
1208
{
1209
*cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1210
pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1211
(*total_bytes) += len;
1212
}
1213
1214
#if 1
1215
static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1216
const u32 *llis_va, int num_llis)
1217
{
1218
int i;
1219
1220
if (pl08x->vd->pl080s) {
1221
dev_vdbg(&pl08x->adev->dev,
1222
"%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
1223
"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1224
for (i = 0; i < num_llis; i++) {
1225
dev_vdbg(&pl08x->adev->dev,
1226
"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1227
i, llis_va, llis_va[PL080_LLI_SRC],
1228
llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1229
llis_va[PL080_LLI_CCTL],
1230
llis_va[PL080S_LLI_CCTL2]);
1231
llis_va += pl08x->lli_words;
1232
}
1233
} else {
1234
dev_vdbg(&pl08x->adev->dev,
1235
"%-3s %-9s %-10s %-10s %-10s %s\n",
1236
"lli", "", "csrc", "cdst", "clli", "cctl");
1237
for (i = 0; i < num_llis; i++) {
1238
dev_vdbg(&pl08x->adev->dev,
1239
"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1240
i, llis_va, llis_va[PL080_LLI_SRC],
1241
llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1242
llis_va[PL080_LLI_CCTL]);
1243
llis_va += pl08x->lli_words;
1244
}
1245
}
1246
}
1247
#else
1248
static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1249
const u32 *llis_va, int num_llis) {}
1250
#endif
1251
1252
/*
1253
* This fills in the table of LLIs for the transfer descriptor
1254
* Note that we assume we never have to change the burst sizes
1255
* Return 0 for error
1256
*/
1257
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1258
struct pl08x_txd *txd)
1259
{
1260
struct pl08x_bus_data *mbus, *sbus;
1261
struct pl08x_lli_build_data bd;
1262
int num_llis = 0;
1263
u32 cctl, early_bytes = 0;
1264
size_t max_bytes_per_lli, total_bytes;
1265
u32 *llis_va, *last_lli;
1266
struct pl08x_sg *dsg;
1267
1268
txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
1269
if (!txd->llis_va) {
1270
dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1271
return 0;
1272
}
1273
1274
bd.txd = txd;
1275
bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1276
cctl = txd->cctl;
1277
1278
/* Find maximum width of the source bus */
1279
bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
1280
1281
/* Find maximum width of the destination bus */
1282
bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
1283
1284
list_for_each_entry(dsg, &txd->dsg_list, node) {
1285
total_bytes = 0;
1286
cctl = txd->cctl;
1287
1288
bd.srcbus.addr = dsg->src_addr;
1289
bd.dstbus.addr = dsg->dst_addr;
1290
bd.remainder = dsg->len;
1291
bd.srcbus.buswidth = bd.srcbus.maxwidth;
1292
bd.dstbus.buswidth = bd.dstbus.maxwidth;
1293
1294
pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
1295
1296
dev_vdbg(&pl08x->adev->dev,
1297
"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1298
(u64)bd.srcbus.addr,
1299
cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1300
bd.srcbus.buswidth,
1301
(u64)bd.dstbus.addr,
1302
cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1303
bd.dstbus.buswidth,
1304
bd.remainder);
1305
dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1306
mbus == &bd.srcbus ? "src" : "dst",
1307
sbus == &bd.srcbus ? "src" : "dst");
1308
1309
/*
1310
* Zero length is only allowed if all these requirements are
1311
* met:
1312
* - flow controller is peripheral.
1313
* - src.addr is aligned to src.width
1314
* - dst.addr is aligned to dst.width
1315
*
1316
* sg_len == 1 should be true, as there can be two cases here:
1317
*
1318
* - Memory addresses are contiguous and are not scattered.
1319
* Here, Only one sg will be passed by user driver, with
1320
* memory address and zero length. We pass this to controller
1321
* and after the transfer it will receive the last burst
1322
* request from peripheral and so transfer finishes.
1323
*
1324
* - Memory addresses are scattered and are not contiguous.
1325
* Here, Obviously as DMA controller doesn't know when a lli's
1326
* transfer gets over, it can't load next lli. So in this
1327
* case, there has to be an assumption that only one lli is
1328
* supported. Thus, we can't have scattered addresses.
1329
*/
1330
if (!bd.remainder) {
1331
u32 fc;
1332
1333
/* FTDMAC020 only does memory-to-memory */
1334
if (pl08x->vd->ftdmac020)
1335
fc = PL080_FLOW_MEM2MEM;
1336
else
1337
fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1338
PL080_CONFIG_FLOW_CONTROL_SHIFT;
1339
if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1340
(fc <= PL080_FLOW_SRC2DST_SRC))) {
1341
dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1342
__func__);
1343
return 0;
1344
}
1345
1346
if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1347
!IS_BUS_ALIGNED(&bd.dstbus)) {
1348
dev_err(&pl08x->adev->dev,
1349
"%s src & dst address must be aligned to src"
1350
" & dst width if peripheral is flow controller",
1351
__func__);
1352
return 0;
1353
}
1354
1355
cctl = pl08x_lli_control_bits(pl08x, cctl,
1356
bd.srcbus.buswidth, bd.dstbus.buswidth,
1357
0);
1358
pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1359
0, cctl, 0);
1360
break;
1361
}
1362
1363
/*
1364
* Send byte by byte for following cases
1365
* - Less than a bus width available
1366
* - until master bus is aligned
1367
*/
1368
if (bd.remainder < mbus->buswidth)
1369
early_bytes = bd.remainder;
1370
else if (!IS_BUS_ALIGNED(mbus)) {
1371
early_bytes = mbus->buswidth -
1372
(mbus->addr & (mbus->buswidth - 1));
1373
if ((bd.remainder - early_bytes) < mbus->buswidth)
1374
early_bytes = bd.remainder;
1375
}
1376
1377
if (early_bytes) {
1378
dev_vdbg(&pl08x->adev->dev,
1379
"%s byte width LLIs (remain 0x%08zx)\n",
1380
__func__, bd.remainder);
1381
prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1382
num_llis++, &total_bytes);
1383
}
1384
1385
if (bd.remainder) {
1386
/*
1387
* Master now aligned
1388
* - if slave is not then we must set its width down
1389
*/
1390
if (!IS_BUS_ALIGNED(sbus)) {
1391
dev_dbg(&pl08x->adev->dev,
1392
"%s set down bus width to one byte\n",
1393
__func__);
1394
1395
sbus->buswidth = 1;
1396
}
1397
1398
/*
1399
* Bytes transferred = tsize * src width, not
1400
* MIN(buswidths)
1401
*/
1402
max_bytes_per_lli = bd.srcbus.buswidth *
1403
pl08x->vd->max_transfer_size;
1404
dev_vdbg(&pl08x->adev->dev,
1405
"%s max bytes per lli = %zu\n",
1406
__func__, max_bytes_per_lli);
1407
1408
/*
1409
* Make largest possible LLIs until less than one bus
1410
* width left
1411
*/
1412
while (bd.remainder > (mbus->buswidth - 1)) {
1413
size_t lli_len, tsize, width;
1414
1415
/*
1416
* If enough left try to send max possible,
1417
* otherwise try to send the remainder
1418
*/
1419
lli_len = min(bd.remainder, max_bytes_per_lli);
1420
1421
/*
1422
* Check against maximum bus alignment:
1423
* Calculate actual transfer size in relation to
1424
* bus width an get a maximum remainder of the
1425
* highest bus width - 1
1426
*/
1427
width = max(mbus->buswidth, sbus->buswidth);
1428
lli_len = (lli_len / width) * width;
1429
tsize = lli_len / bd.srcbus.buswidth;
1430
1431
dev_vdbg(&pl08x->adev->dev,
1432
"%s fill lli with single lli chunk of "
1433
"size 0x%08zx (remainder 0x%08zx)\n",
1434
__func__, lli_len, bd.remainder);
1435
1436
cctl = pl08x_lli_control_bits(pl08x, cctl,
1437
bd.srcbus.buswidth, bd.dstbus.buswidth,
1438
tsize);
1439
pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1440
lli_len, cctl, tsize);
1441
total_bytes += lli_len;
1442
}
1443
1444
/*
1445
* Send any odd bytes
1446
*/
1447
if (bd.remainder) {
1448
dev_vdbg(&pl08x->adev->dev,
1449
"%s align with boundary, send odd bytes (remain %zu)\n",
1450
__func__, bd.remainder);
1451
prep_byte_width_lli(pl08x, &bd, &cctl,
1452
bd.remainder, num_llis++, &total_bytes);
1453
}
1454
}
1455
1456
if (total_bytes != dsg->len) {
1457
dev_err(&pl08x->adev->dev,
1458
"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1459
__func__, total_bytes, dsg->len);
1460
return 0;
1461
}
1462
1463
if (num_llis >= MAX_NUM_TSFR_LLIS) {
1464
dev_err(&pl08x->adev->dev,
1465
"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1466
__func__, MAX_NUM_TSFR_LLIS);
1467
return 0;
1468
}
1469
}
1470
1471
llis_va = txd->llis_va;
1472
last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1473
1474
if (txd->cyclic) {
1475
/* Link back to the first LLI. */
1476
last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1477
} else {
1478
/* The final LLI terminates the LLI. */
1479
last_lli[PL080_LLI_LLI] = 0;
1480
/* The final LLI element shall also fire an interrupt. */
1481
if (pl08x->vd->ftdmac020)
1482
last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1483
else
1484
last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1485
}
1486
1487
pl08x_dump_lli(pl08x, llis_va, num_llis);
1488
1489
return num_llis;
1490
}
1491
1492
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1493
struct pl08x_txd *txd)
1494
{
1495
struct pl08x_sg *dsg, *_dsg;
1496
1497
if (txd->llis_va)
1498
dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1499
1500
list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1501
list_del(&dsg->node);
1502
kfree(dsg);
1503
}
1504
1505
kfree(txd);
1506
}
1507
1508
static void pl08x_desc_free(struct virt_dma_desc *vd)
1509
{
1510
struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1511
struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1512
1513
dma_descriptor_unmap(&vd->tx);
1514
if (!txd->done)
1515
pl08x_release_mux(plchan);
1516
1517
pl08x_free_txd(plchan->host, txd);
1518
}
1519
1520
static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1521
struct pl08x_dma_chan *plchan)
1522
{
1523
LIST_HEAD(head);
1524
1525
vchan_get_all_descriptors(&plchan->vc, &head);
1526
vchan_dma_desc_free_list(&plchan->vc, &head);
1527
}
1528
1529
/*
1530
* The DMA ENGINE API
1531
*/
1532
static void pl08x_free_chan_resources(struct dma_chan *chan)
1533
{
1534
/* Ensure all queued descriptors are freed */
1535
vchan_free_chan_resources(to_virt_chan(chan));
1536
}
1537
1538
/*
1539
* Code accessing dma_async_is_complete() in a tight loop may give problems.
1540
* If slaves are relying on interrupts to signal completion this function
1541
* must not be called with interrupts disabled.
1542
*/
1543
static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1544
dma_cookie_t cookie, struct dma_tx_state *txstate)
1545
{
1546
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1547
struct virt_dma_desc *vd;
1548
unsigned long flags;
1549
enum dma_status ret;
1550
size_t bytes = 0;
1551
1552
ret = dma_cookie_status(chan, cookie, txstate);
1553
if (ret == DMA_COMPLETE)
1554
return ret;
1555
1556
/*
1557
* There's no point calculating the residue if there's
1558
* no txstate to store the value.
1559
*/
1560
if (!txstate) {
1561
if (plchan->state == PL08X_CHAN_PAUSED)
1562
ret = DMA_PAUSED;
1563
return ret;
1564
}
1565
1566
spin_lock_irqsave(&plchan->vc.lock, flags);
1567
ret = dma_cookie_status(chan, cookie, txstate);
1568
if (ret != DMA_COMPLETE) {
1569
vd = vchan_find_desc(&plchan->vc, cookie);
1570
if (vd) {
1571
/* On the issued list, so hasn't been processed yet */
1572
struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1573
struct pl08x_sg *dsg;
1574
1575
list_for_each_entry(dsg, &txd->dsg_list, node)
1576
bytes += dsg->len;
1577
} else {
1578
bytes = pl08x_getbytes_chan(plchan);
1579
}
1580
}
1581
spin_unlock_irqrestore(&plchan->vc.lock, flags);
1582
1583
/*
1584
* This cookie not complete yet
1585
* Get number of bytes left in the active transactions and queue
1586
*/
1587
dma_set_residue(txstate, bytes);
1588
1589
if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1590
ret = DMA_PAUSED;
1591
1592
/* Whether waiting or running, we're in progress */
1593
return ret;
1594
}
1595
1596
/* PrimeCell DMA extension */
1597
struct burst_table {
1598
u32 burstwords;
1599
u32 reg;
1600
};
1601
1602
static const struct burst_table burst_sizes[] = {
1603
{
1604
.burstwords = 256,
1605
.reg = PL080_BSIZE_256,
1606
},
1607
{
1608
.burstwords = 128,
1609
.reg = PL080_BSIZE_128,
1610
},
1611
{
1612
.burstwords = 64,
1613
.reg = PL080_BSIZE_64,
1614
},
1615
{
1616
.burstwords = 32,
1617
.reg = PL080_BSIZE_32,
1618
},
1619
{
1620
.burstwords = 16,
1621
.reg = PL080_BSIZE_16,
1622
},
1623
{
1624
.burstwords = 8,
1625
.reg = PL080_BSIZE_8,
1626
},
1627
{
1628
.burstwords = 4,
1629
.reg = PL080_BSIZE_4,
1630
},
1631
{
1632
.burstwords = 0,
1633
.reg = PL080_BSIZE_1,
1634
},
1635
};
1636
1637
/*
1638
* Given the source and destination available bus masks, select which
1639
* will be routed to each port. We try to have source and destination
1640
* on separate ports, but always respect the allowable settings.
1641
*/
1642
static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1643
{
1644
u32 cctl = 0;
1645
u32 dst_ahb2;
1646
u32 src_ahb2;
1647
1648
/* The FTDMAC020 use different bits to indicate src/dst bus */
1649
if (ftdmac020) {
1650
dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1651
src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1652
} else {
1653
dst_ahb2 = PL080_CONTROL_DST_AHB2;
1654
src_ahb2 = PL080_CONTROL_SRC_AHB2;
1655
}
1656
1657
if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1658
cctl |= dst_ahb2;
1659
if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1660
cctl |= src_ahb2;
1661
1662
return cctl;
1663
}
1664
1665
static u32 pl08x_cctl(u32 cctl)
1666
{
1667
cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1668
PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1669
PL080_CONTROL_PROT_MASK);
1670
1671
/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1672
return cctl | PL080_CONTROL_PROT_SYS;
1673
}
1674
1675
static u32 pl08x_width(enum dma_slave_buswidth width)
1676
{
1677
switch (width) {
1678
case DMA_SLAVE_BUSWIDTH_1_BYTE:
1679
return PL080_WIDTH_8BIT;
1680
case DMA_SLAVE_BUSWIDTH_2_BYTES:
1681
return PL080_WIDTH_16BIT;
1682
case DMA_SLAVE_BUSWIDTH_4_BYTES:
1683
return PL080_WIDTH_32BIT;
1684
default:
1685
return ~0;
1686
}
1687
}
1688
1689
static u32 pl08x_burst(u32 maxburst)
1690
{
1691
int i;
1692
1693
for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1694
if (burst_sizes[i].burstwords <= maxburst)
1695
break;
1696
1697
return burst_sizes[i].reg;
1698
}
1699
1700
static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1701
enum dma_slave_buswidth addr_width, u32 maxburst)
1702
{
1703
u32 width, burst, cctl = 0;
1704
1705
width = pl08x_width(addr_width);
1706
if (width == ~0)
1707
return ~0;
1708
1709
cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1710
cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1711
1712
/*
1713
* If this channel will only request single transfers, set this
1714
* down to ONE element. Also select one element if no maxburst
1715
* is specified.
1716
*/
1717
if (plchan->cd->single)
1718
maxburst = 1;
1719
1720
burst = pl08x_burst(maxburst);
1721
cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1722
cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1723
1724
return pl08x_cctl(cctl);
1725
}
1726
1727
/*
1728
* Slave transactions callback to the slave device to allow
1729
* synchronization of slave DMA signals with the DMAC enable
1730
*/
1731
static void pl08x_issue_pending(struct dma_chan *chan)
1732
{
1733
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1734
unsigned long flags;
1735
1736
spin_lock_irqsave(&plchan->vc.lock, flags);
1737
if (vchan_issue_pending(&plchan->vc)) {
1738
if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1739
pl08x_phy_alloc_and_start(plchan);
1740
}
1741
spin_unlock_irqrestore(&plchan->vc.lock, flags);
1742
}
1743
1744
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1745
{
1746
struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1747
1748
if (txd)
1749
INIT_LIST_HEAD(&txd->dsg_list);
1750
return txd;
1751
}
1752
1753
static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
1754
{
1755
u32 cctl = 0;
1756
1757
/* Conjure cctl */
1758
switch (pl08x->pd->memcpy_burst_size) {
1759
default:
1760
dev_err(&pl08x->adev->dev,
1761
"illegal burst size for memcpy, set to 1\n");
1762
fallthrough;
1763
case PL08X_BURST_SZ_1:
1764
cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1765
PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1766
break;
1767
case PL08X_BURST_SZ_4:
1768
cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1769
PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1770
break;
1771
case PL08X_BURST_SZ_8:
1772
cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1773
PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1774
break;
1775
case PL08X_BURST_SZ_16:
1776
cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1777
PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1778
break;
1779
case PL08X_BURST_SZ_32:
1780
cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1781
PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1782
break;
1783
case PL08X_BURST_SZ_64:
1784
cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1785
PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1786
break;
1787
case PL08X_BURST_SZ_128:
1788
cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1789
PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1790
break;
1791
case PL08X_BURST_SZ_256:
1792
cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1793
PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1794
break;
1795
}
1796
1797
switch (pl08x->pd->memcpy_bus_width) {
1798
default:
1799
dev_err(&pl08x->adev->dev,
1800
"illegal bus width for memcpy, set to 8 bits\n");
1801
fallthrough;
1802
case PL08X_BUS_WIDTH_8_BITS:
1803
cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1804
PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1805
break;
1806
case PL08X_BUS_WIDTH_16_BITS:
1807
cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1808
PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1809
break;
1810
case PL08X_BUS_WIDTH_32_BITS:
1811
cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1812
PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1813
break;
1814
}
1815
1816
/* Protection flags */
1817
if (pl08x->pd->memcpy_prot_buff)
1818
cctl |= PL080_CONTROL_PROT_BUFF;
1819
if (pl08x->pd->memcpy_prot_cache)
1820
cctl |= PL080_CONTROL_PROT_CACHE;
1821
1822
/* We are the kernel, so we are in privileged mode */
1823
cctl |= PL080_CONTROL_PROT_SYS;
1824
1825
/* Both to be incremented or the code will break */
1826
cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1827
1828
if (pl08x->vd->dualmaster)
1829
cctl |= pl08x_select_bus(false,
1830
pl08x->mem_buses,
1831
pl08x->mem_buses);
1832
1833
return cctl;
1834
}
1835
1836
static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
1837
{
1838
u32 cctl = 0;
1839
1840
/* Conjure cctl */
1841
switch (pl08x->pd->memcpy_bus_width) {
1842
default:
1843
dev_err(&pl08x->adev->dev,
1844
"illegal bus width for memcpy, set to 8 bits\n");
1845
fallthrough;
1846
case PL08X_BUS_WIDTH_8_BITS:
1847
cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1848
PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1849
break;
1850
case PL08X_BUS_WIDTH_16_BITS:
1851
cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1852
PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1853
break;
1854
case PL08X_BUS_WIDTH_32_BITS:
1855
cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1856
PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1857
break;
1858
}
1859
1860
/*
1861
* By default mask the TC IRQ on all LLIs, it will be unmasked on
1862
* the last LLI item by other code.
1863
*/
1864
cctl |= FTDMAC020_LLI_TC_MSK;
1865
1866
/*
1867
* Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1868
* and FTDMAC020_LLI_DSTAD_CTL as zero
1869
*/
1870
if (pl08x->vd->dualmaster)
1871
cctl |= pl08x_select_bus(true,
1872
pl08x->mem_buses,
1873
pl08x->mem_buses);
1874
1875
return cctl;
1876
}
1877
1878
/*
1879
* Initialize a descriptor to be used by memcpy submit
1880
*/
1881
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1882
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1883
size_t len, unsigned long flags)
1884
{
1885
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1886
struct pl08x_driver_data *pl08x = plchan->host;
1887
struct pl08x_txd *txd;
1888
struct pl08x_sg *dsg;
1889
int ret;
1890
1891
txd = pl08x_get_txd(plchan);
1892
if (!txd) {
1893
dev_err(&pl08x->adev->dev,
1894
"%s no memory for descriptor\n", __func__);
1895
return NULL;
1896
}
1897
1898
dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1899
if (!dsg) {
1900
pl08x_free_txd(pl08x, txd);
1901
return NULL;
1902
}
1903
list_add_tail(&dsg->node, &txd->dsg_list);
1904
1905
dsg->src_addr = src;
1906
dsg->dst_addr = dest;
1907
dsg->len = len;
1908
if (pl08x->vd->ftdmac020) {
1909
/* Writing CCFG zero ENABLES all interrupts */
1910
txd->ccfg = 0;
1911
txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1912
} else {
1913
txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1914
PL080_CONFIG_TC_IRQ_MASK |
1915
PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1916
txd->cctl = pl08x_memcpy_cctl(pl08x);
1917
}
1918
1919
ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1920
if (!ret) {
1921
pl08x_free_txd(pl08x, txd);
1922
return NULL;
1923
}
1924
1925
return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1926
}
1927
1928
static struct pl08x_txd *pl08x_init_txd(
1929
struct dma_chan *chan,
1930
enum dma_transfer_direction direction,
1931
dma_addr_t *slave_addr)
1932
{
1933
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1934
struct pl08x_driver_data *pl08x = plchan->host;
1935
struct pl08x_txd *txd;
1936
enum dma_slave_buswidth addr_width;
1937
int ret, tmp;
1938
u8 src_buses, dst_buses;
1939
u32 maxburst, cctl;
1940
1941
txd = pl08x_get_txd(plchan);
1942
if (!txd) {
1943
dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1944
return NULL;
1945
}
1946
1947
/*
1948
* Set up addresses, the PrimeCell configured address
1949
* will take precedence since this may configure the
1950
* channel target address dynamically at runtime.
1951
*/
1952
if (direction == DMA_MEM_TO_DEV) {
1953
cctl = PL080_CONTROL_SRC_INCR;
1954
*slave_addr = plchan->cfg.dst_addr;
1955
addr_width = plchan->cfg.dst_addr_width;
1956
maxburst = plchan->cfg.dst_maxburst;
1957
src_buses = pl08x->mem_buses;
1958
dst_buses = plchan->cd->periph_buses;
1959
} else if (direction == DMA_DEV_TO_MEM) {
1960
cctl = PL080_CONTROL_DST_INCR;
1961
*slave_addr = plchan->cfg.src_addr;
1962
addr_width = plchan->cfg.src_addr_width;
1963
maxburst = plchan->cfg.src_maxburst;
1964
src_buses = plchan->cd->periph_buses;
1965
dst_buses = pl08x->mem_buses;
1966
} else {
1967
pl08x_free_txd(pl08x, txd);
1968
dev_err(&pl08x->adev->dev,
1969
"%s direction unsupported\n", __func__);
1970
return NULL;
1971
}
1972
1973
cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1974
if (cctl == ~0) {
1975
pl08x_free_txd(pl08x, txd);
1976
dev_err(&pl08x->adev->dev,
1977
"DMA slave configuration botched?\n");
1978
return NULL;
1979
}
1980
1981
txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
1982
1983
if (plchan->cfg.device_fc)
1984
tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1985
PL080_FLOW_PER2MEM_PER;
1986
else
1987
tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1988
PL080_FLOW_PER2MEM;
1989
1990
txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1991
PL080_CONFIG_TC_IRQ_MASK |
1992
tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1993
1994
ret = pl08x_request_mux(plchan);
1995
if (ret < 0) {
1996
pl08x_free_txd(pl08x, txd);
1997
dev_dbg(&pl08x->adev->dev,
1998
"unable to mux for transfer on %s due to platform restrictions\n",
1999
plchan->name);
2000
return NULL;
2001
}
2002
2003
dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2004
plchan->signal, plchan->name);
2005
2006
/* Assign the flow control signal to this channel */
2007
if (direction == DMA_MEM_TO_DEV)
2008
txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2009
else
2010
txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2011
2012
return txd;
2013
}
2014
2015
static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2016
enum dma_transfer_direction direction,
2017
dma_addr_t slave_addr,
2018
dma_addr_t buf_addr,
2019
unsigned int len)
2020
{
2021
struct pl08x_sg *dsg;
2022
2023
dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2024
if (!dsg)
2025
return -ENOMEM;
2026
2027
list_add_tail(&dsg->node, &txd->dsg_list);
2028
2029
dsg->len = len;
2030
if (direction == DMA_MEM_TO_DEV) {
2031
dsg->src_addr = buf_addr;
2032
dsg->dst_addr = slave_addr;
2033
} else {
2034
dsg->src_addr = slave_addr;
2035
dsg->dst_addr = buf_addr;
2036
}
2037
2038
return 0;
2039
}
2040
2041
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2042
struct dma_chan *chan, struct scatterlist *sgl,
2043
unsigned int sg_len, enum dma_transfer_direction direction,
2044
unsigned long flags, void *context)
2045
{
2046
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2047
struct pl08x_driver_data *pl08x = plchan->host;
2048
struct pl08x_txd *txd;
2049
struct scatterlist *sg;
2050
int ret, tmp;
2051
dma_addr_t slave_addr;
2052
2053
dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2054
__func__, sg_dma_len(sgl), plchan->name);
2055
2056
txd = pl08x_init_txd(chan, direction, &slave_addr);
2057
if (!txd)
2058
return NULL;
2059
2060
for_each_sg(sgl, sg, sg_len, tmp) {
2061
ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2062
sg_dma_address(sg),
2063
sg_dma_len(sg));
2064
if (ret) {
2065
pl08x_release_mux(plchan);
2066
pl08x_free_txd(pl08x, txd);
2067
dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2068
__func__);
2069
return NULL;
2070
}
2071
}
2072
2073
ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2074
if (!ret) {
2075
pl08x_release_mux(plchan);
2076
pl08x_free_txd(pl08x, txd);
2077
return NULL;
2078
}
2079
2080
return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2081
}
2082
2083
static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2084
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2085
size_t period_len, enum dma_transfer_direction direction,
2086
unsigned long flags)
2087
{
2088
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2089
struct pl08x_driver_data *pl08x = plchan->host;
2090
struct pl08x_txd *txd;
2091
int ret, tmp;
2092
dma_addr_t slave_addr;
2093
2094
dev_dbg(&pl08x->adev->dev,
2095
"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2096
__func__, period_len, buf_len,
2097
direction == DMA_MEM_TO_DEV ? "to" : "from",
2098
plchan->name);
2099
2100
txd = pl08x_init_txd(chan, direction, &slave_addr);
2101
if (!txd)
2102
return NULL;
2103
2104
txd->cyclic = true;
2105
txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2106
for (tmp = 0; tmp < buf_len; tmp += period_len) {
2107
ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2108
buf_addr + tmp, period_len);
2109
if (ret) {
2110
pl08x_release_mux(plchan);
2111
pl08x_free_txd(pl08x, txd);
2112
return NULL;
2113
}
2114
}
2115
2116
ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2117
if (!ret) {
2118
pl08x_release_mux(plchan);
2119
pl08x_free_txd(pl08x, txd);
2120
return NULL;
2121
}
2122
2123
return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2124
}
2125
2126
static int pl08x_config(struct dma_chan *chan,
2127
struct dma_slave_config *config)
2128
{
2129
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2130
struct pl08x_driver_data *pl08x = plchan->host;
2131
2132
if (!plchan->slave)
2133
return -EINVAL;
2134
2135
/* Reject definitely invalid configurations */
2136
if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2137
config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2138
return -EINVAL;
2139
2140
if (config->device_fc && pl08x->vd->pl080s) {
2141
dev_err(&pl08x->adev->dev,
2142
"%s: PL080S does not support peripheral flow control\n",
2143
__func__);
2144
return -EINVAL;
2145
}
2146
2147
plchan->cfg = *config;
2148
2149
return 0;
2150
}
2151
2152
static int pl08x_terminate_all(struct dma_chan *chan)
2153
{
2154
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2155
struct pl08x_driver_data *pl08x = plchan->host;
2156
unsigned long flags;
2157
2158
spin_lock_irqsave(&plchan->vc.lock, flags);
2159
if (!plchan->phychan && !plchan->at) {
2160
spin_unlock_irqrestore(&plchan->vc.lock, flags);
2161
return 0;
2162
}
2163
2164
plchan->state = PL08X_CHAN_IDLE;
2165
2166
if (plchan->phychan) {
2167
/*
2168
* Mark physical channel as free and free any slave
2169
* signal
2170
*/
2171
pl08x_phy_free(plchan);
2172
}
2173
/* Dequeue jobs and free LLIs */
2174
if (plchan->at) {
2175
vchan_terminate_vdesc(&plchan->at->vd);
2176
plchan->at = NULL;
2177
}
2178
/* Dequeue jobs not yet fired as well */
2179
pl08x_free_txd_list(pl08x, plchan);
2180
2181
spin_unlock_irqrestore(&plchan->vc.lock, flags);
2182
2183
return 0;
2184
}
2185
2186
static void pl08x_synchronize(struct dma_chan *chan)
2187
{
2188
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2189
2190
vchan_synchronize(&plchan->vc);
2191
}
2192
2193
static int pl08x_pause(struct dma_chan *chan)
2194
{
2195
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2196
unsigned long flags;
2197
2198
/*
2199
* Anything succeeds on channels with no physical allocation and
2200
* no queued transfers.
2201
*/
2202
spin_lock_irqsave(&plchan->vc.lock, flags);
2203
if (!plchan->phychan && !plchan->at) {
2204
spin_unlock_irqrestore(&plchan->vc.lock, flags);
2205
return 0;
2206
}
2207
2208
pl08x_pause_phy_chan(plchan->phychan);
2209
plchan->state = PL08X_CHAN_PAUSED;
2210
2211
spin_unlock_irqrestore(&plchan->vc.lock, flags);
2212
2213
return 0;
2214
}
2215
2216
static int pl08x_resume(struct dma_chan *chan)
2217
{
2218
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2219
unsigned long flags;
2220
2221
/*
2222
* Anything succeeds on channels with no physical allocation and
2223
* no queued transfers.
2224
*/
2225
spin_lock_irqsave(&plchan->vc.lock, flags);
2226
if (!plchan->phychan && !plchan->at) {
2227
spin_unlock_irqrestore(&plchan->vc.lock, flags);
2228
return 0;
2229
}
2230
2231
pl08x_resume_phy_chan(plchan->phychan);
2232
plchan->state = PL08X_CHAN_RUNNING;
2233
2234
spin_unlock_irqrestore(&plchan->vc.lock, flags);
2235
2236
return 0;
2237
}
2238
2239
bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2240
{
2241
struct pl08x_dma_chan *plchan;
2242
const char *name = chan_id;
2243
2244
/* Reject channels for devices not bound to this driver */
2245
if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2246
return false;
2247
2248
plchan = to_pl08x_chan(chan);
2249
2250
/* Check that the channel is not taken! */
2251
if (!strcmp(plchan->name, name))
2252
return true;
2253
2254
return false;
2255
}
2256
EXPORT_SYMBOL_GPL(pl08x_filter_id);
2257
2258
static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2259
{
2260
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2261
2262
return plchan->cd == chan_id;
2263
}
2264
2265
/*
2266
* Just check that the device is there and active
2267
* TODO: turn this bit on/off depending on the number of physical channels
2268
* actually used, if it is zero... well shut it off. That will save some
2269
* power. Cut the clock at the same time.
2270
*/
2271
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2272
{
2273
/* The Nomadik variant does not have the config register */
2274
if (pl08x->vd->nomadik)
2275
return;
2276
/* The FTDMAC020 variant does this in another register */
2277
if (pl08x->vd->ftdmac020) {
2278
writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2279
return;
2280
}
2281
writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2282
}
2283
2284
static irqreturn_t pl08x_irq(int irq, void *dev)
2285
{
2286
struct pl08x_driver_data *pl08x = dev;
2287
u32 mask = 0, err, tc, i;
2288
2289
/* check & clear - ERR & TC interrupts */
2290
err = readl(pl08x->base + PL080_ERR_STATUS);
2291
if (err) {
2292
dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2293
__func__, err);
2294
writel(err, pl08x->base + PL080_ERR_CLEAR);
2295
}
2296
tc = readl(pl08x->base + PL080_TC_STATUS);
2297
if (tc)
2298
writel(tc, pl08x->base + PL080_TC_CLEAR);
2299
2300
if (!err && !tc)
2301
return IRQ_NONE;
2302
2303
for (i = 0; i < pl08x->vd->channels; i++) {
2304
if ((BIT(i) & err) || (BIT(i) & tc)) {
2305
/* Locate physical channel */
2306
struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2307
struct pl08x_dma_chan *plchan = phychan->serving;
2308
struct pl08x_txd *tx;
2309
2310
if (!plchan) {
2311
dev_err(&pl08x->adev->dev,
2312
"%s Error TC interrupt on unused channel: 0x%08x\n",
2313
__func__, i);
2314
continue;
2315
}
2316
2317
spin_lock(&plchan->vc.lock);
2318
tx = plchan->at;
2319
if (tx && tx->cyclic) {
2320
vchan_cyclic_callback(&tx->vd);
2321
} else if (tx) {
2322
plchan->at = NULL;
2323
/*
2324
* This descriptor is done, release its mux
2325
* reservation.
2326
*/
2327
pl08x_release_mux(plchan);
2328
tx->done = true;
2329
vchan_cookie_complete(&tx->vd);
2330
2331
/*
2332
* And start the next descriptor (if any),
2333
* otherwise free this channel.
2334
*/
2335
if (vchan_next_desc(&plchan->vc))
2336
pl08x_start_next_txd(plchan);
2337
else
2338
pl08x_phy_free(plchan);
2339
}
2340
spin_unlock(&plchan->vc.lock);
2341
2342
mask |= BIT(i);
2343
}
2344
}
2345
2346
return mask ? IRQ_HANDLED : IRQ_NONE;
2347
}
2348
2349
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2350
{
2351
chan->slave = true;
2352
chan->name = chan->cd->bus_id;
2353
chan->cfg.src_addr = chan->cd->addr;
2354
chan->cfg.dst_addr = chan->cd->addr;
2355
}
2356
2357
/*
2358
* Initialise the DMAC memcpy/slave channels.
2359
* Make a local wrapper to hold required data
2360
*/
2361
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2362
struct dma_device *dmadev, unsigned int channels, bool slave)
2363
{
2364
struct pl08x_dma_chan *chan;
2365
int i;
2366
2367
INIT_LIST_HEAD(&dmadev->channels);
2368
2369
/*
2370
* Register as many memcpy as we have physical channels,
2371
* we won't always be able to use all but the code will have
2372
* to cope with that situation.
2373
*/
2374
for (i = 0; i < channels; i++) {
2375
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2376
if (!chan)
2377
return -ENOMEM;
2378
2379
chan->host = pl08x;
2380
chan->state = PL08X_CHAN_IDLE;
2381
chan->signal = -1;
2382
2383
if (slave) {
2384
chan->cd = &pl08x->pd->slave_channels[i];
2385
/*
2386
* Some implementations have muxed signals, whereas some
2387
* use a mux in front of the signals and need dynamic
2388
* assignment of signals.
2389
*/
2390
chan->signal = i;
2391
pl08x_dma_slave_init(chan);
2392
} else {
2393
chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2394
if (!chan->cd) {
2395
kfree(chan);
2396
return -ENOMEM;
2397
}
2398
chan->cd->bus_id = "memcpy";
2399
chan->cd->periph_buses = pl08x->pd->mem_buses;
2400
chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2401
if (!chan->name) {
2402
kfree(chan->cd);
2403
kfree(chan);
2404
return -ENOMEM;
2405
}
2406
}
2407
dev_dbg(&pl08x->adev->dev,
2408
"initialize virtual channel \"%s\"\n",
2409
chan->name);
2410
2411
chan->vc.desc_free = pl08x_desc_free;
2412
vchan_init(&chan->vc, dmadev);
2413
}
2414
dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2415
i, slave ? "slave" : "memcpy");
2416
return i;
2417
}
2418
2419
static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2420
{
2421
struct pl08x_dma_chan *chan = NULL;
2422
struct pl08x_dma_chan *next;
2423
2424
list_for_each_entry_safe(chan,
2425
next, &dmadev->channels, vc.chan.device_node) {
2426
list_del(&chan->vc.chan.device_node);
2427
kfree(chan);
2428
}
2429
}
2430
2431
#ifdef CONFIG_DEBUG_FS
2432
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2433
{
2434
switch (state) {
2435
case PL08X_CHAN_IDLE:
2436
return "idle";
2437
case PL08X_CHAN_RUNNING:
2438
return "running";
2439
case PL08X_CHAN_PAUSED:
2440
return "paused";
2441
case PL08X_CHAN_WAITING:
2442
return "waiting";
2443
default:
2444
break;
2445
}
2446
return "UNKNOWN STATE";
2447
}
2448
2449
static int pl08x_debugfs_show(struct seq_file *s, void *data)
2450
{
2451
struct pl08x_driver_data *pl08x = s->private;
2452
struct pl08x_dma_chan *chan;
2453
struct pl08x_phy_chan *ch;
2454
unsigned long flags;
2455
int i;
2456
2457
seq_printf(s, "PL08x physical channels:\n");
2458
seq_printf(s, "CHANNEL:\tUSER:\n");
2459
seq_printf(s, "--------\t-----\n");
2460
for (i = 0; i < pl08x->vd->channels; i++) {
2461
struct pl08x_dma_chan *virt_chan;
2462
2463
ch = &pl08x->phy_chans[i];
2464
2465
spin_lock_irqsave(&ch->lock, flags);
2466
virt_chan = ch->serving;
2467
2468
seq_printf(s, "%d\t\t%s%s\n",
2469
ch->id,
2470
virt_chan ? virt_chan->name : "(none)",
2471
ch->locked ? " LOCKED" : "");
2472
2473
spin_unlock_irqrestore(&ch->lock, flags);
2474
}
2475
2476
seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2477
seq_printf(s, "CHANNEL:\tSTATE:\n");
2478
seq_printf(s, "--------\t------\n");
2479
list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2480
seq_printf(s, "%s\t\t%s\n", chan->name,
2481
pl08x_state_str(chan->state));
2482
}
2483
2484
if (pl08x->has_slave) {
2485
seq_printf(s, "\nPL08x virtual slave channels:\n");
2486
seq_printf(s, "CHANNEL:\tSTATE:\n");
2487
seq_printf(s, "--------\t------\n");
2488
list_for_each_entry(chan, &pl08x->slave.channels,
2489
vc.chan.device_node) {
2490
seq_printf(s, "%s\t\t%s\n", chan->name,
2491
pl08x_state_str(chan->state));
2492
}
2493
}
2494
2495
return 0;
2496
}
2497
2498
DEFINE_SHOW_ATTRIBUTE(pl08x_debugfs);
2499
2500
static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2501
{
2502
/* Expose a simple debugfs interface to view all clocks */
2503
debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
2504
NULL, pl08x, &pl08x_debugfs_fops);
2505
}
2506
2507
#else
2508
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2509
{
2510
}
2511
#endif
2512
2513
#ifdef CONFIG_OF
2514
static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2515
u32 id)
2516
{
2517
struct pl08x_dma_chan *chan;
2518
2519
/* Trying to get a slave channel from something with no slave support */
2520
if (!pl08x->has_slave)
2521
return NULL;
2522
2523
list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2524
if (chan->signal == id)
2525
return &chan->vc.chan;
2526
}
2527
2528
return NULL;
2529
}
2530
2531
static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2532
struct of_dma *ofdma)
2533
{
2534
struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2535
struct dma_chan *dma_chan;
2536
struct pl08x_dma_chan *plchan;
2537
2538
if (!pl08x)
2539
return NULL;
2540
2541
if (dma_spec->args_count != 2) {
2542
dev_err(&pl08x->adev->dev,
2543
"DMA channel translation requires two cells\n");
2544
return NULL;
2545
}
2546
2547
dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2548
if (!dma_chan) {
2549
dev_err(&pl08x->adev->dev,
2550
"DMA slave channel not found\n");
2551
return NULL;
2552
}
2553
2554
plchan = to_pl08x_chan(dma_chan);
2555
dev_dbg(&pl08x->adev->dev,
2556
"translated channel for signal %d\n",
2557
dma_spec->args[0]);
2558
2559
/* Augment channel data for applicable AHB buses */
2560
plchan->cd->periph_buses = dma_spec->args[1];
2561
return dma_get_slave_channel(dma_chan);
2562
}
2563
2564
static int pl08x_of_probe(struct amba_device *adev,
2565
struct pl08x_driver_data *pl08x,
2566
struct device_node *np)
2567
{
2568
struct pl08x_platform_data *pd;
2569
struct pl08x_channel_data *chanp = NULL;
2570
u32 val;
2571
int ret;
2572
int i;
2573
2574
pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2575
if (!pd)
2576
return -ENOMEM;
2577
2578
/* Eligible bus masters for fetching LLIs */
2579
if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2580
pd->lli_buses |= PL08X_AHB1;
2581
if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2582
pd->lli_buses |= PL08X_AHB2;
2583
if (!pd->lli_buses) {
2584
dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2585
pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2586
}
2587
2588
/* Eligible bus masters for memory access */
2589
if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2590
pd->mem_buses |= PL08X_AHB1;
2591
if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2592
pd->mem_buses |= PL08X_AHB2;
2593
if (!pd->mem_buses) {
2594
dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2595
pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2596
}
2597
2598
/* Parse the memcpy channel properties */
2599
ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2600
if (ret) {
2601
dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2602
val = 1;
2603
}
2604
switch (val) {
2605
default:
2606
dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2607
fallthrough;
2608
case 1:
2609
pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2610
break;
2611
case 4:
2612
pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2613
break;
2614
case 8:
2615
pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2616
break;
2617
case 16:
2618
pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2619
break;
2620
case 32:
2621
pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2622
break;
2623
case 64:
2624
pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2625
break;
2626
case 128:
2627
pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2628
break;
2629
case 256:
2630
pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2631
break;
2632
}
2633
2634
ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2635
if (ret) {
2636
dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2637
val = 8;
2638
}
2639
switch (val) {
2640
default:
2641
dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2642
fallthrough;
2643
case 8:
2644
pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2645
break;
2646
case 16:
2647
pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2648
break;
2649
case 32:
2650
pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2651
break;
2652
}
2653
2654
/*
2655
* Allocate channel data for all possible slave channels (one
2656
* for each possible signal), channels will then be allocated
2657
* for a device and have it's AHB interfaces set up at
2658
* translation time.
2659
*/
2660
if (pl08x->vd->signals) {
2661
chanp = devm_kcalloc(&adev->dev,
2662
pl08x->vd->signals,
2663
sizeof(struct pl08x_channel_data),
2664
GFP_KERNEL);
2665
if (!chanp)
2666
return -ENOMEM;
2667
2668
pd->slave_channels = chanp;
2669
for (i = 0; i < pl08x->vd->signals; i++) {
2670
/*
2671
* chanp->periph_buses will be assigned at translation
2672
*/
2673
chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2674
chanp++;
2675
}
2676
pd->num_slave_channels = pl08x->vd->signals;
2677
}
2678
2679
pl08x->pd = pd;
2680
2681
return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2682
pl08x);
2683
}
2684
#else
2685
static inline int pl08x_of_probe(struct amba_device *adev,
2686
struct pl08x_driver_data *pl08x,
2687
struct device_node *np)
2688
{
2689
return -EINVAL;
2690
}
2691
#endif
2692
2693
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2694
{
2695
struct pl08x_driver_data *pl08x;
2696
struct vendor_data *vd = id->data;
2697
struct device_node *np = adev->dev.of_node;
2698
u32 tsfr_size;
2699
int ret = 0;
2700
int i;
2701
2702
ret = amba_request_regions(adev, NULL);
2703
if (ret)
2704
return ret;
2705
2706
/* Ensure that we can do DMA */
2707
ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2708
if (ret)
2709
goto out_no_pl08x;
2710
2711
/* Create the driver state holder */
2712
pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2713
if (!pl08x) {
2714
ret = -ENOMEM;
2715
goto out_no_pl08x;
2716
}
2717
2718
/* Assign useful pointers to the driver state */
2719
pl08x->adev = adev;
2720
pl08x->vd = vd;
2721
2722
pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2723
if (!pl08x->base) {
2724
ret = -ENOMEM;
2725
goto out_no_ioremap;
2726
}
2727
2728
if (vd->ftdmac020) {
2729
u32 val;
2730
2731
val = readl(pl08x->base + FTDMAC020_REVISION);
2732
dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2733
(val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2734
val = readl(pl08x->base + FTDMAC020_FEATURE);
2735
dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2736
"%s built-in bridge, %s, %s linked lists\n",
2737
(val >> 12) & 0x0f,
2738
(val & BIT(10)) ? "no" : "has",
2739
(val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2740
(val & BIT(8)) ? "supports" : "does not support");
2741
2742
/* Vendor data from feature register */
2743
if (!(val & BIT(8)))
2744
dev_warn(&pl08x->adev->dev,
2745
"linked lists not supported, required\n");
2746
vd->channels = (val >> 12) & 0x0f;
2747
vd->dualmaster = !!(val & BIT(9));
2748
}
2749
2750
/* Initialize memcpy engine */
2751
dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2752
pl08x->memcpy.dev = &adev->dev;
2753
pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2754
pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2755
pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2756
pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2757
pl08x->memcpy.device_config = pl08x_config;
2758
pl08x->memcpy.device_pause = pl08x_pause;
2759
pl08x->memcpy.device_resume = pl08x_resume;
2760
pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2761
pl08x->memcpy.device_synchronize = pl08x_synchronize;
2762
pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2763
pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2764
pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2765
pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2766
if (vd->ftdmac020)
2767
pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2768
2769
2770
/*
2771
* Initialize slave engine, if the block has no signals, that means
2772
* we have no slave support.
2773
*/
2774
if (vd->signals) {
2775
pl08x->has_slave = true;
2776
dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2777
dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2778
pl08x->slave.dev = &adev->dev;
2779
pl08x->slave.device_free_chan_resources =
2780
pl08x_free_chan_resources;
2781
pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2782
pl08x->slave.device_issue_pending = pl08x_issue_pending;
2783
pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2784
pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2785
pl08x->slave.device_config = pl08x_config;
2786
pl08x->slave.device_pause = pl08x_pause;
2787
pl08x->slave.device_resume = pl08x_resume;
2788
pl08x->slave.device_terminate_all = pl08x_terminate_all;
2789
pl08x->slave.device_synchronize = pl08x_synchronize;
2790
pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2791
pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2792
pl08x->slave.directions =
2793
BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2794
pl08x->slave.residue_granularity =
2795
DMA_RESIDUE_GRANULARITY_SEGMENT;
2796
}
2797
2798
/* Get the platform data */
2799
pl08x->pd = dev_get_platdata(&adev->dev);
2800
if (!pl08x->pd) {
2801
if (np) {
2802
ret = pl08x_of_probe(adev, pl08x, np);
2803
if (ret)
2804
goto out_no_platdata;
2805
} else {
2806
dev_err(&adev->dev, "no platform data supplied\n");
2807
ret = -EINVAL;
2808
goto out_no_platdata;
2809
}
2810
} else {
2811
pl08x->slave.filter.map = pl08x->pd->slave_map;
2812
pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2813
pl08x->slave.filter.fn = pl08x_filter_fn;
2814
}
2815
2816
/* By default, AHB1 only. If dualmaster, from platform */
2817
pl08x->lli_buses = PL08X_AHB1;
2818
pl08x->mem_buses = PL08X_AHB1;
2819
if (pl08x->vd->dualmaster) {
2820
pl08x->lli_buses = pl08x->pd->lli_buses;
2821
pl08x->mem_buses = pl08x->pd->mem_buses;
2822
}
2823
2824
if (vd->pl080s)
2825
pl08x->lli_words = PL080S_LLI_WORDS;
2826
else
2827
pl08x->lli_words = PL080_LLI_WORDS;
2828
tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2829
2830
/* A DMA memory pool for LLIs, align on 1-byte boundary */
2831
pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2832
tsfr_size, PL08X_ALIGN, 0);
2833
if (!pl08x->pool) {
2834
ret = -ENOMEM;
2835
goto out_no_lli_pool;
2836
}
2837
2838
/* Turn on the PL08x */
2839
pl08x_ensure_on(pl08x);
2840
2841
/* Clear any pending interrupts */
2842
if (vd->ftdmac020)
2843
/* This variant has error IRQs in bits 16-19 */
2844
writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2845
else
2846
writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2847
writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2848
2849
/* Attach the interrupt handler */
2850
ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2851
if (ret) {
2852
dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2853
__func__, adev->irq[0]);
2854
goto out_no_irq;
2855
}
2856
2857
/* Initialize physical channels */
2858
pl08x->phy_chans = kcalloc(vd->channels, sizeof(*pl08x->phy_chans),
2859
GFP_KERNEL);
2860
if (!pl08x->phy_chans) {
2861
ret = -ENOMEM;
2862
goto out_no_phychans;
2863
}
2864
2865
for (i = 0; i < vd->channels; i++) {
2866
struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2867
2868
ch->id = i;
2869
ch->base = pl08x->base + PL080_Cx_BASE(i);
2870
if (vd->ftdmac020) {
2871
/* FTDMA020 has a special channel busy register */
2872
ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2873
ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2874
ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2875
ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2876
ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2877
ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2878
ch->ftdmac020 = true;
2879
} else {
2880
ch->reg_config = ch->base + vd->config_offset;
2881
ch->reg_control = ch->base + PL080_CH_CONTROL;
2882
ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2883
ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2884
ch->reg_lli = ch->base + PL080_CH_LLI;
2885
}
2886
if (vd->pl080s)
2887
ch->pl080s = true;
2888
2889
spin_lock_init(&ch->lock);
2890
2891
/*
2892
* Nomadik variants can have channels that are locked
2893
* down for the secure world only. Lock up these channels
2894
* by perpetually serving a dummy virtual channel.
2895
*/
2896
if (vd->nomadik) {
2897
u32 val;
2898
2899
val = readl(ch->reg_config);
2900
if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2901
dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2902
ch->locked = true;
2903
}
2904
}
2905
2906
dev_dbg(&adev->dev, "physical channel %d is %s\n",
2907
i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2908
}
2909
2910
/* Register as many memcpy channels as there are physical channels */
2911
ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2912
pl08x->vd->channels, false);
2913
if (ret <= 0) {
2914
dev_warn(&pl08x->adev->dev,
2915
"%s failed to enumerate memcpy channels - %d\n",
2916
__func__, ret);
2917
goto out_no_memcpy;
2918
}
2919
2920
/* Register slave channels */
2921
if (pl08x->has_slave) {
2922
ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2923
pl08x->pd->num_slave_channels, true);
2924
if (ret < 0) {
2925
dev_warn(&pl08x->adev->dev,
2926
"%s failed to enumerate slave channels - %d\n",
2927
__func__, ret);
2928
goto out_no_slave;
2929
}
2930
}
2931
2932
ret = dma_async_device_register(&pl08x->memcpy);
2933
if (ret) {
2934
dev_warn(&pl08x->adev->dev,
2935
"%s failed to register memcpy as an async device - %d\n",
2936
__func__, ret);
2937
goto out_no_memcpy_reg;
2938
}
2939
2940
if (pl08x->has_slave) {
2941
ret = dma_async_device_register(&pl08x->slave);
2942
if (ret) {
2943
dev_warn(&pl08x->adev->dev,
2944
"%s failed to register slave as an async device - %d\n",
2945
__func__, ret);
2946
goto out_no_slave_reg;
2947
}
2948
}
2949
2950
amba_set_drvdata(adev, pl08x);
2951
init_pl08x_debugfs(pl08x);
2952
dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2953
amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2954
(unsigned long long)adev->res.start, adev->irq[0]);
2955
2956
return 0;
2957
2958
out_no_slave_reg:
2959
dma_async_device_unregister(&pl08x->memcpy);
2960
out_no_memcpy_reg:
2961
if (pl08x->has_slave)
2962
pl08x_free_virtual_channels(&pl08x->slave);
2963
out_no_slave:
2964
pl08x_free_virtual_channels(&pl08x->memcpy);
2965
out_no_memcpy:
2966
kfree(pl08x->phy_chans);
2967
out_no_phychans:
2968
free_irq(adev->irq[0], pl08x);
2969
out_no_irq:
2970
dma_pool_destroy(pl08x->pool);
2971
out_no_lli_pool:
2972
out_no_platdata:
2973
iounmap(pl08x->base);
2974
out_no_ioremap:
2975
kfree(pl08x);
2976
out_no_pl08x:
2977
amba_release_regions(adev);
2978
return ret;
2979
}
2980
2981
/* PL080 has 8 channels and the PL080 have just 2 */
2982
static struct vendor_data vendor_pl080 = {
2983
.config_offset = PL080_CH_CONFIG,
2984
.channels = 8,
2985
.signals = 16,
2986
.dualmaster = true,
2987
.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2988
};
2989
2990
static struct vendor_data vendor_nomadik = {
2991
.config_offset = PL080_CH_CONFIG,
2992
.channels = 8,
2993
.signals = 32,
2994
.dualmaster = true,
2995
.nomadik = true,
2996
.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2997
};
2998
2999
static struct vendor_data vendor_pl080s = {
3000
.config_offset = PL080S_CH_CONFIG,
3001
.channels = 8,
3002
.signals = 32,
3003
.pl080s = true,
3004
.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3005
};
3006
3007
static struct vendor_data vendor_pl081 = {
3008
.config_offset = PL080_CH_CONFIG,
3009
.channels = 2,
3010
.signals = 16,
3011
.dualmaster = false,
3012
.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3013
};
3014
3015
static struct vendor_data vendor_ftdmac020 = {
3016
.config_offset = PL080_CH_CONFIG,
3017
.ftdmac020 = true,
3018
.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3019
};
3020
3021
static const struct amba_id pl08x_ids[] = {
3022
/* Samsung PL080S variant */
3023
{
3024
.id = 0x0a141080,
3025
.mask = 0xffffffff,
3026
.data = &vendor_pl080s,
3027
},
3028
/* PL080 */
3029
{
3030
.id = 0x00041080,
3031
.mask = 0x000fffff,
3032
.data = &vendor_pl080,
3033
},
3034
/* PL081 */
3035
{
3036
.id = 0x00041081,
3037
.mask = 0x000fffff,
3038
.data = &vendor_pl081,
3039
},
3040
/* Nomadik 8815 PL080 variant */
3041
{
3042
.id = 0x00280080,
3043
.mask = 0x00ffffff,
3044
.data = &vendor_nomadik,
3045
},
3046
/* Faraday Technology FTDMAC020 */
3047
{
3048
.id = 0x0003b080,
3049
.mask = 0x000fffff,
3050
.data = &vendor_ftdmac020,
3051
},
3052
{ 0, 0 },
3053
};
3054
3055
MODULE_DEVICE_TABLE(amba, pl08x_ids);
3056
3057
static struct amba_driver pl08x_amba_driver = {
3058
.drv.name = DRIVER_NAME,
3059
.id_table = pl08x_ids,
3060
.probe = pl08x_probe,
3061
};
3062
3063
static int __init pl08x_init(void)
3064
{
3065
int retval;
3066
retval = amba_driver_register(&pl08x_amba_driver);
3067
if (retval)
3068
printk(KERN_WARNING DRIVER_NAME
3069
"failed to register as an AMBA device (%d)\n",
3070
retval);
3071
return retval;
3072
}
3073
subsys_initcall(pl08x_init);
3074
3075