Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/dma/apple-admac.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Driver for Audio DMA Controller (ADMAC) on t8103 (M1) and other Apple chips
4
*
5
* Copyright (C) The Asahi Linux Contributors
6
*/
7
8
#include <linux/bits.h>
9
#include <linux/bitfield.h>
10
#include <linux/device.h>
11
#include <linux/init.h>
12
#include <linux/module.h>
13
#include <linux/of.h>
14
#include <linux/of_dma.h>
15
#include <linux/platform_device.h>
16
#include <linux/reset.h>
17
#include <linux/spinlock.h>
18
#include <linux/interrupt.h>
19
20
#include "dmaengine.h"
21
22
#define NCHANNELS_MAX 64
23
#define IRQ_NOUTPUTS 4
24
25
/*
26
* For allocation purposes we split the cache
27
* memory into blocks of fixed size (given in bytes).
28
*/
29
#define SRAM_BLOCK 2048
30
31
#define RING_WRITE_SLOT GENMASK(1, 0)
32
#define RING_READ_SLOT GENMASK(5, 4)
33
#define RING_FULL BIT(9)
34
#define RING_EMPTY BIT(8)
35
#define RING_ERR BIT(10)
36
37
#define STATUS_DESC_DONE BIT(0)
38
#define STATUS_ERR BIT(6)
39
40
#define FLAG_DESC_NOTIFY BIT(16)
41
42
#define REG_TX_START 0x0000
43
#define REG_TX_STOP 0x0004
44
#define REG_RX_START 0x0008
45
#define REG_RX_STOP 0x000c
46
#define REG_IMPRINT 0x0090
47
#define REG_TX_SRAM_SIZE 0x0094
48
#define REG_RX_SRAM_SIZE 0x0098
49
50
#define REG_CHAN_CTL(ch) (0x8000 + (ch) * 0x200)
51
#define REG_CHAN_CTL_RST_RINGS BIT(0)
52
53
#define REG_DESC_RING(ch) (0x8070 + (ch) * 0x200)
54
#define REG_REPORT_RING(ch) (0x8074 + (ch) * 0x200)
55
56
#define REG_RESIDUE(ch) (0x8064 + (ch) * 0x200)
57
58
#define REG_BUS_WIDTH(ch) (0x8040 + (ch) * 0x200)
59
60
#define BUS_WIDTH_WORD_SIZE GENMASK(3, 0)
61
#define BUS_WIDTH_FRAME_SIZE GENMASK(7, 4)
62
#define BUS_WIDTH_8BIT 0x00
63
#define BUS_WIDTH_16BIT 0x01
64
#define BUS_WIDTH_32BIT 0x02
65
#define BUS_WIDTH_FRAME_2_WORDS 0x10
66
#define BUS_WIDTH_FRAME_4_WORDS 0x20
67
68
#define REG_CHAN_SRAM_CARVEOUT(ch) (0x8050 + (ch) * 0x200)
69
#define CHAN_SRAM_CARVEOUT_SIZE GENMASK(31, 16)
70
#define CHAN_SRAM_CARVEOUT_BASE GENMASK(15, 0)
71
72
#define REG_CHAN_FIFOCTL(ch) (0x8054 + (ch) * 0x200)
73
#define CHAN_FIFOCTL_LIMIT GENMASK(31, 16)
74
#define CHAN_FIFOCTL_THRESHOLD GENMASK(15, 0)
75
76
#define REG_DESC_WRITE(ch) (0x10000 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000)
77
#define REG_REPORT_READ(ch) (0x10100 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000)
78
79
#define REG_TX_INTSTATE(idx) (0x0030 + (idx) * 4)
80
#define REG_RX_INTSTATE(idx) (0x0040 + (idx) * 4)
81
#define REG_GLOBAL_INTSTATE(idx) (0x0050 + (idx) * 4)
82
#define REG_CHAN_INTSTATUS(ch, idx) (0x8010 + (ch) * 0x200 + (idx) * 4)
83
#define REG_CHAN_INTMASK(ch, idx) (0x8020 + (ch) * 0x200 + (idx) * 4)
84
85
struct admac_data;
86
struct admac_tx;
87
88
struct admac_chan {
89
unsigned int no;
90
struct admac_data *host;
91
struct dma_chan chan;
92
struct tasklet_struct tasklet;
93
94
u32 carveout;
95
96
spinlock_t lock;
97
struct admac_tx *current_tx;
98
int nperiod_acks;
99
100
/*
101
* We maintain a 'submitted' and 'issued' list mainly for interface
102
* correctness. Typical use of the driver (per channel) will be
103
* prepping, submitting and issuing a single cyclic transaction which
104
* will stay current until terminate_all is called.
105
*/
106
struct list_head submitted;
107
struct list_head issued;
108
109
struct list_head to_free;
110
};
111
112
struct admac_sram {
113
u32 size;
114
/*
115
* SRAM_CARVEOUT has 16-bit fields, so the SRAM cannot be larger than
116
* 64K and a 32-bit bitfield over 2K blocks covers it.
117
*/
118
u32 allocated;
119
};
120
121
struct admac_data {
122
struct dma_device dma;
123
struct device *dev;
124
__iomem void *base;
125
struct reset_control *rstc;
126
127
struct mutex cache_alloc_lock;
128
struct admac_sram txcache, rxcache;
129
130
int irq;
131
int irq_index;
132
int nchannels;
133
struct admac_chan channels[] __counted_by(nchannels);
134
};
135
136
struct admac_tx {
137
struct dma_async_tx_descriptor tx;
138
bool cyclic;
139
dma_addr_t buf_addr;
140
dma_addr_t buf_end;
141
size_t buf_len;
142
size_t period_len;
143
144
size_t submitted_pos;
145
size_t reclaimed_pos;
146
147
struct list_head node;
148
};
149
150
static int admac_alloc_sram_carveout(struct admac_data *ad,
151
enum dma_transfer_direction dir,
152
u32 *out)
153
{
154
struct admac_sram *sram;
155
int i, ret = 0, nblocks;
156
ad->txcache.size = readl_relaxed(ad->base + REG_TX_SRAM_SIZE);
157
ad->rxcache.size = readl_relaxed(ad->base + REG_RX_SRAM_SIZE);
158
159
if (dir == DMA_MEM_TO_DEV)
160
sram = &ad->txcache;
161
else
162
sram = &ad->rxcache;
163
164
mutex_lock(&ad->cache_alloc_lock);
165
166
nblocks = sram->size / SRAM_BLOCK;
167
for (i = 0; i < nblocks; i++)
168
if (!(sram->allocated & BIT(i)))
169
break;
170
171
if (i < nblocks) {
172
*out = FIELD_PREP(CHAN_SRAM_CARVEOUT_BASE, i * SRAM_BLOCK) |
173
FIELD_PREP(CHAN_SRAM_CARVEOUT_SIZE, SRAM_BLOCK);
174
sram->allocated |= BIT(i);
175
} else {
176
ret = -EBUSY;
177
}
178
179
mutex_unlock(&ad->cache_alloc_lock);
180
181
return ret;
182
}
183
184
static void admac_free_sram_carveout(struct admac_data *ad,
185
enum dma_transfer_direction dir,
186
u32 carveout)
187
{
188
struct admac_sram *sram;
189
u32 base = FIELD_GET(CHAN_SRAM_CARVEOUT_BASE, carveout);
190
int i;
191
192
if (dir == DMA_MEM_TO_DEV)
193
sram = &ad->txcache;
194
else
195
sram = &ad->rxcache;
196
197
if (WARN_ON(base >= sram->size))
198
return;
199
200
mutex_lock(&ad->cache_alloc_lock);
201
i = base / SRAM_BLOCK;
202
sram->allocated &= ~BIT(i);
203
mutex_unlock(&ad->cache_alloc_lock);
204
}
205
206
static void admac_modify(struct admac_data *ad, int reg, u32 mask, u32 val)
207
{
208
void __iomem *addr = ad->base + reg;
209
u32 curr = readl_relaxed(addr);
210
211
writel_relaxed((curr & ~mask) | (val & mask), addr);
212
}
213
214
static struct admac_chan *to_admac_chan(struct dma_chan *chan)
215
{
216
return container_of(chan, struct admac_chan, chan);
217
}
218
219
static struct admac_tx *to_admac_tx(struct dma_async_tx_descriptor *tx)
220
{
221
return container_of(tx, struct admac_tx, tx);
222
}
223
224
static enum dma_transfer_direction admac_chan_direction(int channo)
225
{
226
/* Channel directions are hardwired */
227
return (channo & 1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
228
}
229
230
static dma_cookie_t admac_tx_submit(struct dma_async_tx_descriptor *tx)
231
{
232
struct admac_tx *adtx = to_admac_tx(tx);
233
struct admac_chan *adchan = to_admac_chan(tx->chan);
234
unsigned long flags;
235
dma_cookie_t cookie;
236
237
spin_lock_irqsave(&adchan->lock, flags);
238
cookie = dma_cookie_assign(tx);
239
list_add_tail(&adtx->node, &adchan->submitted);
240
spin_unlock_irqrestore(&adchan->lock, flags);
241
242
return cookie;
243
}
244
245
static int admac_desc_free(struct dma_async_tx_descriptor *tx)
246
{
247
kfree(to_admac_tx(tx));
248
249
return 0;
250
}
251
252
static struct dma_async_tx_descriptor *admac_prep_dma_cyclic(
253
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
254
size_t period_len, enum dma_transfer_direction direction,
255
unsigned long flags)
256
{
257
struct admac_chan *adchan = container_of(chan, struct admac_chan, chan);
258
struct admac_tx *adtx;
259
260
if (direction != admac_chan_direction(adchan->no))
261
return NULL;
262
263
adtx = kzalloc(sizeof(*adtx), GFP_NOWAIT);
264
if (!adtx)
265
return NULL;
266
267
adtx->cyclic = true;
268
269
adtx->buf_addr = buf_addr;
270
adtx->buf_len = buf_len;
271
adtx->buf_end = buf_addr + buf_len;
272
adtx->period_len = period_len;
273
274
adtx->submitted_pos = 0;
275
adtx->reclaimed_pos = 0;
276
277
dma_async_tx_descriptor_init(&adtx->tx, chan);
278
adtx->tx.tx_submit = admac_tx_submit;
279
adtx->tx.desc_free = admac_desc_free;
280
281
return &adtx->tx;
282
}
283
284
/*
285
* Write one hardware descriptor for a dmaengine cyclic transaction.
286
*/
287
static void admac_cyclic_write_one_desc(struct admac_data *ad, int channo,
288
struct admac_tx *tx)
289
{
290
dma_addr_t addr;
291
292
addr = tx->buf_addr + (tx->submitted_pos % tx->buf_len);
293
294
/* If happens means we have buggy code */
295
WARN_ON_ONCE(addr + tx->period_len > tx->buf_end);
296
297
dev_dbg(ad->dev, "ch%d descriptor: addr=0x%pad len=0x%zx flags=0x%lx\n",
298
channo, &addr, tx->period_len, FLAG_DESC_NOTIFY);
299
300
writel_relaxed(lower_32_bits(addr), ad->base + REG_DESC_WRITE(channo));
301
writel_relaxed(upper_32_bits(addr), ad->base + REG_DESC_WRITE(channo));
302
writel_relaxed(tx->period_len, ad->base + REG_DESC_WRITE(channo));
303
writel_relaxed(FLAG_DESC_NOTIFY, ad->base + REG_DESC_WRITE(channo));
304
305
tx->submitted_pos += tx->period_len;
306
tx->submitted_pos %= 2 * tx->buf_len;
307
}
308
309
/*
310
* Write all the hardware descriptors for a dmaengine cyclic
311
* transaction there is space for.
312
*/
313
static void admac_cyclic_write_desc(struct admac_data *ad, int channo,
314
struct admac_tx *tx)
315
{
316
int i;
317
318
for (i = 0; i < 4; i++) {
319
if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_FULL)
320
break;
321
admac_cyclic_write_one_desc(ad, channo, tx);
322
}
323
}
324
325
static int admac_ring_noccupied_slots(int ringval)
326
{
327
int wrslot = FIELD_GET(RING_WRITE_SLOT, ringval);
328
int rdslot = FIELD_GET(RING_READ_SLOT, ringval);
329
330
if (wrslot != rdslot) {
331
return (wrslot + 4 - rdslot) % 4;
332
} else {
333
WARN_ON((ringval & (RING_FULL | RING_EMPTY)) == 0);
334
335
if (ringval & RING_FULL)
336
return 4;
337
else
338
return 0;
339
}
340
}
341
342
/*
343
* Read from hardware the residue of a cyclic dmaengine transaction.
344
*/
345
static u32 admac_cyclic_read_residue(struct admac_data *ad, int channo,
346
struct admac_tx *adtx)
347
{
348
u32 ring1, ring2;
349
u32 residue1, residue2;
350
int nreports;
351
size_t pos;
352
353
ring1 = readl_relaxed(ad->base + REG_REPORT_RING(channo));
354
residue1 = readl_relaxed(ad->base + REG_RESIDUE(channo));
355
ring2 = readl_relaxed(ad->base + REG_REPORT_RING(channo));
356
residue2 = readl_relaxed(ad->base + REG_RESIDUE(channo));
357
358
if (residue2 > residue1) {
359
/*
360
* Controller must have loaded next descriptor between
361
* the two residue reads
362
*/
363
nreports = admac_ring_noccupied_slots(ring1) + 1;
364
} else {
365
/* No descriptor load between the two reads, ring2 is safe to use */
366
nreports = admac_ring_noccupied_slots(ring2);
367
}
368
369
pos = adtx->reclaimed_pos + adtx->period_len * (nreports + 1) - residue2;
370
371
return adtx->buf_len - pos % adtx->buf_len;
372
}
373
374
static enum dma_status admac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
375
struct dma_tx_state *txstate)
376
{
377
struct admac_chan *adchan = to_admac_chan(chan);
378
struct admac_data *ad = adchan->host;
379
struct admac_tx *adtx;
380
381
enum dma_status ret;
382
size_t residue;
383
unsigned long flags;
384
385
ret = dma_cookie_status(chan, cookie, txstate);
386
if (ret == DMA_COMPLETE || !txstate)
387
return ret;
388
389
spin_lock_irqsave(&adchan->lock, flags);
390
adtx = adchan->current_tx;
391
392
if (adtx && adtx->tx.cookie == cookie) {
393
ret = DMA_IN_PROGRESS;
394
residue = admac_cyclic_read_residue(ad, adchan->no, adtx);
395
} else {
396
ret = DMA_IN_PROGRESS;
397
residue = 0;
398
list_for_each_entry(adtx, &adchan->issued, node) {
399
if (adtx->tx.cookie == cookie) {
400
residue = adtx->buf_len;
401
break;
402
}
403
}
404
}
405
spin_unlock_irqrestore(&adchan->lock, flags);
406
407
dma_set_residue(txstate, residue);
408
return ret;
409
}
410
411
static void admac_start_chan(struct admac_chan *adchan)
412
{
413
struct admac_data *ad = adchan->host;
414
u32 startbit = 1 << (adchan->no / 2);
415
416
writel_relaxed(STATUS_DESC_DONE | STATUS_ERR,
417
ad->base + REG_CHAN_INTSTATUS(adchan->no, ad->irq_index));
418
writel_relaxed(STATUS_DESC_DONE | STATUS_ERR,
419
ad->base + REG_CHAN_INTMASK(adchan->no, ad->irq_index));
420
421
switch (admac_chan_direction(adchan->no)) {
422
case DMA_MEM_TO_DEV:
423
writel_relaxed(startbit, ad->base + REG_TX_START);
424
break;
425
case DMA_DEV_TO_MEM:
426
writel_relaxed(startbit, ad->base + REG_RX_START);
427
break;
428
default:
429
break;
430
}
431
dev_dbg(adchan->host->dev, "ch%d start\n", adchan->no);
432
}
433
434
static void admac_stop_chan(struct admac_chan *adchan)
435
{
436
struct admac_data *ad = adchan->host;
437
u32 stopbit = 1 << (adchan->no / 2);
438
439
switch (admac_chan_direction(adchan->no)) {
440
case DMA_MEM_TO_DEV:
441
writel_relaxed(stopbit, ad->base + REG_TX_STOP);
442
break;
443
case DMA_DEV_TO_MEM:
444
writel_relaxed(stopbit, ad->base + REG_RX_STOP);
445
break;
446
default:
447
break;
448
}
449
dev_dbg(adchan->host->dev, "ch%d stop\n", adchan->no);
450
}
451
452
static void admac_reset_rings(struct admac_chan *adchan)
453
{
454
struct admac_data *ad = adchan->host;
455
456
writel_relaxed(REG_CHAN_CTL_RST_RINGS,
457
ad->base + REG_CHAN_CTL(adchan->no));
458
writel_relaxed(0, ad->base + REG_CHAN_CTL(adchan->no));
459
}
460
461
static void admac_start_current_tx(struct admac_chan *adchan)
462
{
463
struct admac_data *ad = adchan->host;
464
int ch = adchan->no;
465
466
admac_reset_rings(adchan);
467
writel_relaxed(0, ad->base + REG_CHAN_CTL(ch));
468
469
admac_cyclic_write_one_desc(ad, ch, adchan->current_tx);
470
admac_start_chan(adchan);
471
admac_cyclic_write_desc(ad, ch, adchan->current_tx);
472
}
473
474
static void admac_issue_pending(struct dma_chan *chan)
475
{
476
struct admac_chan *adchan = to_admac_chan(chan);
477
struct admac_tx *tx;
478
unsigned long flags;
479
480
spin_lock_irqsave(&adchan->lock, flags);
481
list_splice_tail_init(&adchan->submitted, &adchan->issued);
482
if (!list_empty(&adchan->issued) && !adchan->current_tx) {
483
tx = list_first_entry(&adchan->issued, struct admac_tx, node);
484
list_del(&tx->node);
485
486
adchan->current_tx = tx;
487
adchan->nperiod_acks = 0;
488
admac_start_current_tx(adchan);
489
}
490
spin_unlock_irqrestore(&adchan->lock, flags);
491
}
492
493
static int admac_pause(struct dma_chan *chan)
494
{
495
struct admac_chan *adchan = to_admac_chan(chan);
496
497
admac_stop_chan(adchan);
498
499
return 0;
500
}
501
502
static int admac_resume(struct dma_chan *chan)
503
{
504
struct admac_chan *adchan = to_admac_chan(chan);
505
506
admac_start_chan(adchan);
507
508
return 0;
509
}
510
511
static int admac_terminate_all(struct dma_chan *chan)
512
{
513
struct admac_chan *adchan = to_admac_chan(chan);
514
unsigned long flags;
515
516
spin_lock_irqsave(&adchan->lock, flags);
517
admac_stop_chan(adchan);
518
admac_reset_rings(adchan);
519
520
if (adchan->current_tx) {
521
list_add_tail(&adchan->current_tx->node, &adchan->to_free);
522
adchan->current_tx = NULL;
523
}
524
/*
525
* Descriptors can only be freed after the tasklet
526
* has been killed (in admac_synchronize).
527
*/
528
list_splice_tail_init(&adchan->submitted, &adchan->to_free);
529
list_splice_tail_init(&adchan->issued, &adchan->to_free);
530
spin_unlock_irqrestore(&adchan->lock, flags);
531
532
return 0;
533
}
534
535
static void admac_synchronize(struct dma_chan *chan)
536
{
537
struct admac_chan *adchan = to_admac_chan(chan);
538
struct admac_tx *adtx, *_adtx;
539
unsigned long flags;
540
LIST_HEAD(head);
541
542
spin_lock_irqsave(&adchan->lock, flags);
543
list_splice_tail_init(&adchan->to_free, &head);
544
spin_unlock_irqrestore(&adchan->lock, flags);
545
546
tasklet_kill(&adchan->tasklet);
547
548
list_for_each_entry_safe(adtx, _adtx, &head, node) {
549
list_del(&adtx->node);
550
admac_desc_free(&adtx->tx);
551
}
552
}
553
554
static int admac_alloc_chan_resources(struct dma_chan *chan)
555
{
556
struct admac_chan *adchan = to_admac_chan(chan);
557
struct admac_data *ad = adchan->host;
558
int ret;
559
560
dma_cookie_init(&adchan->chan);
561
ret = admac_alloc_sram_carveout(ad, admac_chan_direction(adchan->no),
562
&adchan->carveout);
563
if (ret < 0)
564
return ret;
565
566
writel_relaxed(adchan->carveout,
567
ad->base + REG_CHAN_SRAM_CARVEOUT(adchan->no));
568
return 0;
569
}
570
571
static void admac_free_chan_resources(struct dma_chan *chan)
572
{
573
struct admac_chan *adchan = to_admac_chan(chan);
574
575
admac_terminate_all(chan);
576
admac_synchronize(chan);
577
admac_free_sram_carveout(adchan->host, admac_chan_direction(adchan->no),
578
adchan->carveout);
579
}
580
581
static struct dma_chan *admac_dma_of_xlate(struct of_phandle_args *dma_spec,
582
struct of_dma *ofdma)
583
{
584
struct admac_data *ad = (struct admac_data *) ofdma->of_dma_data;
585
unsigned int index;
586
587
if (dma_spec->args_count != 1)
588
return NULL;
589
590
index = dma_spec->args[0];
591
592
if (index >= ad->nchannels) {
593
dev_err(ad->dev, "channel index %u out of bounds\n", index);
594
return NULL;
595
}
596
597
return dma_get_slave_channel(&ad->channels[index].chan);
598
}
599
600
static int admac_drain_reports(struct admac_data *ad, int channo)
601
{
602
int count;
603
604
for (count = 0; count < 4; count++) {
605
u32 countval_hi, countval_lo, unk1, flags;
606
607
if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_EMPTY)
608
break;
609
610
countval_lo = readl_relaxed(ad->base + REG_REPORT_READ(channo));
611
countval_hi = readl_relaxed(ad->base + REG_REPORT_READ(channo));
612
unk1 = readl_relaxed(ad->base + REG_REPORT_READ(channo));
613
flags = readl_relaxed(ad->base + REG_REPORT_READ(channo));
614
615
dev_dbg(ad->dev, "ch%d report: countval=0x%llx unk1=0x%x flags=0x%x\n",
616
channo, ((u64) countval_hi) << 32 | countval_lo, unk1, flags);
617
}
618
619
return count;
620
}
621
622
static void admac_handle_status_err(struct admac_data *ad, int channo)
623
{
624
bool handled = false;
625
626
if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_ERR) {
627
writel_relaxed(RING_ERR, ad->base + REG_DESC_RING(channo));
628
dev_err_ratelimited(ad->dev, "ch%d descriptor ring error\n", channo);
629
handled = true;
630
}
631
632
if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_ERR) {
633
writel_relaxed(RING_ERR, ad->base + REG_REPORT_RING(channo));
634
dev_err_ratelimited(ad->dev, "ch%d report ring error\n", channo);
635
handled = true;
636
}
637
638
if (unlikely(!handled)) {
639
dev_err(ad->dev, "ch%d unknown error, masking errors as cause of IRQs\n", channo);
640
admac_modify(ad, REG_CHAN_INTMASK(channo, ad->irq_index),
641
STATUS_ERR, 0);
642
}
643
}
644
645
static void admac_handle_status_desc_done(struct admac_data *ad, int channo)
646
{
647
struct admac_chan *adchan = &ad->channels[channo];
648
unsigned long flags;
649
int nreports;
650
651
writel_relaxed(STATUS_DESC_DONE,
652
ad->base + REG_CHAN_INTSTATUS(channo, ad->irq_index));
653
654
spin_lock_irqsave(&adchan->lock, flags);
655
nreports = admac_drain_reports(ad, channo);
656
657
if (adchan->current_tx) {
658
struct admac_tx *tx = adchan->current_tx;
659
660
adchan->nperiod_acks += nreports;
661
tx->reclaimed_pos += nreports * tx->period_len;
662
tx->reclaimed_pos %= 2 * tx->buf_len;
663
664
admac_cyclic_write_desc(ad, channo, tx);
665
tasklet_schedule(&adchan->tasklet);
666
}
667
spin_unlock_irqrestore(&adchan->lock, flags);
668
}
669
670
static void admac_handle_chan_int(struct admac_data *ad, int no)
671
{
672
u32 cause = readl_relaxed(ad->base + REG_CHAN_INTSTATUS(no, ad->irq_index));
673
674
if (cause & STATUS_ERR)
675
admac_handle_status_err(ad, no);
676
677
if (cause & STATUS_DESC_DONE)
678
admac_handle_status_desc_done(ad, no);
679
}
680
681
static irqreturn_t admac_interrupt(int irq, void *devid)
682
{
683
struct admac_data *ad = devid;
684
u32 rx_intstate, tx_intstate, global_intstate;
685
int i;
686
687
rx_intstate = readl_relaxed(ad->base + REG_RX_INTSTATE(ad->irq_index));
688
tx_intstate = readl_relaxed(ad->base + REG_TX_INTSTATE(ad->irq_index));
689
global_intstate = readl_relaxed(ad->base + REG_GLOBAL_INTSTATE(ad->irq_index));
690
691
if (!tx_intstate && !rx_intstate && !global_intstate)
692
return IRQ_NONE;
693
694
for (i = 0; i < ad->nchannels; i += 2) {
695
if (tx_intstate & 1)
696
admac_handle_chan_int(ad, i);
697
tx_intstate >>= 1;
698
}
699
700
for (i = 1; i < ad->nchannels; i += 2) {
701
if (rx_intstate & 1)
702
admac_handle_chan_int(ad, i);
703
rx_intstate >>= 1;
704
}
705
706
if (global_intstate) {
707
dev_warn(ad->dev, "clearing unknown global interrupt flag: %x\n",
708
global_intstate);
709
writel_relaxed(~(u32) 0, ad->base + REG_GLOBAL_INTSTATE(ad->irq_index));
710
}
711
712
return IRQ_HANDLED;
713
}
714
715
static void admac_chan_tasklet(struct tasklet_struct *t)
716
{
717
struct admac_chan *adchan = from_tasklet(adchan, t, tasklet);
718
struct admac_tx *adtx;
719
struct dmaengine_desc_callback cb;
720
struct dmaengine_result tx_result;
721
int nacks;
722
723
spin_lock_irq(&adchan->lock);
724
adtx = adchan->current_tx;
725
nacks = adchan->nperiod_acks;
726
adchan->nperiod_acks = 0;
727
spin_unlock_irq(&adchan->lock);
728
729
if (!adtx || !nacks)
730
return;
731
732
tx_result.result = DMA_TRANS_NOERROR;
733
tx_result.residue = 0;
734
735
dmaengine_desc_get_callback(&adtx->tx, &cb);
736
while (nacks--)
737
dmaengine_desc_callback_invoke(&cb, &tx_result);
738
}
739
740
static int admac_device_config(struct dma_chan *chan,
741
struct dma_slave_config *config)
742
{
743
struct admac_chan *adchan = to_admac_chan(chan);
744
struct admac_data *ad = adchan->host;
745
bool is_tx = admac_chan_direction(adchan->no) == DMA_MEM_TO_DEV;
746
int wordsize = 0;
747
u32 bus_width = readl_relaxed(ad->base + REG_BUS_WIDTH(adchan->no)) &
748
~(BUS_WIDTH_WORD_SIZE | BUS_WIDTH_FRAME_SIZE);
749
750
switch (is_tx ? config->dst_addr_width : config->src_addr_width) {
751
case DMA_SLAVE_BUSWIDTH_1_BYTE:
752
wordsize = 1;
753
bus_width |= BUS_WIDTH_8BIT;
754
break;
755
case DMA_SLAVE_BUSWIDTH_2_BYTES:
756
wordsize = 2;
757
bus_width |= BUS_WIDTH_16BIT;
758
break;
759
case DMA_SLAVE_BUSWIDTH_4_BYTES:
760
wordsize = 4;
761
bus_width |= BUS_WIDTH_32BIT;
762
break;
763
default:
764
return -EINVAL;
765
}
766
767
/*
768
* We take port_window_size to be the number of words in a frame.
769
*
770
* The controller has some means of out-of-band signalling, to the peripheral,
771
* of words position in a frame. That's where the importance of this control
772
* comes from.
773
*/
774
switch (is_tx ? config->dst_port_window_size : config->src_port_window_size) {
775
case 0 ... 1:
776
break;
777
case 2:
778
bus_width |= BUS_WIDTH_FRAME_2_WORDS;
779
break;
780
case 4:
781
bus_width |= BUS_WIDTH_FRAME_4_WORDS;
782
break;
783
default:
784
return -EINVAL;
785
}
786
787
writel_relaxed(bus_width, ad->base + REG_BUS_WIDTH(adchan->no));
788
789
/*
790
* By FIFOCTL_LIMIT we seem to set the maximal number of bytes allowed to be
791
* held in controller's per-channel FIFO. Transfers seem to be triggered
792
* around the time FIFO occupancy touches FIFOCTL_THRESHOLD.
793
*
794
* The numbers we set are more or less arbitrary.
795
*/
796
writel_relaxed(FIELD_PREP(CHAN_FIFOCTL_LIMIT, 0x30 * wordsize)
797
| FIELD_PREP(CHAN_FIFOCTL_THRESHOLD, 0x18 * wordsize),
798
ad->base + REG_CHAN_FIFOCTL(adchan->no));
799
800
return 0;
801
}
802
803
static int admac_probe(struct platform_device *pdev)
804
{
805
struct device_node *np = pdev->dev.of_node;
806
struct admac_data *ad;
807
struct dma_device *dma;
808
int nchannels;
809
int err, irq, i;
810
811
err = of_property_read_u32(np, "dma-channels", &nchannels);
812
if (err || nchannels > NCHANNELS_MAX) {
813
dev_err(&pdev->dev, "missing or invalid dma-channels property\n");
814
return -EINVAL;
815
}
816
817
ad = devm_kzalloc(&pdev->dev, struct_size(ad, channels, nchannels), GFP_KERNEL);
818
if (!ad)
819
return -ENOMEM;
820
821
platform_set_drvdata(pdev, ad);
822
ad->dev = &pdev->dev;
823
ad->nchannels = nchannels;
824
mutex_init(&ad->cache_alloc_lock);
825
826
/*
827
* The controller has 4 IRQ outputs. Try them all until
828
* we find one we can use.
829
*/
830
for (i = 0; i < IRQ_NOUTPUTS; i++) {
831
irq = platform_get_irq_optional(pdev, i);
832
if (irq >= 0) {
833
ad->irq_index = i;
834
break;
835
}
836
}
837
838
if (irq < 0)
839
return dev_err_probe(&pdev->dev, irq, "no usable interrupt\n");
840
ad->irq = irq;
841
842
ad->base = devm_platform_ioremap_resource(pdev, 0);
843
if (IS_ERR(ad->base))
844
return dev_err_probe(&pdev->dev, PTR_ERR(ad->base),
845
"unable to obtain MMIO resource\n");
846
847
ad->rstc = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
848
if (IS_ERR(ad->rstc))
849
return PTR_ERR(ad->rstc);
850
851
dma = &ad->dma;
852
853
dma_cap_set(DMA_PRIVATE, dma->cap_mask);
854
dma_cap_set(DMA_CYCLIC, dma->cap_mask);
855
856
dma->dev = &pdev->dev;
857
dma->device_alloc_chan_resources = admac_alloc_chan_resources;
858
dma->device_free_chan_resources = admac_free_chan_resources;
859
dma->device_tx_status = admac_tx_status;
860
dma->device_issue_pending = admac_issue_pending;
861
dma->device_terminate_all = admac_terminate_all;
862
dma->device_synchronize = admac_synchronize;
863
dma->device_prep_dma_cyclic = admac_prep_dma_cyclic;
864
dma->device_config = admac_device_config;
865
dma->device_pause = admac_pause;
866
dma->device_resume = admac_resume;
867
868
dma->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
869
dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
870
dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
871
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
872
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
873
dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
874
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
875
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
876
877
INIT_LIST_HEAD(&dma->channels);
878
for (i = 0; i < nchannels; i++) {
879
struct admac_chan *adchan = &ad->channels[i];
880
881
adchan->host = ad;
882
adchan->no = i;
883
adchan->chan.device = &ad->dma;
884
spin_lock_init(&adchan->lock);
885
INIT_LIST_HEAD(&adchan->submitted);
886
INIT_LIST_HEAD(&adchan->issued);
887
INIT_LIST_HEAD(&adchan->to_free);
888
list_add_tail(&adchan->chan.device_node, &dma->channels);
889
tasklet_setup(&adchan->tasklet, admac_chan_tasklet);
890
}
891
892
err = reset_control_reset(ad->rstc);
893
if (err)
894
return dev_err_probe(&pdev->dev, err,
895
"unable to trigger reset\n");
896
897
err = request_irq(irq, admac_interrupt, 0, dev_name(&pdev->dev), ad);
898
if (err) {
899
dev_err_probe(&pdev->dev, err,
900
"unable to register interrupt\n");
901
goto free_reset;
902
}
903
904
err = dma_async_device_register(&ad->dma);
905
if (err) {
906
dev_err_probe(&pdev->dev, err, "failed to register DMA device\n");
907
goto free_irq;
908
}
909
910
err = of_dma_controller_register(pdev->dev.of_node, admac_dma_of_xlate, ad);
911
if (err) {
912
dma_async_device_unregister(&ad->dma);
913
dev_err_probe(&pdev->dev, err, "failed to register with OF\n");
914
goto free_irq;
915
}
916
917
dev_info(&pdev->dev, "Audio DMA Controller\n");
918
919
return 0;
920
921
free_irq:
922
free_irq(ad->irq, ad);
923
free_reset:
924
reset_control_rearm(ad->rstc);
925
return err;
926
}
927
928
static void admac_remove(struct platform_device *pdev)
929
{
930
struct admac_data *ad = platform_get_drvdata(pdev);
931
932
of_dma_controller_free(pdev->dev.of_node);
933
dma_async_device_unregister(&ad->dma);
934
free_irq(ad->irq, ad);
935
reset_control_rearm(ad->rstc);
936
}
937
938
static const struct of_device_id admac_of_match[] = {
939
{ .compatible = "apple,admac", },
940
{ }
941
};
942
MODULE_DEVICE_TABLE(of, admac_of_match);
943
944
static struct platform_driver apple_admac_driver = {
945
.driver = {
946
.name = "apple-admac",
947
.of_match_table = admac_of_match,
948
},
949
.probe = admac_probe,
950
.remove = admac_remove,
951
};
952
module_platform_driver(apple_admac_driver);
953
954
MODULE_AUTHOR("Martin Povišer <[email protected]>");
955
MODULE_DESCRIPTION("Driver for Audio DMA Controller (ADMAC) on Apple SoCs");
956
MODULE_LICENSE("GPL");
957
958