Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/dma/dw-axi-dmac/dw-axi-dmac-platform.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
// (C) 2017-2018 Synopsys, Inc. (www.synopsys.com)
3
4
/*
5
* Synopsys DesignWare AXI DMA Controller driver.
6
*
7
* Author: Eugeniy Paltsev <[email protected]>
8
*/
9
10
#include <linux/bitops.h>
11
#include <linux/delay.h>
12
#include <linux/device.h>
13
#include <linux/dmaengine.h>
14
#include <linux/dmapool.h>
15
#include <linux/dma-mapping.h>
16
#include <linux/err.h>
17
#include <linux/interrupt.h>
18
#include <linux/io.h>
19
#include <linux/iopoll.h>
20
#include <linux/io-64-nonatomic-lo-hi.h>
21
#include <linux/kernel.h>
22
#include <linux/module.h>
23
#include <linux/of.h>
24
#include <linux/of_dma.h>
25
#include <linux/platform_device.h>
26
#include <linux/pm_runtime.h>
27
#include <linux/property.h>
28
#include <linux/reset.h>
29
#include <linux/slab.h>
30
#include <linux/types.h>
31
32
#include "dw-axi-dmac.h"
33
#include "../dmaengine.h"
34
#include "../virt-dma.h"
35
36
/*
37
* The set of bus widths supported by the DMA controller. DW AXI DMAC supports
38
* master data bus width up to 512 bits (for both AXI master interfaces), but
39
* it depends on IP block configuration.
40
*/
41
#define AXI_DMA_BUSWIDTHS \
42
(DMA_SLAVE_BUSWIDTH_1_BYTE | \
43
DMA_SLAVE_BUSWIDTH_2_BYTES | \
44
DMA_SLAVE_BUSWIDTH_4_BYTES | \
45
DMA_SLAVE_BUSWIDTH_8_BYTES | \
46
DMA_SLAVE_BUSWIDTH_16_BYTES | \
47
DMA_SLAVE_BUSWIDTH_32_BYTES | \
48
DMA_SLAVE_BUSWIDTH_64_BYTES)
49
50
#define AXI_DMA_FLAG_HAS_APB_REGS BIT(0)
51
#define AXI_DMA_FLAG_HAS_RESETS BIT(1)
52
#define AXI_DMA_FLAG_USE_CFG2 BIT(2)
53
54
static inline void
55
axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val)
56
{
57
iowrite32(val, chip->regs + reg);
58
}
59
60
static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg)
61
{
62
return ioread32(chip->regs + reg);
63
}
64
65
static inline void
66
axi_dma_iowrite64(struct axi_dma_chip *chip, u32 reg, u64 val)
67
{
68
iowrite64(val, chip->regs + reg);
69
}
70
71
static inline u64 axi_dma_ioread64(struct axi_dma_chip *chip, u32 reg)
72
{
73
return ioread64(chip->regs + reg);
74
}
75
76
static inline void
77
axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val)
78
{
79
iowrite32(val, chan->chan_regs + reg);
80
}
81
82
static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg)
83
{
84
return ioread32(chan->chan_regs + reg);
85
}
86
87
static inline void
88
axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val)
89
{
90
/*
91
* We split one 64 bit write for two 32 bit write as some HW doesn't
92
* support 64 bit access.
93
*/
94
iowrite32(lower_32_bits(val), chan->chan_regs + reg);
95
iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4);
96
}
97
98
static inline void axi_chan_config_write(struct axi_dma_chan *chan,
99
struct axi_dma_chan_config *config)
100
{
101
u32 cfg_lo, cfg_hi;
102
103
cfg_lo = (config->dst_multblk_type << CH_CFG_L_DST_MULTBLK_TYPE_POS |
104
config->src_multblk_type << CH_CFG_L_SRC_MULTBLK_TYPE_POS);
105
if (chan->chip->dw->hdata->reg_map_8_channels &&
106
!chan->chip->dw->hdata->use_cfg2) {
107
cfg_hi = config->tt_fc << CH_CFG_H_TT_FC_POS |
108
config->hs_sel_src << CH_CFG_H_HS_SEL_SRC_POS |
109
config->hs_sel_dst << CH_CFG_H_HS_SEL_DST_POS |
110
config->src_per << CH_CFG_H_SRC_PER_POS |
111
config->dst_per << CH_CFG_H_DST_PER_POS |
112
config->prior << CH_CFG_H_PRIORITY_POS;
113
} else {
114
cfg_lo |= config->src_per << CH_CFG2_L_SRC_PER_POS |
115
config->dst_per << CH_CFG2_L_DST_PER_POS;
116
cfg_hi = config->tt_fc << CH_CFG2_H_TT_FC_POS |
117
config->hs_sel_src << CH_CFG2_H_HS_SEL_SRC_POS |
118
config->hs_sel_dst << CH_CFG2_H_HS_SEL_DST_POS |
119
config->prior << CH_CFG2_H_PRIORITY_POS;
120
}
121
axi_chan_iowrite32(chan, CH_CFG_L, cfg_lo);
122
axi_chan_iowrite32(chan, CH_CFG_H, cfg_hi);
123
}
124
125
static inline void axi_dma_disable(struct axi_dma_chip *chip)
126
{
127
u32 val;
128
129
val = axi_dma_ioread32(chip, DMAC_CFG);
130
val &= ~DMAC_EN_MASK;
131
axi_dma_iowrite32(chip, DMAC_CFG, val);
132
}
133
134
static inline void axi_dma_enable(struct axi_dma_chip *chip)
135
{
136
u32 val;
137
138
val = axi_dma_ioread32(chip, DMAC_CFG);
139
val |= DMAC_EN_MASK;
140
axi_dma_iowrite32(chip, DMAC_CFG, val);
141
}
142
143
static inline void axi_dma_irq_disable(struct axi_dma_chip *chip)
144
{
145
u32 val;
146
147
val = axi_dma_ioread32(chip, DMAC_CFG);
148
val &= ~INT_EN_MASK;
149
axi_dma_iowrite32(chip, DMAC_CFG, val);
150
}
151
152
static inline void axi_dma_irq_enable(struct axi_dma_chip *chip)
153
{
154
u32 val;
155
156
val = axi_dma_ioread32(chip, DMAC_CFG);
157
val |= INT_EN_MASK;
158
axi_dma_iowrite32(chip, DMAC_CFG, val);
159
}
160
161
static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask)
162
{
163
u32 val;
164
165
if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) {
166
axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE);
167
} else {
168
val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA);
169
val &= ~irq_mask;
170
axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val);
171
}
172
}
173
174
static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask)
175
{
176
axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask);
177
}
178
179
static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask)
180
{
181
axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask);
182
}
183
184
static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask)
185
{
186
axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask);
187
}
188
189
static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan)
190
{
191
return axi_chan_ioread32(chan, CH_INTSTATUS);
192
}
193
194
static inline void axi_chan_disable(struct axi_dma_chan *chan)
195
{
196
u64 val;
197
198
if (chan->chip->dw->hdata->nr_channels >= DMAC_CHAN_16) {
199
val = axi_dma_ioread64(chan->chip, DMAC_CHEN);
200
if (chan->id >= DMAC_CHAN_16) {
201
val &= ~((u64)(BIT(chan->id) >> DMAC_CHAN_16)
202
<< (DMAC_CHAN_EN_SHIFT + DMAC_CHAN_BLOCK_SHIFT));
203
val |= (u64)(BIT(chan->id) >> DMAC_CHAN_16)
204
<< (DMAC_CHAN_EN2_WE_SHIFT + DMAC_CHAN_BLOCK_SHIFT);
205
} else {
206
val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
207
val |= BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
208
}
209
axi_dma_iowrite64(chan->chip, DMAC_CHEN, val);
210
} else {
211
val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
212
val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
213
if (chan->chip->dw->hdata->reg_map_8_channels)
214
val |= BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
215
else
216
val |= BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
217
axi_dma_iowrite32(chan->chip, DMAC_CHEN, (u32)val);
218
}
219
}
220
221
static inline void axi_chan_enable(struct axi_dma_chan *chan)
222
{
223
u64 val;
224
225
if (chan->chip->dw->hdata->nr_channels >= DMAC_CHAN_16) {
226
val = axi_dma_ioread64(chan->chip, DMAC_CHEN);
227
if (chan->id >= DMAC_CHAN_16) {
228
val |= (u64)(BIT(chan->id) >> DMAC_CHAN_16)
229
<< (DMAC_CHAN_EN_SHIFT + DMAC_CHAN_BLOCK_SHIFT) |
230
(u64)(BIT(chan->id) >> DMAC_CHAN_16)
231
<< (DMAC_CHAN_EN2_WE_SHIFT + DMAC_CHAN_BLOCK_SHIFT);
232
} else {
233
val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
234
BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
235
}
236
axi_dma_iowrite64(chan->chip, DMAC_CHEN, val);
237
} else {
238
val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
239
if (chan->chip->dw->hdata->reg_map_8_channels) {
240
val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
241
BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
242
} else {
243
val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
244
BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
245
}
246
axi_dma_iowrite32(chan->chip, DMAC_CHEN, (u32)val);
247
}
248
}
249
250
static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan)
251
{
252
u64 val;
253
254
if (chan->chip->dw->hdata->nr_channels >= DMAC_CHAN_16)
255
val = axi_dma_ioread64(chan->chip, DMAC_CHEN);
256
else
257
val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
258
259
if (chan->id >= DMAC_CHAN_16)
260
return !!(val & ((u64)(BIT(chan->id) >> DMAC_CHAN_16) << DMAC_CHAN_BLOCK_SHIFT));
261
else
262
return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT));
263
}
264
265
static void axi_dma_hw_init(struct axi_dma_chip *chip)
266
{
267
int ret;
268
u32 i;
269
270
for (i = 0; i < chip->dw->hdata->nr_channels; i++) {
271
axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
272
axi_chan_disable(&chip->dw->chan[i]);
273
}
274
ret = dma_set_mask_and_coherent(chip->dev, DMA_BIT_MASK(64));
275
if (ret)
276
dev_warn(chip->dev, "Unable to set coherent mask\n");
277
}
278
279
static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src,
280
dma_addr_t dst, size_t len)
281
{
282
u32 max_width = chan->chip->dw->hdata->m_data_width;
283
284
return __ffs(src | dst | len | BIT(max_width));
285
}
286
287
static inline const char *axi_chan_name(struct axi_dma_chan *chan)
288
{
289
return dma_chan_name(&chan->vc.chan);
290
}
291
292
static struct axi_dma_desc *axi_desc_alloc(u32 num)
293
{
294
struct axi_dma_desc *desc;
295
296
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
297
if (!desc)
298
return NULL;
299
300
desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT);
301
if (!desc->hw_desc) {
302
kfree(desc);
303
return NULL;
304
}
305
desc->nr_hw_descs = num;
306
307
return desc;
308
}
309
310
static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan,
311
dma_addr_t *addr)
312
{
313
struct axi_dma_lli *lli;
314
dma_addr_t phys;
315
316
lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
317
if (unlikely(!lli)) {
318
dev_err(chan2dev(chan), "%s: not enough descriptors available\n",
319
axi_chan_name(chan));
320
return NULL;
321
}
322
323
atomic_inc(&chan->descs_allocated);
324
*addr = phys;
325
326
return lli;
327
}
328
329
static void axi_desc_put(struct axi_dma_desc *desc)
330
{
331
struct axi_dma_chan *chan = desc->chan;
332
int count = desc->nr_hw_descs;
333
struct axi_dma_hw_desc *hw_desc;
334
int descs_put;
335
336
for (descs_put = 0; descs_put < count; descs_put++) {
337
hw_desc = &desc->hw_desc[descs_put];
338
dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp);
339
}
340
341
kfree(desc->hw_desc);
342
kfree(desc);
343
atomic_sub(descs_put, &chan->descs_allocated);
344
dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n",
345
axi_chan_name(chan), descs_put,
346
atomic_read(&chan->descs_allocated));
347
}
348
349
static void vchan_desc_put(struct virt_dma_desc *vdesc)
350
{
351
axi_desc_put(vd_to_axi_desc(vdesc));
352
}
353
354
static enum dma_status
355
dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
356
struct dma_tx_state *txstate)
357
{
358
struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
359
struct virt_dma_desc *vdesc;
360
enum dma_status status;
361
u32 completed_length;
362
unsigned long flags;
363
u32 completed_blocks;
364
size_t bytes = 0;
365
u32 length;
366
u32 len;
367
368
status = dma_cookie_status(dchan, cookie, txstate);
369
if (status == DMA_COMPLETE || !txstate)
370
return status;
371
372
spin_lock_irqsave(&chan->vc.lock, flags);
373
374
vdesc = vchan_find_desc(&chan->vc, cookie);
375
if (vdesc) {
376
length = vd_to_axi_desc(vdesc)->length;
377
completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks;
378
len = vd_to_axi_desc(vdesc)->hw_desc[0].len;
379
completed_length = completed_blocks * len;
380
bytes = length - completed_length;
381
}
382
383
spin_unlock_irqrestore(&chan->vc.lock, flags);
384
dma_set_residue(txstate, bytes);
385
386
return status;
387
}
388
389
static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr)
390
{
391
desc->lli->llp = cpu_to_le64(adr);
392
}
393
394
static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr)
395
{
396
axi_chan_iowrite64(chan, CH_LLP, adr);
397
}
398
399
static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set)
400
{
401
u32 offset = DMAC_APB_BYTE_WR_CH_EN;
402
u32 reg_width, val;
403
404
if (!chan->chip->apb_regs) {
405
dev_dbg(chan->chip->dev, "apb_regs not initialized\n");
406
return;
407
}
408
409
reg_width = __ffs(chan->config.dst_addr_width);
410
if (reg_width == DWAXIDMAC_TRANS_WIDTH_16)
411
offset = DMAC_APB_HALFWORD_WR_CH_EN;
412
413
val = ioread32(chan->chip->apb_regs + offset);
414
415
if (set)
416
val |= BIT(chan->id);
417
else
418
val &= ~BIT(chan->id);
419
420
iowrite32(val, chan->chip->apb_regs + offset);
421
}
422
/* Called in chan locked context */
423
static void axi_chan_block_xfer_start(struct axi_dma_chan *chan,
424
struct axi_dma_desc *first)
425
{
426
u32 priority = chan->chip->dw->hdata->priority[chan->id];
427
struct axi_dma_chan_config config = {};
428
u32 irq_mask;
429
u8 lms = 0; /* Select AXI0 master for LLI fetching */
430
431
if (unlikely(axi_chan_is_hw_enable(chan))) {
432
dev_err(chan2dev(chan), "%s is non-idle!\n",
433
axi_chan_name(chan));
434
435
return;
436
}
437
438
axi_dma_enable(chan->chip);
439
440
config.dst_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
441
config.src_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
442
config.tt_fc = DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC;
443
config.prior = priority;
444
config.hs_sel_dst = DWAXIDMAC_HS_SEL_HW;
445
config.hs_sel_src = DWAXIDMAC_HS_SEL_HW;
446
switch (chan->direction) {
447
case DMA_MEM_TO_DEV:
448
dw_axi_dma_set_byte_halfword(chan, true);
449
config.tt_fc = chan->config.device_fc ?
450
DWAXIDMAC_TT_FC_MEM_TO_PER_DST :
451
DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC;
452
if (chan->chip->apb_regs)
453
config.dst_per = chan->id;
454
else
455
config.dst_per = chan->hw_handshake_num;
456
break;
457
case DMA_DEV_TO_MEM:
458
config.tt_fc = chan->config.device_fc ?
459
DWAXIDMAC_TT_FC_PER_TO_MEM_SRC :
460
DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC;
461
if (chan->chip->apb_regs)
462
config.src_per = chan->id;
463
else
464
config.src_per = chan->hw_handshake_num;
465
break;
466
default:
467
break;
468
}
469
axi_chan_config_write(chan, &config);
470
471
write_chan_llp(chan, first->hw_desc[0].llp | lms);
472
473
irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR;
474
axi_chan_irq_sig_set(chan, irq_mask);
475
476
/* Generate 'suspend' status but don't generate interrupt */
477
irq_mask |= DWAXIDMAC_IRQ_SUSPENDED;
478
axi_chan_irq_set(chan, irq_mask);
479
480
axi_chan_enable(chan);
481
}
482
483
static void axi_chan_start_first_queued(struct axi_dma_chan *chan)
484
{
485
struct axi_dma_desc *desc;
486
struct virt_dma_desc *vd;
487
488
vd = vchan_next_desc(&chan->vc);
489
if (!vd)
490
return;
491
492
desc = vd_to_axi_desc(vd);
493
dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan),
494
vd->tx.cookie);
495
axi_chan_block_xfer_start(chan, desc);
496
}
497
498
static void dma_chan_issue_pending(struct dma_chan *dchan)
499
{
500
struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
501
unsigned long flags;
502
503
spin_lock_irqsave(&chan->vc.lock, flags);
504
if (vchan_issue_pending(&chan->vc))
505
axi_chan_start_first_queued(chan);
506
spin_unlock_irqrestore(&chan->vc.lock, flags);
507
}
508
509
static void dw_axi_dma_synchronize(struct dma_chan *dchan)
510
{
511
struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
512
513
vchan_synchronize(&chan->vc);
514
}
515
516
static int dma_chan_alloc_chan_resources(struct dma_chan *dchan)
517
{
518
struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
519
520
/* ASSERT: channel is idle */
521
if (axi_chan_is_hw_enable(chan)) {
522
dev_err(chan2dev(chan), "%s is non-idle!\n",
523
axi_chan_name(chan));
524
return -EBUSY;
525
}
526
527
/* LLI address must be aligned to a 64-byte boundary */
528
chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)),
529
chan->chip->dev,
530
sizeof(struct axi_dma_lli),
531
64, 0);
532
if (!chan->desc_pool) {
533
dev_err(chan2dev(chan), "No memory for descriptors\n");
534
return -ENOMEM;
535
}
536
dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan));
537
538
pm_runtime_get(chan->chip->dev);
539
540
return 0;
541
}
542
543
static void dma_chan_free_chan_resources(struct dma_chan *dchan)
544
{
545
struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
546
547
/* ASSERT: channel is idle */
548
if (axi_chan_is_hw_enable(chan))
549
dev_err(dchan2dev(dchan), "%s is non-idle!\n",
550
axi_chan_name(chan));
551
552
axi_chan_disable(chan);
553
axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL);
554
555
vchan_free_chan_resources(&chan->vc);
556
557
dma_pool_destroy(chan->desc_pool);
558
chan->desc_pool = NULL;
559
dev_vdbg(dchan2dev(dchan),
560
"%s: free resources, descriptor still allocated: %u\n",
561
axi_chan_name(chan), atomic_read(&chan->descs_allocated));
562
563
pm_runtime_put(chan->chip->dev);
564
}
565
566
static void dw_axi_dma_set_hw_channel(struct axi_dma_chan *chan, bool set)
567
{
568
struct axi_dma_chip *chip = chan->chip;
569
unsigned long reg_value, val;
570
571
if (!chip->apb_regs) {
572
dev_err(chip->dev, "apb_regs not initialized\n");
573
return;
574
}
575
576
/*
577
* An unused DMA channel has a default value of 0x3F.
578
* Lock the DMA channel by assign a handshake number to the channel.
579
* Unlock the DMA channel by assign 0x3F to the channel.
580
*/
581
if (set)
582
val = chan->hw_handshake_num;
583
else
584
val = UNUSED_CHANNEL;
585
586
reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
587
588
/* Channel is already allocated, set handshake as per channel ID */
589
/* 64 bit write should handle for 8 channels */
590
591
reg_value &= ~(DMA_APB_HS_SEL_MASK <<
592
(chan->id * DMA_APB_HS_SEL_BIT_SIZE));
593
reg_value |= (val << (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
594
lo_hi_writeq(reg_value, chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
595
596
return;
597
}
598
599
/*
600
* If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI
601
* as 1, it understands that the current block is the final block in the
602
* transfer and completes the DMA transfer operation at the end of current
603
* block transfer.
604
*/
605
static void set_desc_last(struct axi_dma_hw_desc *desc)
606
{
607
u32 val;
608
609
val = le32_to_cpu(desc->lli->ctl_hi);
610
val |= CH_CTL_H_LLI_LAST;
611
desc->lli->ctl_hi = cpu_to_le32(val);
612
}
613
614
static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
615
{
616
desc->lli->sar = cpu_to_le64(adr);
617
}
618
619
static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
620
{
621
desc->lli->dar = cpu_to_le64(adr);
622
}
623
624
static void set_desc_src_master(struct axi_dma_hw_desc *desc)
625
{
626
u32 val;
627
628
/* Select AXI0 for source master */
629
val = le32_to_cpu(desc->lli->ctl_lo);
630
val &= ~CH_CTL_L_SRC_MAST;
631
desc->lli->ctl_lo = cpu_to_le32(val);
632
}
633
634
static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc,
635
struct axi_dma_desc *desc)
636
{
637
u32 val;
638
639
/* Select AXI1 for source master if available */
640
val = le32_to_cpu(hw_desc->lli->ctl_lo);
641
if (desc->chan->chip->dw->hdata->nr_masters > 1)
642
val |= CH_CTL_L_DST_MAST;
643
else
644
val &= ~CH_CTL_L_DST_MAST;
645
646
hw_desc->lli->ctl_lo = cpu_to_le32(val);
647
}
648
649
static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan,
650
struct axi_dma_hw_desc *hw_desc,
651
dma_addr_t mem_addr, size_t len)
652
{
653
unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width);
654
unsigned int reg_width;
655
unsigned int mem_width;
656
dma_addr_t device_addr;
657
size_t axi_block_ts;
658
size_t block_ts;
659
u32 ctllo, ctlhi;
660
u32 burst_len;
661
662
axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
663
664
mem_width = __ffs(data_width | mem_addr | len);
665
if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
666
mem_width = DWAXIDMAC_TRANS_WIDTH_32;
667
668
if (!IS_ALIGNED(mem_addr, 4)) {
669
dev_err(chan->chip->dev, "invalid buffer alignment\n");
670
return -EINVAL;
671
}
672
673
switch (chan->direction) {
674
case DMA_MEM_TO_DEV:
675
reg_width = __ffs(chan->config.dst_addr_width);
676
device_addr = chan->config.dst_addr;
677
ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS |
678
mem_width << CH_CTL_L_SRC_WIDTH_POS |
679
DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS |
680
DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS;
681
block_ts = len >> mem_width;
682
break;
683
case DMA_DEV_TO_MEM:
684
reg_width = __ffs(chan->config.src_addr_width);
685
device_addr = chan->config.src_addr;
686
ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS |
687
mem_width << CH_CTL_L_DST_WIDTH_POS |
688
DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
689
DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS;
690
block_ts = len >> reg_width;
691
break;
692
default:
693
return -EINVAL;
694
}
695
696
if (block_ts > axi_block_ts)
697
return -EINVAL;
698
699
hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
700
if (unlikely(!hw_desc->lli))
701
return -ENOMEM;
702
703
ctlhi = CH_CTL_H_LLI_VALID;
704
705
if (chan->chip->dw->hdata->restrict_axi_burst_len) {
706
burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
707
ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN |
708
burst_len << CH_CTL_H_ARLEN_POS |
709
burst_len << CH_CTL_H_AWLEN_POS;
710
}
711
712
hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi);
713
714
if (chan->direction == DMA_MEM_TO_DEV) {
715
write_desc_sar(hw_desc, mem_addr);
716
write_desc_dar(hw_desc, device_addr);
717
} else {
718
write_desc_sar(hw_desc, device_addr);
719
write_desc_dar(hw_desc, mem_addr);
720
}
721
722
hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
723
724
ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
725
DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS;
726
hw_desc->lli->ctl_lo = cpu_to_le32(ctllo);
727
728
set_desc_src_master(hw_desc);
729
730
hw_desc->len = len;
731
return 0;
732
}
733
734
static size_t calculate_block_len(struct axi_dma_chan *chan,
735
dma_addr_t dma_addr, size_t buf_len,
736
enum dma_transfer_direction direction)
737
{
738
u32 data_width, reg_width, mem_width;
739
size_t axi_block_ts, block_len;
740
741
axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
742
743
switch (direction) {
744
case DMA_MEM_TO_DEV:
745
data_width = BIT(chan->chip->dw->hdata->m_data_width);
746
mem_width = __ffs(data_width | dma_addr | buf_len);
747
if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
748
mem_width = DWAXIDMAC_TRANS_WIDTH_32;
749
750
block_len = axi_block_ts << mem_width;
751
break;
752
case DMA_DEV_TO_MEM:
753
reg_width = __ffs(chan->config.src_addr_width);
754
block_len = axi_block_ts << reg_width;
755
break;
756
default:
757
block_len = 0;
758
}
759
760
return block_len;
761
}
762
763
static struct dma_async_tx_descriptor *
764
dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr,
765
size_t buf_len, size_t period_len,
766
enum dma_transfer_direction direction,
767
unsigned long flags)
768
{
769
struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
770
struct axi_dma_hw_desc *hw_desc = NULL;
771
struct axi_dma_desc *desc = NULL;
772
dma_addr_t src_addr = dma_addr;
773
u32 num_periods, num_segments;
774
size_t axi_block_len;
775
u32 total_segments;
776
u32 segment_len;
777
unsigned int i;
778
int status;
779
u64 llp = 0;
780
u8 lms = 0; /* Select AXI0 master for LLI fetching */
781
782
num_periods = buf_len / period_len;
783
784
axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction);
785
if (axi_block_len == 0)
786
return NULL;
787
788
num_segments = DIV_ROUND_UP(period_len, axi_block_len);
789
segment_len = DIV_ROUND_UP(period_len, num_segments);
790
791
total_segments = num_periods * num_segments;
792
793
desc = axi_desc_alloc(total_segments);
794
if (unlikely(!desc))
795
goto err_desc_get;
796
797
chan->direction = direction;
798
desc->chan = chan;
799
chan->cyclic = true;
800
desc->length = 0;
801
desc->period_len = period_len;
802
803
for (i = 0; i < total_segments; i++) {
804
hw_desc = &desc->hw_desc[i];
805
806
status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr,
807
segment_len);
808
if (status < 0)
809
goto err_desc_get;
810
811
desc->length += hw_desc->len;
812
/* Set end-of-link to the linked descriptor, so that cyclic
813
* callback function can be triggered during interrupt.
814
*/
815
set_desc_last(hw_desc);
816
817
src_addr += segment_len;
818
}
819
820
llp = desc->hw_desc[0].llp;
821
822
/* Managed transfer list */
823
do {
824
hw_desc = &desc->hw_desc[--total_segments];
825
write_desc_llp(hw_desc, llp | lms);
826
llp = hw_desc->llp;
827
} while (total_segments);
828
829
dw_axi_dma_set_hw_channel(chan, true);
830
831
return vchan_tx_prep(&chan->vc, &desc->vd, flags);
832
833
err_desc_get:
834
if (desc)
835
axi_desc_put(desc);
836
837
return NULL;
838
}
839
840
static struct dma_async_tx_descriptor *
841
dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
842
unsigned int sg_len,
843
enum dma_transfer_direction direction,
844
unsigned long flags, void *context)
845
{
846
struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
847
struct axi_dma_hw_desc *hw_desc = NULL;
848
struct axi_dma_desc *desc = NULL;
849
u32 num_segments, segment_len;
850
unsigned int loop = 0;
851
struct scatterlist *sg;
852
size_t axi_block_len;
853
u32 len, num_sgs = 0;
854
unsigned int i;
855
dma_addr_t mem;
856
int status;
857
u64 llp = 0;
858
u8 lms = 0; /* Select AXI0 master for LLI fetching */
859
860
if (unlikely(!is_slave_direction(direction) || !sg_len))
861
return NULL;
862
863
mem = sg_dma_address(sgl);
864
len = sg_dma_len(sgl);
865
866
axi_block_len = calculate_block_len(chan, mem, len, direction);
867
if (axi_block_len == 0)
868
return NULL;
869
870
for_each_sg(sgl, sg, sg_len, i)
871
num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
872
873
desc = axi_desc_alloc(num_sgs);
874
if (unlikely(!desc))
875
goto err_desc_get;
876
877
desc->chan = chan;
878
desc->length = 0;
879
chan->direction = direction;
880
881
for_each_sg(sgl, sg, sg_len, i) {
882
mem = sg_dma_address(sg);
883
len = sg_dma_len(sg);
884
num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
885
segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments);
886
887
do {
888
hw_desc = &desc->hw_desc[loop++];
889
status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len);
890
if (status < 0)
891
goto err_desc_get;
892
893
desc->length += hw_desc->len;
894
len -= segment_len;
895
mem += segment_len;
896
} while (len >= segment_len);
897
}
898
899
/* Set end-of-link to the last link descriptor of list */
900
set_desc_last(&desc->hw_desc[num_sgs - 1]);
901
902
/* Managed transfer list */
903
do {
904
hw_desc = &desc->hw_desc[--num_sgs];
905
write_desc_llp(hw_desc, llp | lms);
906
llp = hw_desc->llp;
907
} while (num_sgs);
908
909
dw_axi_dma_set_hw_channel(chan, true);
910
911
return vchan_tx_prep(&chan->vc, &desc->vd, flags);
912
913
err_desc_get:
914
if (desc)
915
axi_desc_put(desc);
916
917
return NULL;
918
}
919
920
static struct dma_async_tx_descriptor *
921
dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr,
922
dma_addr_t src_adr, size_t len, unsigned long flags)
923
{
924
struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
925
size_t block_ts, max_block_ts, xfer_len;
926
struct axi_dma_hw_desc *hw_desc = NULL;
927
struct axi_dma_desc *desc = NULL;
928
u32 xfer_width, reg, num;
929
u64 llp = 0;
930
u8 lms = 0; /* Select AXI0 master for LLI fetching */
931
932
dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx",
933
axi_chan_name(chan), &src_adr, &dst_adr, len, flags);
934
935
max_block_ts = chan->chip->dw->hdata->block_size[chan->id];
936
xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len);
937
num = DIV_ROUND_UP(len, max_block_ts << xfer_width);
938
desc = axi_desc_alloc(num);
939
if (unlikely(!desc))
940
goto err_desc_get;
941
942
desc->chan = chan;
943
num = 0;
944
desc->length = 0;
945
while (len) {
946
xfer_len = len;
947
948
hw_desc = &desc->hw_desc[num];
949
/*
950
* Take care for the alignment.
951
* Actually source and destination widths can be different, but
952
* make them same to be simpler.
953
*/
954
xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len);
955
956
/*
957
* block_ts indicates the total number of data of width
958
* to be transferred in a DMA block transfer.
959
* BLOCK_TS register should be set to block_ts - 1
960
*/
961
block_ts = xfer_len >> xfer_width;
962
if (block_ts > max_block_ts) {
963
block_ts = max_block_ts;
964
xfer_len = max_block_ts << xfer_width;
965
}
966
967
hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
968
if (unlikely(!hw_desc->lli))
969
goto err_desc_get;
970
971
write_desc_sar(hw_desc, src_adr);
972
write_desc_dar(hw_desc, dst_adr);
973
hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
974
975
reg = CH_CTL_H_LLI_VALID;
976
if (chan->chip->dw->hdata->restrict_axi_burst_len) {
977
u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
978
979
reg |= (CH_CTL_H_ARLEN_EN |
980
burst_len << CH_CTL_H_ARLEN_POS |
981
CH_CTL_H_AWLEN_EN |
982
burst_len << CH_CTL_H_AWLEN_POS);
983
}
984
hw_desc->lli->ctl_hi = cpu_to_le32(reg);
985
986
reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
987
DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS |
988
xfer_width << CH_CTL_L_DST_WIDTH_POS |
989
xfer_width << CH_CTL_L_SRC_WIDTH_POS |
990
DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
991
DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS);
992
hw_desc->lli->ctl_lo = cpu_to_le32(reg);
993
994
set_desc_src_master(hw_desc);
995
set_desc_dest_master(hw_desc, desc);
996
997
hw_desc->len = xfer_len;
998
desc->length += hw_desc->len;
999
/* update the length and addresses for the next loop cycle */
1000
len -= xfer_len;
1001
dst_adr += xfer_len;
1002
src_adr += xfer_len;
1003
num++;
1004
}
1005
1006
/* Set end-of-link to the last link descriptor of list */
1007
set_desc_last(&desc->hw_desc[num - 1]);
1008
/* Managed transfer list */
1009
do {
1010
hw_desc = &desc->hw_desc[--num];
1011
write_desc_llp(hw_desc, llp | lms);
1012
llp = hw_desc->llp;
1013
} while (num);
1014
1015
return vchan_tx_prep(&chan->vc, &desc->vd, flags);
1016
1017
err_desc_get:
1018
if (desc)
1019
axi_desc_put(desc);
1020
return NULL;
1021
}
1022
1023
static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan,
1024
struct dma_slave_config *config)
1025
{
1026
struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1027
1028
memcpy(&chan->config, config, sizeof(*config));
1029
1030
return 0;
1031
}
1032
1033
static void axi_chan_dump_lli(struct axi_dma_chan *chan,
1034
struct axi_dma_hw_desc *desc)
1035
{
1036
if (!desc->lli) {
1037
dev_err(dchan2dev(&chan->vc.chan), "NULL LLI\n");
1038
return;
1039
}
1040
1041
dev_err(dchan2dev(&chan->vc.chan),
1042
"SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x",
1043
le64_to_cpu(desc->lli->sar),
1044
le64_to_cpu(desc->lli->dar),
1045
le64_to_cpu(desc->lli->llp),
1046
le32_to_cpu(desc->lli->block_ts_lo),
1047
le32_to_cpu(desc->lli->ctl_hi),
1048
le32_to_cpu(desc->lli->ctl_lo));
1049
}
1050
1051
static void axi_chan_list_dump_lli(struct axi_dma_chan *chan,
1052
struct axi_dma_desc *desc_head)
1053
{
1054
int count = atomic_read(&chan->descs_allocated);
1055
int i;
1056
1057
for (i = 0; i < count; i++)
1058
axi_chan_dump_lli(chan, &desc_head->hw_desc[i]);
1059
}
1060
1061
static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status)
1062
{
1063
struct virt_dma_desc *vd;
1064
unsigned long flags;
1065
1066
spin_lock_irqsave(&chan->vc.lock, flags);
1067
1068
axi_chan_disable(chan);
1069
1070
/* The bad descriptor currently is in the head of vc list */
1071
vd = vchan_next_desc(&chan->vc);
1072
if (!vd) {
1073
dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n",
1074
axi_chan_name(chan));
1075
goto out;
1076
}
1077
/* Remove the completed descriptor from issued list */
1078
list_del(&vd->node);
1079
1080
/* WARN about bad descriptor */
1081
dev_err(chan2dev(chan),
1082
"Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n",
1083
axi_chan_name(chan), vd->tx.cookie, status);
1084
axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd));
1085
1086
vchan_cookie_complete(vd);
1087
1088
/* Try to restart the controller */
1089
axi_chan_start_first_queued(chan);
1090
1091
out:
1092
spin_unlock_irqrestore(&chan->vc.lock, flags);
1093
}
1094
1095
static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan)
1096
{
1097
int count = atomic_read(&chan->descs_allocated);
1098
struct axi_dma_hw_desc *hw_desc;
1099
struct axi_dma_desc *desc;
1100
struct virt_dma_desc *vd;
1101
unsigned long flags;
1102
u64 llp;
1103
int i;
1104
1105
spin_lock_irqsave(&chan->vc.lock, flags);
1106
if (unlikely(axi_chan_is_hw_enable(chan))) {
1107
dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n",
1108
axi_chan_name(chan));
1109
axi_chan_disable(chan);
1110
}
1111
1112
/* The completed descriptor currently is in the head of vc list */
1113
vd = vchan_next_desc(&chan->vc);
1114
if (!vd) {
1115
dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n",
1116
axi_chan_name(chan));
1117
goto out;
1118
}
1119
1120
if (chan->cyclic) {
1121
desc = vd_to_axi_desc(vd);
1122
if (desc) {
1123
llp = lo_hi_readq(chan->chan_regs + CH_LLP);
1124
for (i = 0; i < count; i++) {
1125
hw_desc = &desc->hw_desc[i];
1126
if (hw_desc->llp == llp) {
1127
axi_chan_irq_clear(chan, hw_desc->lli->status_lo);
1128
hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID;
1129
desc->completed_blocks = i;
1130
1131
if (((hw_desc->len * (i + 1)) % desc->period_len) == 0)
1132
vchan_cyclic_callback(vd);
1133
break;
1134
}
1135
}
1136
1137
axi_chan_enable(chan);
1138
}
1139
} else {
1140
/* Remove the completed descriptor from issued list before completing */
1141
list_del(&vd->node);
1142
vchan_cookie_complete(vd);
1143
}
1144
1145
out:
1146
spin_unlock_irqrestore(&chan->vc.lock, flags);
1147
}
1148
1149
static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id)
1150
{
1151
struct axi_dma_chip *chip = dev_id;
1152
struct dw_axi_dma *dw = chip->dw;
1153
struct axi_dma_chan *chan;
1154
1155
u32 status, i;
1156
1157
/* Disable DMAC interrupts. We'll enable them after processing channels */
1158
axi_dma_irq_disable(chip);
1159
1160
/* Poll, clear and process every channel interrupt status */
1161
for (i = 0; i < dw->hdata->nr_channels; i++) {
1162
chan = &dw->chan[i];
1163
status = axi_chan_irq_read(chan);
1164
axi_chan_irq_clear(chan, status);
1165
1166
dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n",
1167
axi_chan_name(chan), i, status);
1168
1169
if (status & DWAXIDMAC_IRQ_ALL_ERR)
1170
axi_chan_handle_err(chan, status);
1171
else if (status & DWAXIDMAC_IRQ_DMA_TRF)
1172
axi_chan_block_xfer_complete(chan);
1173
}
1174
1175
/* Re-enable interrupts */
1176
axi_dma_irq_enable(chip);
1177
1178
return IRQ_HANDLED;
1179
}
1180
1181
static int dma_chan_terminate_all(struct dma_chan *dchan)
1182
{
1183
struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1184
u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT;
1185
unsigned long flags;
1186
u32 val;
1187
int ret;
1188
LIST_HEAD(head);
1189
1190
axi_chan_disable(chan);
1191
1192
ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val,
1193
!(val & chan_active), 1000, 50000);
1194
if (ret == -ETIMEDOUT)
1195
dev_warn(dchan2dev(dchan),
1196
"%s failed to stop\n", axi_chan_name(chan));
1197
1198
if (chan->direction != DMA_MEM_TO_MEM)
1199
dw_axi_dma_set_hw_channel(chan, false);
1200
if (chan->direction == DMA_MEM_TO_DEV)
1201
dw_axi_dma_set_byte_halfword(chan, false);
1202
1203
spin_lock_irqsave(&chan->vc.lock, flags);
1204
1205
vchan_get_all_descriptors(&chan->vc, &head);
1206
1207
chan->cyclic = false;
1208
spin_unlock_irqrestore(&chan->vc.lock, flags);
1209
1210
vchan_dma_desc_free_list(&chan->vc, &head);
1211
1212
dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan));
1213
1214
return 0;
1215
}
1216
1217
static int dma_chan_pause(struct dma_chan *dchan)
1218
{
1219
struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1220
unsigned long flags;
1221
unsigned int timeout = 20; /* timeout iterations */
1222
u64 val;
1223
1224
spin_lock_irqsave(&chan->vc.lock, flags);
1225
1226
if (chan->chip->dw->hdata->nr_channels >= DMAC_CHAN_16) {
1227
val = axi_dma_ioread64(chan->chip, DMAC_CHSUSPREG);
1228
if (chan->id >= DMAC_CHAN_16) {
1229
val |= (u64)(BIT(chan->id) >> DMAC_CHAN_16)
1230
<< (DMAC_CHAN_SUSP2_SHIFT + DMAC_CHAN_BLOCK_SHIFT) |
1231
(u64)(BIT(chan->id) >> DMAC_CHAN_16)
1232
<< (DMAC_CHAN_SUSP2_WE_SHIFT + DMAC_CHAN_BLOCK_SHIFT);
1233
} else {
1234
val |= BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT |
1235
BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT;
1236
}
1237
axi_dma_iowrite64(chan->chip, DMAC_CHSUSPREG, val);
1238
} else {
1239
if (chan->chip->dw->hdata->reg_map_8_channels) {
1240
val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1241
val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT |
1242
BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT;
1243
axi_dma_iowrite32(chan->chip, DMAC_CHEN, (u32)val);
1244
} else {
1245
val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG);
1246
val |= BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT |
1247
BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT;
1248
axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, (u32)val);
1249
}
1250
}
1251
1252
do {
1253
if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED)
1254
break;
1255
1256
udelay(2);
1257
} while (--timeout);
1258
1259
axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED);
1260
1261
chan->is_paused = true;
1262
1263
spin_unlock_irqrestore(&chan->vc.lock, flags);
1264
1265
return timeout ? 0 : -EAGAIN;
1266
}
1267
1268
/* Called in chan locked context */
1269
static inline void axi_chan_resume(struct axi_dma_chan *chan)
1270
{
1271
u64 val;
1272
1273
if (chan->chip->dw->hdata->nr_channels >= DMAC_CHAN_16) {
1274
val = axi_dma_ioread64(chan->chip, DMAC_CHSUSPREG);
1275
if (chan->id >= DMAC_CHAN_16) {
1276
val &= ~((u64)(BIT(chan->id) >> DMAC_CHAN_16)
1277
<< (DMAC_CHAN_SUSP2_SHIFT + DMAC_CHAN_BLOCK_SHIFT));
1278
val |= ((u64)(BIT(chan->id) >> DMAC_CHAN_16)
1279
<< (DMAC_CHAN_SUSP2_WE_SHIFT + DMAC_CHAN_BLOCK_SHIFT));
1280
} else {
1281
val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT);
1282
val |= (BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT);
1283
}
1284
axi_dma_iowrite64(chan->chip, DMAC_CHSUSPREG, val);
1285
} else {
1286
if (chan->chip->dw->hdata->reg_map_8_channels) {
1287
val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1288
val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT);
1289
val |= (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT);
1290
axi_dma_iowrite32(chan->chip, DMAC_CHEN, (u32)val);
1291
} else {
1292
val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG);
1293
val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT);
1294
val |= (BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT);
1295
axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, (u32)val);
1296
}
1297
}
1298
1299
chan->is_paused = false;
1300
}
1301
1302
static int dma_chan_resume(struct dma_chan *dchan)
1303
{
1304
struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1305
unsigned long flags;
1306
1307
spin_lock_irqsave(&chan->vc.lock, flags);
1308
1309
if (chan->is_paused)
1310
axi_chan_resume(chan);
1311
1312
spin_unlock_irqrestore(&chan->vc.lock, flags);
1313
1314
return 0;
1315
}
1316
1317
static int axi_dma_suspend(struct axi_dma_chip *chip)
1318
{
1319
axi_dma_irq_disable(chip);
1320
axi_dma_disable(chip);
1321
1322
clk_disable_unprepare(chip->core_clk);
1323
clk_disable_unprepare(chip->cfgr_clk);
1324
1325
return 0;
1326
}
1327
1328
static int axi_dma_resume(struct axi_dma_chip *chip)
1329
{
1330
int ret;
1331
1332
ret = clk_prepare_enable(chip->cfgr_clk);
1333
if (ret < 0)
1334
return ret;
1335
1336
ret = clk_prepare_enable(chip->core_clk);
1337
if (ret < 0)
1338
return ret;
1339
1340
axi_dma_enable(chip);
1341
axi_dma_irq_enable(chip);
1342
1343
return 0;
1344
}
1345
1346
static int __maybe_unused axi_dma_runtime_suspend(struct device *dev)
1347
{
1348
struct axi_dma_chip *chip = dev_get_drvdata(dev);
1349
1350
return axi_dma_suspend(chip);
1351
}
1352
1353
static int __maybe_unused axi_dma_runtime_resume(struct device *dev)
1354
{
1355
struct axi_dma_chip *chip = dev_get_drvdata(dev);
1356
1357
return axi_dma_resume(chip);
1358
}
1359
1360
static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec,
1361
struct of_dma *ofdma)
1362
{
1363
struct dw_axi_dma *dw = ofdma->of_dma_data;
1364
struct axi_dma_chan *chan;
1365
struct dma_chan *dchan;
1366
1367
dchan = dma_get_any_slave_channel(&dw->dma);
1368
if (!dchan)
1369
return NULL;
1370
1371
chan = dchan_to_axi_dma_chan(dchan);
1372
chan->hw_handshake_num = dma_spec->args[0];
1373
return dchan;
1374
}
1375
1376
static int parse_device_properties(struct axi_dma_chip *chip)
1377
{
1378
struct device *dev = chip->dev;
1379
u32 tmp, carr[DMAC_MAX_CHANNELS];
1380
int ret;
1381
1382
ret = device_property_read_u32(dev, "dma-channels", &tmp);
1383
if (ret)
1384
return ret;
1385
if (tmp == 0 || tmp > DMAC_MAX_CHANNELS)
1386
return -EINVAL;
1387
1388
chip->dw->hdata->nr_channels = tmp;
1389
if (tmp <= DMA_REG_MAP_CH_REF)
1390
chip->dw->hdata->reg_map_8_channels = true;
1391
1392
ret = device_property_read_u32(dev, "snps,dma-masters", &tmp);
1393
if (ret)
1394
return ret;
1395
if (tmp == 0 || tmp > DMAC_MAX_MASTERS)
1396
return -EINVAL;
1397
1398
chip->dw->hdata->nr_masters = tmp;
1399
1400
ret = device_property_read_u32(dev, "snps,data-width", &tmp);
1401
if (ret)
1402
return ret;
1403
if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX)
1404
return -EINVAL;
1405
1406
chip->dw->hdata->m_data_width = tmp;
1407
1408
ret = device_property_read_u32_array(dev, "snps,block-size", carr,
1409
chip->dw->hdata->nr_channels);
1410
if (ret)
1411
return ret;
1412
for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1413
if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE)
1414
return -EINVAL;
1415
1416
chip->dw->hdata->block_size[tmp] = carr[tmp];
1417
}
1418
1419
ret = device_property_read_u32_array(dev, "snps,priority", carr,
1420
chip->dw->hdata->nr_channels);
1421
if (ret)
1422
return ret;
1423
/* Priority value must be programmed within [0:nr_channels-1] range */
1424
for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1425
if (carr[tmp] >= chip->dw->hdata->nr_channels)
1426
return -EINVAL;
1427
1428
chip->dw->hdata->priority[tmp] = carr[tmp];
1429
}
1430
1431
/* axi-max-burst-len is optional property */
1432
ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp);
1433
if (!ret) {
1434
if (tmp > DWAXIDMAC_ARWLEN_MAX + 1)
1435
return -EINVAL;
1436
if (tmp < DWAXIDMAC_ARWLEN_MIN + 1)
1437
return -EINVAL;
1438
1439
chip->dw->hdata->restrict_axi_burst_len = true;
1440
chip->dw->hdata->axi_rw_burst_len = tmp;
1441
}
1442
1443
return 0;
1444
}
1445
1446
static int axi_req_irqs(struct platform_device *pdev, struct axi_dma_chip *chip)
1447
{
1448
int irq_count = platform_irq_count(pdev);
1449
int ret;
1450
1451
for (int i = 0; i < irq_count; i++) {
1452
chip->irq[i] = platform_get_irq(pdev, i);
1453
if (chip->irq[i] < 0)
1454
return chip->irq[i];
1455
ret = devm_request_irq(chip->dev, chip->irq[i], dw_axi_dma_interrupt,
1456
IRQF_SHARED, KBUILD_MODNAME, chip);
1457
if (ret < 0)
1458
return ret;
1459
}
1460
1461
return 0;
1462
}
1463
1464
static int dw_probe(struct platform_device *pdev)
1465
{
1466
struct axi_dma_chip *chip;
1467
struct dw_axi_dma *dw;
1468
struct dw_axi_dma_hcfg *hdata;
1469
struct reset_control *resets;
1470
unsigned int flags;
1471
u32 i;
1472
int ret;
1473
1474
chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
1475
if (!chip)
1476
return -ENOMEM;
1477
1478
dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
1479
if (!dw)
1480
return -ENOMEM;
1481
1482
hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL);
1483
if (!hdata)
1484
return -ENOMEM;
1485
1486
chip->dw = dw;
1487
chip->dev = &pdev->dev;
1488
chip->dw->hdata = hdata;
1489
1490
chip->regs = devm_platform_ioremap_resource(pdev, 0);
1491
if (IS_ERR(chip->regs))
1492
return PTR_ERR(chip->regs);
1493
1494
flags = (uintptr_t)of_device_get_match_data(&pdev->dev);
1495
if (flags & AXI_DMA_FLAG_HAS_APB_REGS) {
1496
chip->apb_regs = devm_platform_ioremap_resource(pdev, 1);
1497
if (IS_ERR(chip->apb_regs))
1498
return PTR_ERR(chip->apb_regs);
1499
}
1500
1501
if (flags & AXI_DMA_FLAG_HAS_RESETS) {
1502
resets = devm_reset_control_array_get_exclusive(&pdev->dev);
1503
if (IS_ERR(resets))
1504
return PTR_ERR(resets);
1505
1506
ret = reset_control_deassert(resets);
1507
if (ret)
1508
return ret;
1509
}
1510
1511
chip->dw->hdata->use_cfg2 = !!(flags & AXI_DMA_FLAG_USE_CFG2);
1512
1513
chip->core_clk = devm_clk_get(chip->dev, "core-clk");
1514
if (IS_ERR(chip->core_clk))
1515
return PTR_ERR(chip->core_clk);
1516
1517
chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk");
1518
if (IS_ERR(chip->cfgr_clk))
1519
return PTR_ERR(chip->cfgr_clk);
1520
1521
ret = parse_device_properties(chip);
1522
if (ret)
1523
return ret;
1524
1525
dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels,
1526
sizeof(*dw->chan), GFP_KERNEL);
1527
if (!dw->chan)
1528
return -ENOMEM;
1529
1530
ret = axi_req_irqs(pdev, chip);
1531
if (ret)
1532
return ret;
1533
1534
INIT_LIST_HEAD(&dw->dma.channels);
1535
for (i = 0; i < hdata->nr_channels; i++) {
1536
struct axi_dma_chan *chan = &dw->chan[i];
1537
1538
chan->chip = chip;
1539
chan->id = i;
1540
chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN;
1541
atomic_set(&chan->descs_allocated, 0);
1542
1543
chan->vc.desc_free = vchan_desc_put;
1544
vchan_init(&chan->vc, &dw->dma);
1545
}
1546
1547
/* Set capabilities */
1548
dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
1549
dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
1550
dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask);
1551
1552
/* DMA capabilities */
1553
dw->dma.max_burst = hdata->axi_rw_burst_len;
1554
dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS;
1555
dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS;
1556
dw->dma.directions = BIT(DMA_MEM_TO_MEM);
1557
dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1558
dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1559
1560
dw->dma.dev = chip->dev;
1561
dw->dma.device_tx_status = dma_chan_tx_status;
1562
dw->dma.device_issue_pending = dma_chan_issue_pending;
1563
dw->dma.device_terminate_all = dma_chan_terminate_all;
1564
dw->dma.device_pause = dma_chan_pause;
1565
dw->dma.device_resume = dma_chan_resume;
1566
1567
dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources;
1568
dw->dma.device_free_chan_resources = dma_chan_free_chan_resources;
1569
1570
dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy;
1571
dw->dma.device_synchronize = dw_axi_dma_synchronize;
1572
dw->dma.device_config = dw_axi_dma_chan_slave_config;
1573
dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg;
1574
dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic;
1575
1576
/*
1577
* Synopsis DesignWare AxiDMA datasheet mentioned Maximum
1578
* supported blocks is 1024. Device register width is 4 bytes.
1579
* Therefore, set constraint to 1024 * 4.
1580
*/
1581
dw->dma.dev->dma_parms = &dw->dma_parms;
1582
dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE);
1583
platform_set_drvdata(pdev, chip);
1584
1585
pm_runtime_enable(chip->dev);
1586
1587
/*
1588
* We can't just call pm_runtime_get here instead of
1589
* pm_runtime_get_noresume + axi_dma_resume because we need
1590
* driver to work also without Runtime PM.
1591
*/
1592
pm_runtime_get_noresume(chip->dev);
1593
ret = axi_dma_resume(chip);
1594
if (ret < 0)
1595
goto err_pm_disable;
1596
1597
axi_dma_hw_init(chip);
1598
1599
pm_runtime_put(chip->dev);
1600
1601
ret = dmaenginem_async_device_register(&dw->dma);
1602
if (ret)
1603
goto err_pm_disable;
1604
1605
/* Register with OF helpers for DMA lookups */
1606
ret = of_dma_controller_register(pdev->dev.of_node,
1607
dw_axi_dma_of_xlate, dw);
1608
if (ret < 0)
1609
dev_warn(&pdev->dev,
1610
"Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n");
1611
1612
dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n",
1613
dw->hdata->nr_channels);
1614
1615
return 0;
1616
1617
err_pm_disable:
1618
pm_runtime_disable(chip->dev);
1619
1620
return ret;
1621
}
1622
1623
static void dw_remove(struct platform_device *pdev)
1624
{
1625
struct axi_dma_chip *chip = platform_get_drvdata(pdev);
1626
struct dw_axi_dma *dw = chip->dw;
1627
struct axi_dma_chan *chan, *_chan;
1628
u32 i;
1629
1630
/* Enable clk before accessing to registers */
1631
clk_prepare_enable(chip->cfgr_clk);
1632
clk_prepare_enable(chip->core_clk);
1633
axi_dma_irq_disable(chip);
1634
for (i = 0; i < dw->hdata->nr_channels; i++) {
1635
axi_chan_disable(&chip->dw->chan[i]);
1636
axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
1637
}
1638
axi_dma_disable(chip);
1639
1640
pm_runtime_disable(chip->dev);
1641
axi_dma_suspend(chip);
1642
1643
for (i = 0; i < DMAC_MAX_CHANNELS; i++)
1644
if (chip->irq[i] > 0)
1645
devm_free_irq(chip->dev, chip->irq[i], chip);
1646
1647
of_dma_controller_free(chip->dev->of_node);
1648
1649
list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1650
vc.chan.device_node) {
1651
list_del(&chan->vc.chan.device_node);
1652
tasklet_kill(&chan->vc.task);
1653
}
1654
}
1655
1656
static const struct dev_pm_ops dw_axi_dma_pm_ops = {
1657
SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL)
1658
};
1659
1660
static const struct of_device_id dw_dma_of_id_table[] = {
1661
{
1662
.compatible = "snps,axi-dma-1.01a"
1663
}, {
1664
.compatible = "intel,kmb-axi-dma",
1665
.data = (void *)AXI_DMA_FLAG_HAS_APB_REGS,
1666
}, {
1667
.compatible = "starfive,jh7110-axi-dma",
1668
.data = (void *)(AXI_DMA_FLAG_HAS_RESETS | AXI_DMA_FLAG_USE_CFG2),
1669
}, {
1670
.compatible = "starfive,jh8100-axi-dma",
1671
.data = (void *)AXI_DMA_FLAG_HAS_RESETS,
1672
},
1673
{}
1674
};
1675
MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
1676
1677
static struct platform_driver dw_driver = {
1678
.probe = dw_probe,
1679
.remove = dw_remove,
1680
.driver = {
1681
.name = KBUILD_MODNAME,
1682
.of_match_table = dw_dma_of_id_table,
1683
.pm = &dw_axi_dma_pm_ops,
1684
},
1685
};
1686
module_platform_driver(dw_driver);
1687
1688
MODULE_LICENSE("GPL v2");
1689
MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver");
1690
MODULE_AUTHOR("Eugeniy Paltsev <[email protected]>");
1691
1692