Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/dma/dma-axi-dmac.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Driver for the Analog Devices AXI-DMAC core
4
*
5
* Copyright 2013-2019 Analog Devices Inc.
6
* Author: Lars-Peter Clausen <[email protected]>
7
*/
8
9
#include <linux/adi-axi-common.h>
10
#include <linux/bitfield.h>
11
#include <linux/clk.h>
12
#include <linux/device.h>
13
#include <linux/dma-mapping.h>
14
#include <linux/dmaengine.h>
15
#include <linux/err.h>
16
#include <linux/interrupt.h>
17
#include <linux/io.h>
18
#include <linux/kernel.h>
19
#include <linux/module.h>
20
#include <linux/of.h>
21
#include <linux/of_dma.h>
22
#include <linux/of_address.h>
23
#include <linux/platform_device.h>
24
#include <linux/regmap.h>
25
#include <linux/slab.h>
26
27
#include <dt-bindings/dma/axi-dmac.h>
28
29
#include "dmaengine.h"
30
#include "virt-dma.h"
31
32
/*
33
* The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
34
* various instantiation parameters which decided the exact feature set support
35
* by the core.
36
*
37
* Each channel of the core has a source interface and a destination interface.
38
* The number of channels and the type of the channel interfaces is selected at
39
* configuration time. A interface can either be a connected to a central memory
40
* interconnect, which allows access to system memory, or it can be connected to
41
* a dedicated bus which is directly connected to a data port on a peripheral.
42
* Given that those are configuration options of the core that are selected when
43
* it is instantiated this means that they can not be changed by software at
44
* runtime. By extension this means that each channel is uni-directional. It can
45
* either be device to memory or memory to device, but not both. Also since the
46
* device side is a dedicated data bus only connected to a single peripheral
47
* there is no address than can or needs to be configured for the device side.
48
*/
49
50
#define AXI_DMAC_REG_INTERFACE_DESC 0x10
51
#define AXI_DMAC_DMA_SRC_TYPE_MSK GENMASK(13, 12)
52
#define AXI_DMAC_DMA_SRC_TYPE_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x)
53
#define AXI_DMAC_DMA_SRC_WIDTH_MSK GENMASK(11, 8)
54
#define AXI_DMAC_DMA_SRC_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x)
55
#define AXI_DMAC_DMA_DST_TYPE_MSK GENMASK(5, 4)
56
#define AXI_DMAC_DMA_DST_TYPE_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x)
57
#define AXI_DMAC_DMA_DST_WIDTH_MSK GENMASK(3, 0)
58
#define AXI_DMAC_DMA_DST_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x)
59
#define AXI_DMAC_REG_COHERENCY_DESC 0x14
60
#define AXI_DMAC_DST_COHERENT_MSK BIT(0)
61
#define AXI_DMAC_DST_COHERENT_GET(x) FIELD_GET(AXI_DMAC_DST_COHERENT_MSK, x)
62
63
#define AXI_DMAC_REG_IRQ_MASK 0x80
64
#define AXI_DMAC_REG_IRQ_PENDING 0x84
65
#define AXI_DMAC_REG_IRQ_SOURCE 0x88
66
67
#define AXI_DMAC_REG_CTRL 0x400
68
#define AXI_DMAC_REG_TRANSFER_ID 0x404
69
#define AXI_DMAC_REG_START_TRANSFER 0x408
70
#define AXI_DMAC_REG_FLAGS 0x40c
71
#define AXI_DMAC_REG_DEST_ADDRESS 0x410
72
#define AXI_DMAC_REG_SRC_ADDRESS 0x414
73
#define AXI_DMAC_REG_X_LENGTH 0x418
74
#define AXI_DMAC_REG_Y_LENGTH 0x41c
75
#define AXI_DMAC_REG_DEST_STRIDE 0x420
76
#define AXI_DMAC_REG_SRC_STRIDE 0x424
77
#define AXI_DMAC_REG_TRANSFER_DONE 0x428
78
#define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
79
#define AXI_DMAC_REG_STATUS 0x430
80
#define AXI_DMAC_REG_CURRENT_SRC_ADDR 0x434
81
#define AXI_DMAC_REG_CURRENT_DEST_ADDR 0x438
82
#define AXI_DMAC_REG_PARTIAL_XFER_LEN 0x44c
83
#define AXI_DMAC_REG_PARTIAL_XFER_ID 0x450
84
#define AXI_DMAC_REG_CURRENT_SG_ID 0x454
85
#define AXI_DMAC_REG_SG_ADDRESS 0x47c
86
#define AXI_DMAC_REG_SG_ADDRESS_HIGH 0x4bc
87
88
#define AXI_DMAC_CTRL_ENABLE BIT(0)
89
#define AXI_DMAC_CTRL_PAUSE BIT(1)
90
#define AXI_DMAC_CTRL_ENABLE_SG BIT(2)
91
92
#define AXI_DMAC_IRQ_SOT BIT(0)
93
#define AXI_DMAC_IRQ_EOT BIT(1)
94
95
#define AXI_DMAC_FLAG_CYCLIC BIT(0)
96
#define AXI_DMAC_FLAG_LAST BIT(1)
97
#define AXI_DMAC_FLAG_PARTIAL_REPORT BIT(2)
98
99
#define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)
100
101
/* The maximum ID allocated by the hardware is 31 */
102
#define AXI_DMAC_SG_UNUSED 32U
103
104
/* Flags for axi_dmac_hw_desc.flags */
105
#define AXI_DMAC_HW_FLAG_LAST BIT(0)
106
#define AXI_DMAC_HW_FLAG_IRQ BIT(1)
107
108
struct axi_dmac_hw_desc {
109
u32 flags;
110
u32 id;
111
u64 dest_addr;
112
u64 src_addr;
113
u64 next_sg_addr;
114
u32 y_len;
115
u32 x_len;
116
u32 src_stride;
117
u32 dst_stride;
118
u64 __pad[2];
119
};
120
121
struct axi_dmac_sg {
122
unsigned int partial_len;
123
bool schedule_when_free;
124
125
struct axi_dmac_hw_desc *hw;
126
dma_addr_t hw_phys;
127
};
128
129
struct axi_dmac_desc {
130
struct virt_dma_desc vdesc;
131
struct axi_dmac_chan *chan;
132
133
bool cyclic;
134
bool have_partial_xfer;
135
136
unsigned int num_submitted;
137
unsigned int num_completed;
138
unsigned int num_sgs;
139
struct axi_dmac_sg sg[] __counted_by(num_sgs);
140
};
141
142
struct axi_dmac_chan {
143
struct virt_dma_chan vchan;
144
145
struct axi_dmac_desc *next_desc;
146
struct list_head active_descs;
147
enum dma_transfer_direction direction;
148
149
unsigned int src_width;
150
unsigned int dest_width;
151
unsigned int src_type;
152
unsigned int dest_type;
153
154
unsigned int max_length;
155
unsigned int address_align_mask;
156
unsigned int length_align_mask;
157
158
bool hw_partial_xfer;
159
bool hw_cyclic;
160
bool hw_2d;
161
bool hw_sg;
162
};
163
164
struct axi_dmac {
165
void __iomem *base;
166
int irq;
167
168
struct clk *clk;
169
170
struct dma_device dma_dev;
171
struct axi_dmac_chan chan;
172
};
173
174
static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
175
{
176
return container_of(chan->vchan.chan.device, struct axi_dmac,
177
dma_dev);
178
}
179
180
static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
181
{
182
return container_of(c, struct axi_dmac_chan, vchan.chan);
183
}
184
185
static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
186
{
187
return container_of(vdesc, struct axi_dmac_desc, vdesc);
188
}
189
190
static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
191
unsigned int val)
192
{
193
writel(val, axi_dmac->base + reg);
194
}
195
196
static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
197
{
198
return readl(axi_dmac->base + reg);
199
}
200
201
static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
202
{
203
return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
204
}
205
206
static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
207
{
208
return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
209
}
210
211
static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
212
{
213
if (len == 0)
214
return false;
215
if ((len & chan->length_align_mask) != 0) /* Not aligned */
216
return false;
217
return true;
218
}
219
220
static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
221
{
222
if ((addr & chan->address_align_mask) != 0) /* Not aligned */
223
return false;
224
return true;
225
}
226
227
static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
228
{
229
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
230
struct virt_dma_desc *vdesc;
231
struct axi_dmac_desc *desc;
232
struct axi_dmac_sg *sg;
233
unsigned int flags = 0;
234
unsigned int val;
235
236
if (!chan->hw_sg) {
237
val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
238
if (val) /* Queue is full, wait for the next SOT IRQ */
239
return;
240
}
241
242
desc = chan->next_desc;
243
244
if (!desc) {
245
vdesc = vchan_next_desc(&chan->vchan);
246
if (!vdesc)
247
return;
248
list_move_tail(&vdesc->node, &chan->active_descs);
249
desc = to_axi_dmac_desc(vdesc);
250
}
251
sg = &desc->sg[desc->num_submitted];
252
253
/* Already queued in cyclic mode. Wait for it to finish */
254
if (sg->hw->id != AXI_DMAC_SG_UNUSED) {
255
sg->schedule_when_free = true;
256
return;
257
}
258
259
if (chan->hw_sg) {
260
chan->next_desc = NULL;
261
} else if (++desc->num_submitted == desc->num_sgs ||
262
desc->have_partial_xfer) {
263
if (desc->cyclic)
264
desc->num_submitted = 0; /* Start again */
265
else
266
chan->next_desc = NULL;
267
flags |= AXI_DMAC_FLAG_LAST;
268
} else {
269
chan->next_desc = desc;
270
}
271
272
sg->hw->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
273
274
if (!chan->hw_sg) {
275
if (axi_dmac_dest_is_mem(chan)) {
276
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->hw->dest_addr);
277
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->hw->dst_stride);
278
}
279
280
if (axi_dmac_src_is_mem(chan)) {
281
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->hw->src_addr);
282
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->hw->src_stride);
283
}
284
}
285
286
/*
287
* If the hardware supports cyclic transfers and there is no callback to
288
* call, enable hw cyclic mode to avoid unnecessary interrupts.
289
*/
290
if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback) {
291
if (chan->hw_sg)
292
desc->sg[desc->num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_IRQ;
293
else if (desc->num_sgs == 1)
294
flags |= AXI_DMAC_FLAG_CYCLIC;
295
}
296
297
if (chan->hw_partial_xfer)
298
flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;
299
300
if (chan->hw_sg) {
301
axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, (u32)sg->hw_phys);
302
axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS_HIGH,
303
(u64)sg->hw_phys >> 32);
304
} else {
305
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->hw->x_len);
306
axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->hw->y_len);
307
}
308
axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
309
axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
310
}
311
312
static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
313
{
314
return list_first_entry_or_null(&chan->active_descs,
315
struct axi_dmac_desc, vdesc.node);
316
}
317
318
static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
319
struct axi_dmac_sg *sg)
320
{
321
if (chan->hw_2d)
322
return (sg->hw->x_len + 1) * (sg->hw->y_len + 1);
323
else
324
return (sg->hw->x_len + 1);
325
}
326
327
static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
328
{
329
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
330
struct axi_dmac_desc *desc;
331
struct axi_dmac_sg *sg;
332
u32 xfer_done, len, id, i;
333
bool found_sg;
334
335
do {
336
len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
337
id = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);
338
339
found_sg = false;
340
list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
341
for (i = 0; i < desc->num_sgs; i++) {
342
sg = &desc->sg[i];
343
if (sg->hw->id == AXI_DMAC_SG_UNUSED)
344
continue;
345
if (sg->hw->id == id) {
346
desc->have_partial_xfer = true;
347
sg->partial_len = len;
348
found_sg = true;
349
break;
350
}
351
}
352
if (found_sg)
353
break;
354
}
355
356
if (found_sg) {
357
dev_dbg(dmac->dma_dev.dev,
358
"Found partial segment id=%u, len=%u\n",
359
id, len);
360
} else {
361
dev_warn(dmac->dma_dev.dev,
362
"Not found partial segment id=%u, len=%u\n",
363
id, len);
364
}
365
366
/* Check if we have any more partial transfers */
367
xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
368
xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);
369
370
} while (!xfer_done);
371
}
372
373
static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
374
struct axi_dmac_desc *active)
375
{
376
struct dmaengine_result *rslt = &active->vdesc.tx_result;
377
unsigned int start = active->num_completed - 1;
378
struct axi_dmac_sg *sg;
379
unsigned int i, total;
380
381
rslt->result = DMA_TRANS_NOERROR;
382
rslt->residue = 0;
383
384
if (chan->hw_sg)
385
return;
386
387
/*
388
* We get here if the last completed segment is partial, which
389
* means we can compute the residue from that segment onwards
390
*/
391
for (i = start; i < active->num_sgs; i++) {
392
sg = &active->sg[i];
393
total = axi_dmac_total_sg_bytes(chan, sg);
394
rslt->residue += (total - sg->partial_len);
395
}
396
}
397
398
static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
399
unsigned int completed_transfers)
400
{
401
struct axi_dmac_desc *active;
402
struct axi_dmac_sg *sg;
403
bool start_next = false;
404
405
active = axi_dmac_active_desc(chan);
406
if (!active)
407
return false;
408
409
if (chan->hw_partial_xfer &&
410
(completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
411
axi_dmac_dequeue_partial_xfers(chan);
412
413
if (chan->hw_sg) {
414
if (active->cyclic) {
415
vchan_cyclic_callback(&active->vdesc);
416
} else {
417
list_del(&active->vdesc.node);
418
vchan_cookie_complete(&active->vdesc);
419
active = axi_dmac_active_desc(chan);
420
start_next = !!active;
421
}
422
} else {
423
do {
424
sg = &active->sg[active->num_completed];
425
if (sg->hw->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
426
break;
427
if (!(BIT(sg->hw->id) & completed_transfers))
428
break;
429
active->num_completed++;
430
sg->hw->id = AXI_DMAC_SG_UNUSED;
431
if (sg->schedule_when_free) {
432
sg->schedule_when_free = false;
433
start_next = true;
434
}
435
436
if (sg->partial_len)
437
axi_dmac_compute_residue(chan, active);
438
439
if (active->cyclic)
440
vchan_cyclic_callback(&active->vdesc);
441
442
if (active->num_completed == active->num_sgs ||
443
sg->partial_len) {
444
if (active->cyclic) {
445
active->num_completed = 0; /* wrap around */
446
} else {
447
list_del(&active->vdesc.node);
448
vchan_cookie_complete(&active->vdesc);
449
active = axi_dmac_active_desc(chan);
450
}
451
}
452
} while (active);
453
}
454
455
return start_next;
456
}
457
458
static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
459
{
460
struct axi_dmac *dmac = devid;
461
unsigned int pending;
462
bool start_next = false;
463
464
pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
465
if (!pending)
466
return IRQ_NONE;
467
468
axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
469
470
spin_lock(&dmac->chan.vchan.lock);
471
/* One or more transfers have finished */
472
if (pending & AXI_DMAC_IRQ_EOT) {
473
unsigned int completed;
474
475
completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
476
start_next = axi_dmac_transfer_done(&dmac->chan, completed);
477
}
478
/* Space has become available in the descriptor queue */
479
if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
480
axi_dmac_start_transfer(&dmac->chan);
481
spin_unlock(&dmac->chan.vchan.lock);
482
483
return IRQ_HANDLED;
484
}
485
486
static int axi_dmac_terminate_all(struct dma_chan *c)
487
{
488
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
489
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
490
unsigned long flags;
491
LIST_HEAD(head);
492
493
spin_lock_irqsave(&chan->vchan.lock, flags);
494
axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
495
chan->next_desc = NULL;
496
vchan_get_all_descriptors(&chan->vchan, &head);
497
list_splice_tail_init(&chan->active_descs, &head);
498
spin_unlock_irqrestore(&chan->vchan.lock, flags);
499
500
vchan_dma_desc_free_list(&chan->vchan, &head);
501
502
return 0;
503
}
504
505
static void axi_dmac_synchronize(struct dma_chan *c)
506
{
507
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
508
509
vchan_synchronize(&chan->vchan);
510
}
511
512
static void axi_dmac_issue_pending(struct dma_chan *c)
513
{
514
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
515
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
516
unsigned long flags;
517
u32 ctrl = AXI_DMAC_CTRL_ENABLE;
518
519
if (chan->hw_sg)
520
ctrl |= AXI_DMAC_CTRL_ENABLE_SG;
521
522
axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, ctrl);
523
524
spin_lock_irqsave(&chan->vchan.lock, flags);
525
if (vchan_issue_pending(&chan->vchan))
526
axi_dmac_start_transfer(chan);
527
spin_unlock_irqrestore(&chan->vchan.lock, flags);
528
}
529
530
static struct axi_dmac_desc *
531
axi_dmac_alloc_desc(struct axi_dmac_chan *chan, unsigned int num_sgs)
532
{
533
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
534
struct device *dev = dmac->dma_dev.dev;
535
struct axi_dmac_hw_desc *hws;
536
struct axi_dmac_desc *desc;
537
dma_addr_t hw_phys;
538
unsigned int i;
539
540
desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
541
if (!desc)
542
return NULL;
543
desc->num_sgs = num_sgs;
544
desc->chan = chan;
545
546
hws = dma_alloc_coherent(dev, PAGE_ALIGN(num_sgs * sizeof(*hws)),
547
&hw_phys, GFP_ATOMIC);
548
if (!hws) {
549
kfree(desc);
550
return NULL;
551
}
552
553
for (i = 0; i < num_sgs; i++) {
554
desc->sg[i].hw = &hws[i];
555
desc->sg[i].hw_phys = hw_phys + i * sizeof(*hws);
556
557
hws[i].id = AXI_DMAC_SG_UNUSED;
558
hws[i].flags = 0;
559
560
/* Link hardware descriptors */
561
hws[i].next_sg_addr = hw_phys + (i + 1) * sizeof(*hws);
562
}
563
564
/* The last hardware descriptor will trigger an interrupt */
565
desc->sg[num_sgs - 1].hw->flags = AXI_DMAC_HW_FLAG_LAST | AXI_DMAC_HW_FLAG_IRQ;
566
567
return desc;
568
}
569
570
static void axi_dmac_free_desc(struct axi_dmac_desc *desc)
571
{
572
struct axi_dmac *dmac = chan_to_axi_dmac(desc->chan);
573
struct device *dev = dmac->dma_dev.dev;
574
struct axi_dmac_hw_desc *hw = desc->sg[0].hw;
575
dma_addr_t hw_phys = desc->sg[0].hw_phys;
576
577
dma_free_coherent(dev, PAGE_ALIGN(desc->num_sgs * sizeof(*hw)),
578
hw, hw_phys);
579
kfree(desc);
580
}
581
582
static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
583
enum dma_transfer_direction direction, dma_addr_t addr,
584
unsigned int num_periods, unsigned int period_len,
585
struct axi_dmac_sg *sg)
586
{
587
unsigned int num_segments, i;
588
unsigned int segment_size;
589
unsigned int len;
590
591
/* Split into multiple equally sized segments if necessary */
592
num_segments = DIV_ROUND_UP(period_len, chan->max_length);
593
segment_size = DIV_ROUND_UP(period_len, num_segments);
594
/* Take care of alignment */
595
segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;
596
597
for (i = 0; i < num_periods; i++) {
598
for (len = period_len; len > segment_size; sg++) {
599
if (direction == DMA_DEV_TO_MEM)
600
sg->hw->dest_addr = addr;
601
else
602
sg->hw->src_addr = addr;
603
sg->hw->x_len = segment_size - 1;
604
sg->hw->y_len = 0;
605
sg->hw->flags = 0;
606
addr += segment_size;
607
len -= segment_size;
608
}
609
610
if (direction == DMA_DEV_TO_MEM)
611
sg->hw->dest_addr = addr;
612
else
613
sg->hw->src_addr = addr;
614
sg->hw->x_len = len - 1;
615
sg->hw->y_len = 0;
616
sg++;
617
addr += len;
618
}
619
620
return sg;
621
}
622
623
static struct dma_async_tx_descriptor *
624
axi_dmac_prep_peripheral_dma_vec(struct dma_chan *c, const struct dma_vec *vecs,
625
size_t nb, enum dma_transfer_direction direction,
626
unsigned long flags)
627
{
628
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
629
struct axi_dmac_desc *desc;
630
unsigned int num_sgs = 0;
631
struct axi_dmac_sg *dsg;
632
size_t i;
633
634
if (direction != chan->direction)
635
return NULL;
636
637
for (i = 0; i < nb; i++)
638
num_sgs += DIV_ROUND_UP(vecs[i].len, chan->max_length);
639
640
desc = axi_dmac_alloc_desc(chan, num_sgs);
641
if (!desc)
642
return NULL;
643
644
dsg = desc->sg;
645
646
for (i = 0; i < nb; i++) {
647
if (!axi_dmac_check_addr(chan, vecs[i].addr) ||
648
!axi_dmac_check_len(chan, vecs[i].len)) {
649
kfree(desc);
650
return NULL;
651
}
652
653
dsg = axi_dmac_fill_linear_sg(chan, direction, vecs[i].addr, 1,
654
vecs[i].len, dsg);
655
}
656
657
desc->cyclic = false;
658
659
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
660
}
661
662
static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
663
struct dma_chan *c, struct scatterlist *sgl,
664
unsigned int sg_len, enum dma_transfer_direction direction,
665
unsigned long flags, void *context)
666
{
667
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
668
struct axi_dmac_desc *desc;
669
struct axi_dmac_sg *dsg;
670
struct scatterlist *sg;
671
unsigned int num_sgs;
672
unsigned int i;
673
674
if (direction != chan->direction)
675
return NULL;
676
677
num_sgs = 0;
678
for_each_sg(sgl, sg, sg_len, i)
679
num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);
680
681
desc = axi_dmac_alloc_desc(chan, num_sgs);
682
if (!desc)
683
return NULL;
684
685
dsg = desc->sg;
686
687
for_each_sg(sgl, sg, sg_len, i) {
688
if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
689
!axi_dmac_check_len(chan, sg_dma_len(sg))) {
690
axi_dmac_free_desc(desc);
691
return NULL;
692
}
693
694
dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1,
695
sg_dma_len(sg), dsg);
696
}
697
698
desc->cyclic = false;
699
700
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
701
}
702
703
static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
704
struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
705
size_t period_len, enum dma_transfer_direction direction,
706
unsigned long flags)
707
{
708
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
709
struct axi_dmac_desc *desc;
710
unsigned int num_periods, num_segments, num_sgs;
711
712
if (direction != chan->direction)
713
return NULL;
714
715
if (!axi_dmac_check_len(chan, buf_len) ||
716
!axi_dmac_check_addr(chan, buf_addr))
717
return NULL;
718
719
if (period_len == 0 || buf_len % period_len)
720
return NULL;
721
722
num_periods = buf_len / period_len;
723
num_segments = DIV_ROUND_UP(period_len, chan->max_length);
724
num_sgs = num_periods * num_segments;
725
726
desc = axi_dmac_alloc_desc(chan, num_sgs);
727
if (!desc)
728
return NULL;
729
730
/* Chain the last descriptor to the first, and remove its "last" flag */
731
desc->sg[num_sgs - 1].hw->next_sg_addr = desc->sg[0].hw_phys;
732
desc->sg[num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_LAST;
733
734
axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods,
735
period_len, desc->sg);
736
737
desc->cyclic = true;
738
739
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
740
}
741
742
static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
743
struct dma_chan *c, struct dma_interleaved_template *xt,
744
unsigned long flags)
745
{
746
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
747
struct axi_dmac_desc *desc;
748
size_t dst_icg, src_icg;
749
750
if (xt->frame_size != 1)
751
return NULL;
752
753
if (xt->dir != chan->direction)
754
return NULL;
755
756
if (axi_dmac_src_is_mem(chan)) {
757
if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
758
return NULL;
759
}
760
761
if (axi_dmac_dest_is_mem(chan)) {
762
if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
763
return NULL;
764
}
765
766
dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
767
src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
768
769
if (chan->hw_2d) {
770
if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
771
xt->numf == 0)
772
return NULL;
773
if (xt->sgl[0].size + dst_icg > chan->max_length ||
774
xt->sgl[0].size + src_icg > chan->max_length)
775
return NULL;
776
} else {
777
if (dst_icg != 0 || src_icg != 0)
778
return NULL;
779
if (chan->max_length / xt->sgl[0].size < xt->numf)
780
return NULL;
781
if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
782
return NULL;
783
}
784
785
desc = axi_dmac_alloc_desc(chan, 1);
786
if (!desc)
787
return NULL;
788
789
if (axi_dmac_src_is_mem(chan)) {
790
desc->sg[0].hw->src_addr = xt->src_start;
791
desc->sg[0].hw->src_stride = xt->sgl[0].size + src_icg;
792
}
793
794
if (axi_dmac_dest_is_mem(chan)) {
795
desc->sg[0].hw->dest_addr = xt->dst_start;
796
desc->sg[0].hw->dst_stride = xt->sgl[0].size + dst_icg;
797
}
798
799
if (chan->hw_2d) {
800
desc->sg[0].hw->x_len = xt->sgl[0].size - 1;
801
desc->sg[0].hw->y_len = xt->numf - 1;
802
} else {
803
desc->sg[0].hw->x_len = xt->sgl[0].size * xt->numf - 1;
804
desc->sg[0].hw->y_len = 0;
805
}
806
807
if (flags & DMA_CYCLIC)
808
desc->cyclic = true;
809
810
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
811
}
812
813
static void axi_dmac_free_chan_resources(struct dma_chan *c)
814
{
815
vchan_free_chan_resources(to_virt_chan(c));
816
}
817
818
static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
819
{
820
axi_dmac_free_desc(to_axi_dmac_desc(vdesc));
821
}
822
823
static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
824
{
825
switch (reg) {
826
case AXI_DMAC_REG_IRQ_MASK:
827
case AXI_DMAC_REG_IRQ_SOURCE:
828
case AXI_DMAC_REG_IRQ_PENDING:
829
case AXI_DMAC_REG_CTRL:
830
case AXI_DMAC_REG_TRANSFER_ID:
831
case AXI_DMAC_REG_START_TRANSFER:
832
case AXI_DMAC_REG_FLAGS:
833
case AXI_DMAC_REG_DEST_ADDRESS:
834
case AXI_DMAC_REG_SRC_ADDRESS:
835
case AXI_DMAC_REG_X_LENGTH:
836
case AXI_DMAC_REG_Y_LENGTH:
837
case AXI_DMAC_REG_DEST_STRIDE:
838
case AXI_DMAC_REG_SRC_STRIDE:
839
case AXI_DMAC_REG_TRANSFER_DONE:
840
case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
841
case AXI_DMAC_REG_STATUS:
842
case AXI_DMAC_REG_CURRENT_SRC_ADDR:
843
case AXI_DMAC_REG_CURRENT_DEST_ADDR:
844
case AXI_DMAC_REG_PARTIAL_XFER_LEN:
845
case AXI_DMAC_REG_PARTIAL_XFER_ID:
846
case AXI_DMAC_REG_CURRENT_SG_ID:
847
case AXI_DMAC_REG_SG_ADDRESS:
848
case AXI_DMAC_REG_SG_ADDRESS_HIGH:
849
return true;
850
default:
851
return false;
852
}
853
}
854
855
static const struct regmap_config axi_dmac_regmap_config = {
856
.reg_bits = 32,
857
.val_bits = 32,
858
.reg_stride = 4,
859
.max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
860
.readable_reg = axi_dmac_regmap_rdwr,
861
.writeable_reg = axi_dmac_regmap_rdwr,
862
};
863
864
static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan)
865
{
866
chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;
867
868
if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
869
chan->direction = DMA_MEM_TO_MEM;
870
else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
871
chan->direction = DMA_MEM_TO_DEV;
872
else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
873
chan->direction = DMA_DEV_TO_MEM;
874
else
875
chan->direction = DMA_DEV_TO_DEV;
876
}
877
878
/*
879
* The configuration stored in the devicetree matches the configuration
880
* parameters of the peripheral instance and allows the driver to know which
881
* features are implemented and how it should behave.
882
*/
883
static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
884
struct axi_dmac_chan *chan)
885
{
886
u32 val;
887
int ret;
888
889
ret = of_property_read_u32(of_chan, "reg", &val);
890
if (ret)
891
return ret;
892
893
/* We only support 1 channel for now */
894
if (val != 0)
895
return -EINVAL;
896
897
ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
898
if (ret)
899
return ret;
900
if (val > AXI_DMAC_BUS_TYPE_FIFO)
901
return -EINVAL;
902
chan->src_type = val;
903
904
ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
905
if (ret)
906
return ret;
907
if (val > AXI_DMAC_BUS_TYPE_FIFO)
908
return -EINVAL;
909
chan->dest_type = val;
910
911
ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
912
if (ret)
913
return ret;
914
chan->src_width = val / 8;
915
916
ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
917
if (ret)
918
return ret;
919
chan->dest_width = val / 8;
920
921
axi_dmac_adjust_chan_params(chan);
922
923
return 0;
924
}
925
926
static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac)
927
{
928
struct device_node *of_channels, *of_chan;
929
int ret;
930
931
of_channels = of_get_child_by_name(dev->of_node, "adi,channels");
932
if (of_channels == NULL)
933
return -ENODEV;
934
935
for_each_child_of_node(of_channels, of_chan) {
936
ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
937
if (ret) {
938
of_node_put(of_chan);
939
of_node_put(of_channels);
940
return -EINVAL;
941
}
942
}
943
of_node_put(of_channels);
944
945
return 0;
946
}
947
948
static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac)
949
{
950
struct axi_dmac_chan *chan = &dmac->chan;
951
unsigned int val, desc;
952
953
desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC);
954
if (desc == 0) {
955
dev_err(dev, "DMA interface register reads zero\n");
956
return -EFAULT;
957
}
958
959
val = AXI_DMAC_DMA_SRC_TYPE_GET(desc);
960
if (val > AXI_DMAC_BUS_TYPE_FIFO) {
961
dev_err(dev, "Invalid source bus type read: %d\n", val);
962
return -EINVAL;
963
}
964
chan->src_type = val;
965
966
val = AXI_DMAC_DMA_DST_TYPE_GET(desc);
967
if (val > AXI_DMAC_BUS_TYPE_FIFO) {
968
dev_err(dev, "Invalid destination bus type read: %d\n", val);
969
return -EINVAL;
970
}
971
chan->dest_type = val;
972
973
val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc);
974
if (val == 0) {
975
dev_err(dev, "Source bus width is zero\n");
976
return -EINVAL;
977
}
978
/* widths are stored in log2 */
979
chan->src_width = 1 << val;
980
981
val = AXI_DMAC_DMA_DST_WIDTH_GET(desc);
982
if (val == 0) {
983
dev_err(dev, "Destination bus width is zero\n");
984
return -EINVAL;
985
}
986
chan->dest_width = 1 << val;
987
988
axi_dmac_adjust_chan_params(chan);
989
990
return 0;
991
}
992
993
static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
994
{
995
struct axi_dmac_chan *chan = &dmac->chan;
996
997
axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
998
if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
999
chan->hw_cyclic = true;
1000
1001
axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, 0xffffffff);
1002
if (axi_dmac_read(dmac, AXI_DMAC_REG_SG_ADDRESS))
1003
chan->hw_sg = true;
1004
1005
axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1);
1006
if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
1007
chan->hw_2d = true;
1008
1009
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff);
1010
chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
1011
if (chan->max_length != UINT_MAX)
1012
chan->max_length++;
1013
1014
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff);
1015
if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
1016
chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
1017
dev_err(dmac->dma_dev.dev,
1018
"Destination memory-mapped interface not supported.");
1019
return -ENODEV;
1020
}
1021
1022
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff);
1023
if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
1024
chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
1025
dev_err(dmac->dma_dev.dev,
1026
"Source memory-mapped interface not supported.");
1027
return -ENODEV;
1028
}
1029
1030
if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
1031
chan->hw_partial_xfer = true;
1032
1033
if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
1034
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00);
1035
chan->length_align_mask =
1036
axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
1037
} else {
1038
chan->length_align_mask = chan->address_align_mask;
1039
}
1040
1041
return 0;
1042
}
1043
1044
static void axi_dmac_tasklet_kill(void *task)
1045
{
1046
tasklet_kill(task);
1047
}
1048
1049
static void axi_dmac_free_dma_controller(void *of_node)
1050
{
1051
of_dma_controller_free(of_node);
1052
}
1053
1054
static int axi_dmac_probe(struct platform_device *pdev)
1055
{
1056
struct dma_device *dma_dev;
1057
struct axi_dmac *dmac;
1058
struct regmap *regmap;
1059
unsigned int version;
1060
u32 irq_mask = 0;
1061
int ret;
1062
1063
dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1064
if (!dmac)
1065
return -ENOMEM;
1066
1067
dmac->irq = platform_get_irq(pdev, 0);
1068
if (dmac->irq < 0)
1069
return dmac->irq;
1070
if (dmac->irq == 0)
1071
return -EINVAL;
1072
1073
dmac->base = devm_platform_ioremap_resource(pdev, 0);
1074
if (IS_ERR(dmac->base))
1075
return PTR_ERR(dmac->base);
1076
1077
dmac->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1078
if (IS_ERR(dmac->clk))
1079
return PTR_ERR(dmac->clk);
1080
1081
version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION);
1082
1083
if (version >= ADI_AXI_PCORE_VER(4, 3, 'a'))
1084
ret = axi_dmac_read_chan_config(&pdev->dev, dmac);
1085
else
1086
ret = axi_dmac_parse_dt(&pdev->dev, dmac);
1087
1088
if (ret < 0)
1089
return ret;
1090
1091
INIT_LIST_HEAD(&dmac->chan.active_descs);
1092
1093
dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1094
1095
dma_dev = &dmac->dma_dev;
1096
dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1097
dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1098
dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
1099
dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
1100
dma_dev->device_tx_status = dma_cookie_status;
1101
dma_dev->device_issue_pending = axi_dmac_issue_pending;
1102
dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
1103
dma_dev->device_prep_peripheral_dma_vec = axi_dmac_prep_peripheral_dma_vec;
1104
dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
1105
dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
1106
dma_dev->device_terminate_all = axi_dmac_terminate_all;
1107
dma_dev->device_synchronize = axi_dmac_synchronize;
1108
dma_dev->dev = &pdev->dev;
1109
dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
1110
dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
1111
dma_dev->directions = BIT(dmac->chan.direction);
1112
dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1113
dma_dev->max_sg_burst = 31; /* 31 SGs maximum in one burst */
1114
INIT_LIST_HEAD(&dma_dev->channels);
1115
1116
dmac->chan.vchan.desc_free = axi_dmac_desc_free;
1117
vchan_init(&dmac->chan.vchan, dma_dev);
1118
1119
ret = axi_dmac_detect_caps(dmac, version);
1120
if (ret)
1121
return ret;
1122
1123
dma_dev->copy_align = (dmac->chan.address_align_mask + 1);
1124
1125
if (dmac->chan.hw_sg)
1126
irq_mask |= AXI_DMAC_IRQ_SOT;
1127
1128
axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, irq_mask);
1129
1130
if (of_dma_is_coherent(pdev->dev.of_node)) {
1131
ret = axi_dmac_read(dmac, AXI_DMAC_REG_COHERENCY_DESC);
1132
1133
if (version < ADI_AXI_PCORE_VER(4, 4, 'a') ||
1134
!AXI_DMAC_DST_COHERENT_GET(ret)) {
1135
dev_err(dmac->dma_dev.dev,
1136
"Coherent DMA not supported in hardware");
1137
return -EINVAL;
1138
}
1139
}
1140
1141
ret = dmaenginem_async_device_register(dma_dev);
1142
if (ret)
1143
return ret;
1144
1145
/*
1146
* Put the action in here so it get's done before unregistering the DMA
1147
* device.
1148
*/
1149
ret = devm_add_action_or_reset(&pdev->dev, axi_dmac_tasklet_kill,
1150
&dmac->chan.vchan.task);
1151
if (ret)
1152
return ret;
1153
1154
ret = of_dma_controller_register(pdev->dev.of_node,
1155
of_dma_xlate_by_chan_id, dma_dev);
1156
if (ret)
1157
return ret;
1158
1159
ret = devm_add_action_or_reset(&pdev->dev, axi_dmac_free_dma_controller,
1160
pdev->dev.of_node);
1161
if (ret)
1162
return ret;
1163
1164
ret = devm_request_irq(&pdev->dev, dmac->irq, axi_dmac_interrupt_handler,
1165
IRQF_SHARED, dev_name(&pdev->dev), dmac);
1166
if (ret)
1167
return ret;
1168
1169
regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
1170
&axi_dmac_regmap_config);
1171
1172
return PTR_ERR_OR_ZERO(regmap);
1173
}
1174
1175
static const struct of_device_id axi_dmac_of_match_table[] = {
1176
{ .compatible = "adi,axi-dmac-1.00.a" },
1177
{ },
1178
};
1179
MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
1180
1181
static struct platform_driver axi_dmac_driver = {
1182
.driver = {
1183
.name = "dma-axi-dmac",
1184
.of_match_table = axi_dmac_of_match_table,
1185
},
1186
.probe = axi_dmac_probe,
1187
};
1188
module_platform_driver(axi_dmac_driver);
1189
1190
MODULE_AUTHOR("Lars-Peter Clausen <[email protected]>");
1191
MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
1192
MODULE_LICENSE("GPL v2");
1193
1194