Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/dma/fsl_raid.c
26278 views
1
/*
2
* drivers/dma/fsl_raid.c
3
*
4
* Freescale RAID Engine device driver
5
*
6
* Author:
7
* Harninder Rai <[email protected]>
8
* Naveen Burmi <[email protected]>
9
*
10
* Rewrite:
11
* Xuelin Shi <[email protected]>
12
*
13
* Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
14
*
15
* Redistribution and use in source and binary forms, with or without
16
* modification, are permitted provided that the following conditions are met:
17
* * Redistributions of source code must retain the above copyright
18
* notice, this list of conditions and the following disclaimer.
19
* * Redistributions in binary form must reproduce the above copyright
20
* notice, this list of conditions and the following disclaimer in the
21
* documentation and/or other materials provided with the distribution.
22
* * Neither the name of Freescale Semiconductor nor the
23
* names of its contributors may be used to endorse or promote products
24
* derived from this software without specific prior written permission.
25
*
26
* ALTERNATIVELY, this software may be distributed under the terms of the
27
* GNU General Public License ("GPL") as published by the Free Software
28
* Foundation, either version 2 of that License or (at your option) any
29
* later version.
30
*
31
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
32
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
33
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
34
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
35
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
36
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
38
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
40
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41
*
42
* Theory of operation:
43
*
44
* General capabilities:
45
* RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
46
* calculations required in RAID5 and RAID6 operations. RE driver
47
* registers with Linux's ASYNC layer as dma driver. RE hardware
48
* maintains strict ordering of the requests through chained
49
* command queueing.
50
*
51
* Data flow:
52
* Software RAID layer of Linux (MD layer) maintains RAID partitions,
53
* strips, stripes etc. It sends requests to the underlying ASYNC layer
54
* which further passes it to RE driver. ASYNC layer decides which request
55
* goes to which job ring of RE hardware. For every request processed by
56
* RAID Engine, driver gets an interrupt unless coalescing is set. The
57
* per job ring interrupt handler checks the status register for errors,
58
* clears the interrupt and leave the post interrupt processing to the irq
59
* thread.
60
*/
61
#include <linux/interrupt.h>
62
#include <linux/module.h>
63
#include <linux/of.h>
64
#include <linux/of_irq.h>
65
#include <linux/of_platform.h>
66
#include <linux/platform_device.h>
67
#include <linux/dma-mapping.h>
68
#include <linux/dmapool.h>
69
#include <linux/dmaengine.h>
70
#include <linux/io.h>
71
#include <linux/spinlock.h>
72
#include <linux/slab.h>
73
74
#include "dmaengine.h"
75
#include "fsl_raid.h"
76
77
#define FSL_RE_MAX_XOR_SRCS 16
78
#define FSL_RE_MAX_PQ_SRCS 16
79
#define FSL_RE_MIN_DESCS 256
80
#define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS)
81
#define FSL_RE_FRAME_FORMAT 0x1
82
#define FSL_RE_MAX_DATA_LEN (1024*1024)
83
84
#define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx)
85
86
/* Add descriptors into per chan software queue - submit_q */
87
static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx)
88
{
89
struct fsl_re_desc *desc;
90
struct fsl_re_chan *re_chan;
91
dma_cookie_t cookie;
92
unsigned long flags;
93
94
desc = to_fsl_re_dma_desc(tx);
95
re_chan = container_of(tx->chan, struct fsl_re_chan, chan);
96
97
spin_lock_irqsave(&re_chan->desc_lock, flags);
98
cookie = dma_cookie_assign(tx);
99
list_add_tail(&desc->node, &re_chan->submit_q);
100
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
101
102
return cookie;
103
}
104
105
/* Copy descriptor from per chan software queue into hardware job ring */
106
static void fsl_re_issue_pending(struct dma_chan *chan)
107
{
108
struct fsl_re_chan *re_chan;
109
int avail;
110
struct fsl_re_desc *desc, *_desc;
111
unsigned long flags;
112
113
re_chan = container_of(chan, struct fsl_re_chan, chan);
114
115
spin_lock_irqsave(&re_chan->desc_lock, flags);
116
avail = FSL_RE_SLOT_AVAIL(
117
in_be32(&re_chan->jrregs->inbring_slot_avail));
118
119
list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) {
120
if (!avail)
121
break;
122
123
list_move_tail(&desc->node, &re_chan->active_q);
124
125
memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count],
126
&desc->hwdesc, sizeof(struct fsl_re_hw_desc));
127
128
re_chan->inb_count = (re_chan->inb_count + 1) &
129
FSL_RE_RING_SIZE_MASK;
130
out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1));
131
avail--;
132
}
133
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
134
}
135
136
static void fsl_re_desc_done(struct fsl_re_desc *desc)
137
{
138
dma_cookie_complete(&desc->async_tx);
139
dma_descriptor_unmap(&desc->async_tx);
140
dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
141
}
142
143
static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan)
144
{
145
struct fsl_re_desc *desc, *_desc;
146
unsigned long flags;
147
148
spin_lock_irqsave(&re_chan->desc_lock, flags);
149
list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) {
150
if (async_tx_test_ack(&desc->async_tx))
151
list_move_tail(&desc->node, &re_chan->free_q);
152
}
153
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
154
155
fsl_re_issue_pending(&re_chan->chan);
156
}
157
158
static void fsl_re_dequeue(struct tasklet_struct *t)
159
{
160
struct fsl_re_chan *re_chan = from_tasklet(re_chan, t, irqtask);
161
struct fsl_re_desc *desc, *_desc;
162
struct fsl_re_hw_desc *hwdesc;
163
unsigned long flags;
164
unsigned int count, oub_count;
165
int found;
166
167
fsl_re_cleanup_descs(re_chan);
168
169
spin_lock_irqsave(&re_chan->desc_lock, flags);
170
count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full));
171
while (count--) {
172
found = 0;
173
hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count];
174
list_for_each_entry_safe(desc, _desc, &re_chan->active_q,
175
node) {
176
/* compare the hw dma addr to find the completed */
177
if (desc->hwdesc.lbea32 == hwdesc->lbea32 &&
178
desc->hwdesc.addr_low == hwdesc->addr_low) {
179
found = 1;
180
break;
181
}
182
}
183
184
if (found) {
185
fsl_re_desc_done(desc);
186
list_move_tail(&desc->node, &re_chan->ack_q);
187
} else {
188
dev_err(re_chan->dev,
189
"found hwdesc not in sw queue, discard it\n");
190
}
191
192
oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK;
193
re_chan->oub_count = oub_count;
194
195
out_be32(&re_chan->jrregs->oubring_job_rmvd,
196
FSL_RE_RMVD_JOB(1));
197
}
198
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
199
}
200
201
/* Per Job Ring interrupt handler */
202
static irqreturn_t fsl_re_isr(int irq, void *data)
203
{
204
struct fsl_re_chan *re_chan;
205
u32 irqstate, status;
206
207
re_chan = dev_get_drvdata((struct device *)data);
208
209
irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status);
210
if (!irqstate)
211
return IRQ_NONE;
212
213
/*
214
* There's no way in upper layer (read MD layer) to recover from
215
* error conditions except restart everything. In long term we
216
* need to do something more than just crashing
217
*/
218
if (irqstate & FSL_RE_ERROR) {
219
status = in_be32(&re_chan->jrregs->jr_status);
220
dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n",
221
irqstate, status);
222
}
223
224
/* Clear interrupt */
225
out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR);
226
227
tasklet_schedule(&re_chan->irqtask);
228
229
return IRQ_HANDLED;
230
}
231
232
static enum dma_status fsl_re_tx_status(struct dma_chan *chan,
233
dma_cookie_t cookie,
234
struct dma_tx_state *txstate)
235
{
236
return dma_cookie_status(chan, cookie, txstate);
237
}
238
239
static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index,
240
size_t length, dma_addr_t addr, bool final)
241
{
242
u32 efrl = length & FSL_RE_CF_LENGTH_MASK;
243
244
efrl |= final << FSL_RE_CF_FINAL_SHIFT;
245
cf[index].efrl32 = efrl;
246
cf[index].addr_high = upper_32_bits(addr);
247
cf[index].addr_low = lower_32_bits(addr);
248
}
249
250
static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan,
251
struct fsl_re_desc *desc,
252
void *cf, dma_addr_t paddr)
253
{
254
desc->re_chan = re_chan;
255
desc->async_tx.tx_submit = fsl_re_tx_submit;
256
dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan);
257
INIT_LIST_HEAD(&desc->node);
258
259
desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT;
260
desc->hwdesc.lbea32 = upper_32_bits(paddr);
261
desc->hwdesc.addr_low = lower_32_bits(paddr);
262
desc->cf_addr = cf;
263
desc->cf_paddr = paddr;
264
265
desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE);
266
desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE;
267
268
return desc;
269
}
270
271
static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan,
272
unsigned long flags)
273
{
274
struct fsl_re_desc *desc = NULL;
275
void *cf;
276
dma_addr_t paddr;
277
unsigned long lock_flag;
278
279
fsl_re_cleanup_descs(re_chan);
280
281
spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
282
if (!list_empty(&re_chan->free_q)) {
283
/* take one desc from free_q */
284
desc = list_first_entry(&re_chan->free_q,
285
struct fsl_re_desc, node);
286
list_del(&desc->node);
287
288
desc->async_tx.flags = flags;
289
}
290
spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
291
292
if (!desc) {
293
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
294
if (!desc)
295
return NULL;
296
297
cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT,
298
&paddr);
299
if (!cf) {
300
kfree(desc);
301
return NULL;
302
}
303
304
desc = fsl_re_init_desc(re_chan, desc, cf, paddr);
305
desc->async_tx.flags = flags;
306
307
spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
308
re_chan->alloc_count++;
309
spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
310
}
311
312
return desc;
313
}
314
315
static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq(
316
struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
317
unsigned int src_cnt, const unsigned char *scf, size_t len,
318
unsigned long flags)
319
{
320
struct fsl_re_chan *re_chan;
321
struct fsl_re_desc *desc;
322
struct fsl_re_xor_cdb *xor;
323
struct fsl_re_cmpnd_frame *cf;
324
u32 cdb;
325
unsigned int i, j;
326
unsigned int save_src_cnt = src_cnt;
327
int cont_q = 0;
328
329
re_chan = container_of(chan, struct fsl_re_chan, chan);
330
if (len > FSL_RE_MAX_DATA_LEN) {
331
dev_err(re_chan->dev, "genq tx length %zu, max length %d\n",
332
len, FSL_RE_MAX_DATA_LEN);
333
return NULL;
334
}
335
336
desc = fsl_re_chan_alloc_desc(re_chan, flags);
337
if (desc <= 0)
338
return NULL;
339
340
if (scf && (flags & DMA_PREP_CONTINUE)) {
341
cont_q = 1;
342
src_cnt += 1;
343
}
344
345
/* Filling xor CDB */
346
cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
347
cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
348
cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
349
cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
350
cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
351
xor = desc->cdb_addr;
352
xor->cdb32 = cdb;
353
354
if (scf) {
355
/* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
356
for (i = 0; i < save_src_cnt; i++)
357
xor->gfm[i] = scf[i];
358
if (cont_q)
359
xor->gfm[i++] = 1;
360
} else {
361
/* compute P, that is XOR all srcs */
362
for (i = 0; i < src_cnt; i++)
363
xor->gfm[i] = 1;
364
}
365
366
/* Filling frame 0 of compound frame descriptor with CDB */
367
cf = desc->cf_addr;
368
fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0);
369
370
/* Fill CFD's 1st frame with dest buffer */
371
fill_cfd_frame(cf, 1, len, dest, 0);
372
373
/* Fill CFD's rest of the frames with source buffers */
374
for (i = 2, j = 0; j < save_src_cnt; i++, j++)
375
fill_cfd_frame(cf, i, len, src[j], 0);
376
377
if (cont_q)
378
fill_cfd_frame(cf, i++, len, dest, 0);
379
380
/* Setting the final bit in the last source buffer frame in CFD */
381
cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
382
383
return &desc->async_tx;
384
}
385
386
/*
387
* Prep function for P parity calculation.In RAID Engine terminology,
388
* XOR calculation is called GenQ calculation done through GenQ command
389
*/
390
static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor(
391
struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
392
unsigned int src_cnt, size_t len, unsigned long flags)
393
{
394
/* NULL let genq take all coef as 1 */
395
return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags);
396
}
397
398
/*
399
* Prep function for P/Q parity calculation.In RAID Engine terminology,
400
* P/Q calculation is called GenQQ done through GenQQ command
401
*/
402
static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq(
403
struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
404
unsigned int src_cnt, const unsigned char *scf, size_t len,
405
unsigned long flags)
406
{
407
struct fsl_re_chan *re_chan;
408
struct fsl_re_desc *desc;
409
struct fsl_re_pq_cdb *pq;
410
struct fsl_re_cmpnd_frame *cf;
411
u32 cdb;
412
u8 *p;
413
int gfmq_len, i, j;
414
unsigned int save_src_cnt = src_cnt;
415
416
re_chan = container_of(chan, struct fsl_re_chan, chan);
417
if (len > FSL_RE_MAX_DATA_LEN) {
418
dev_err(re_chan->dev, "pq tx length is %zu, max length is %d\n",
419
len, FSL_RE_MAX_DATA_LEN);
420
return NULL;
421
}
422
423
/*
424
* RE requires at least 2 sources, if given only one source, we pass the
425
* second source same as the first one.
426
* With only one source, generating P is meaningless, only generate Q.
427
*/
428
if (src_cnt == 1) {
429
struct dma_async_tx_descriptor *tx;
430
dma_addr_t dma_src[2];
431
unsigned char coef[2];
432
433
dma_src[0] = *src;
434
coef[0] = *scf;
435
dma_src[1] = *src;
436
coef[1] = 0;
437
tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len,
438
flags);
439
if (tx)
440
desc = to_fsl_re_dma_desc(tx);
441
442
return tx;
443
}
444
445
/*
446
* During RAID6 array creation, Linux's MD layer gets P and Q
447
* calculated separately in two steps. But our RAID Engine has
448
* the capability to calculate both P and Q with a single command
449
* Hence to merge well with MD layer, we need to provide a hook
450
* here and call re_jq_prep_dma_genq() function
451
*/
452
453
if (flags & DMA_PREP_PQ_DISABLE_P)
454
return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt,
455
scf, len, flags);
456
457
if (flags & DMA_PREP_CONTINUE)
458
src_cnt += 3;
459
460
desc = fsl_re_chan_alloc_desc(re_chan, flags);
461
if (desc <= 0)
462
return NULL;
463
464
/* Filling GenQQ CDB */
465
cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
466
cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
467
cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
468
cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT;
469
cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
470
471
pq = desc->cdb_addr;
472
pq->cdb32 = cdb;
473
474
p = pq->gfm_q1;
475
/* Init gfm_q1[] */
476
for (i = 0; i < src_cnt; i++)
477
p[i] = 1;
478
479
/* Align gfm[] to 32bit */
480
gfmq_len = ALIGN(src_cnt, 4);
481
482
/* Init gfm_q2[] */
483
p += gfmq_len;
484
for (i = 0; i < src_cnt; i++)
485
p[i] = scf[i];
486
487
/* Filling frame 0 of compound frame descriptor with CDB */
488
cf = desc->cf_addr;
489
fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0);
490
491
/* Fill CFD's 1st & 2nd frame with dest buffers */
492
for (i = 1, j = 0; i < 3; i++, j++)
493
fill_cfd_frame(cf, i, len, dest[j], 0);
494
495
/* Fill CFD's rest of the frames with source buffers */
496
for (i = 3, j = 0; j < save_src_cnt; i++, j++)
497
fill_cfd_frame(cf, i, len, src[j], 0);
498
499
/* PQ computation continuation */
500
if (flags & DMA_PREP_CONTINUE) {
501
if (src_cnt - save_src_cnt == 3) {
502
p[save_src_cnt] = 0;
503
p[save_src_cnt + 1] = 0;
504
p[save_src_cnt + 2] = 1;
505
fill_cfd_frame(cf, i++, len, dest[0], 0);
506
fill_cfd_frame(cf, i++, len, dest[1], 0);
507
fill_cfd_frame(cf, i++, len, dest[1], 0);
508
} else {
509
dev_err(re_chan->dev, "PQ tx continuation error!\n");
510
return NULL;
511
}
512
}
513
514
/* Setting the final bit in the last source buffer frame in CFD */
515
cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
516
517
return &desc->async_tx;
518
}
519
520
/*
521
* Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
522
* command. Logic of this function will need to be modified once multipage
523
* support is added in Linux's MD/ASYNC Layer
524
*/
525
static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy(
526
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
527
size_t len, unsigned long flags)
528
{
529
struct fsl_re_chan *re_chan;
530
struct fsl_re_desc *desc;
531
size_t length;
532
struct fsl_re_cmpnd_frame *cf;
533
struct fsl_re_move_cdb *move;
534
u32 cdb;
535
536
re_chan = container_of(chan, struct fsl_re_chan, chan);
537
538
if (len > FSL_RE_MAX_DATA_LEN) {
539
dev_err(re_chan->dev, "cp tx length is %zu, max length is %d\n",
540
len, FSL_RE_MAX_DATA_LEN);
541
return NULL;
542
}
543
544
desc = fsl_re_chan_alloc_desc(re_chan, flags);
545
if (desc <= 0)
546
return NULL;
547
548
/* Filling move CDB */
549
cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
550
cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
551
cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
552
cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
553
554
move = desc->cdb_addr;
555
move->cdb32 = cdb;
556
557
/* Filling frame 0 of CFD with move CDB */
558
cf = desc->cf_addr;
559
fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0);
560
561
length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN);
562
563
/* Fill CFD's 1st frame with dest buffer */
564
fill_cfd_frame(cf, 1, length, dest, 0);
565
566
/* Fill CFD's 2nd frame with src buffer */
567
fill_cfd_frame(cf, 2, length, src, 1);
568
569
return &desc->async_tx;
570
}
571
572
static int fsl_re_alloc_chan_resources(struct dma_chan *chan)
573
{
574
struct fsl_re_chan *re_chan;
575
struct fsl_re_desc *desc;
576
void *cf;
577
dma_addr_t paddr;
578
int i;
579
580
re_chan = container_of(chan, struct fsl_re_chan, chan);
581
for (i = 0; i < FSL_RE_MIN_DESCS; i++) {
582
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
583
if (!desc)
584
break;
585
586
cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL,
587
&paddr);
588
if (!cf) {
589
kfree(desc);
590
break;
591
}
592
593
INIT_LIST_HEAD(&desc->node);
594
fsl_re_init_desc(re_chan, desc, cf, paddr);
595
596
list_add_tail(&desc->node, &re_chan->free_q);
597
re_chan->alloc_count++;
598
}
599
return re_chan->alloc_count;
600
}
601
602
static void fsl_re_free_chan_resources(struct dma_chan *chan)
603
{
604
struct fsl_re_chan *re_chan;
605
struct fsl_re_desc *desc;
606
607
re_chan = container_of(chan, struct fsl_re_chan, chan);
608
while (re_chan->alloc_count--) {
609
desc = list_first_entry(&re_chan->free_q,
610
struct fsl_re_desc,
611
node);
612
613
list_del(&desc->node);
614
dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr,
615
desc->cf_paddr);
616
kfree(desc);
617
}
618
619
if (!list_empty(&re_chan->free_q))
620
dev_err(re_chan->dev, "chan resource cannot be cleaned!\n");
621
}
622
623
static int fsl_re_chan_probe(struct platform_device *ofdev,
624
struct device_node *np, u8 q, u32 off)
625
{
626
struct device *dev, *chandev;
627
struct fsl_re_drv_private *re_priv;
628
struct fsl_re_chan *chan;
629
struct dma_device *dma_dev;
630
u32 ptr;
631
u32 status;
632
int ret = 0, rc;
633
struct platform_device *chan_ofdev;
634
635
dev = &ofdev->dev;
636
re_priv = dev_get_drvdata(dev);
637
dma_dev = &re_priv->dma_dev;
638
639
chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
640
if (!chan)
641
return -ENOMEM;
642
643
/* create platform device for chan node */
644
chan_ofdev = of_platform_device_create(np, NULL, dev);
645
if (!chan_ofdev) {
646
dev_err(dev, "Not able to create ofdev for jr %d\n", q);
647
ret = -EINVAL;
648
goto err_free;
649
}
650
651
/* read reg property from dts */
652
rc = of_property_read_u32(np, "reg", &ptr);
653
if (rc) {
654
dev_err(dev, "Reg property not found in jr %d\n", q);
655
ret = -ENODEV;
656
goto err_free;
657
}
658
659
chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs +
660
off + ptr);
661
662
/* read irq property from dts */
663
chan->irq = irq_of_parse_and_map(np, 0);
664
if (!chan->irq) {
665
dev_err(dev, "No IRQ defined for JR %d\n", q);
666
ret = -ENODEV;
667
goto err_free;
668
}
669
670
snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q);
671
672
chandev = &chan_ofdev->dev;
673
tasklet_setup(&chan->irqtask, fsl_re_dequeue);
674
675
ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev);
676
if (ret) {
677
dev_err(dev, "Unable to register interrupt for JR %d\n", q);
678
ret = -EINVAL;
679
goto err_free;
680
}
681
682
re_priv->re_jrs[q] = chan;
683
chan->chan.device = dma_dev;
684
chan->chan.private = chan;
685
chan->dev = chandev;
686
chan->re_dev = re_priv;
687
688
spin_lock_init(&chan->desc_lock);
689
INIT_LIST_HEAD(&chan->ack_q);
690
INIT_LIST_HEAD(&chan->active_q);
691
INIT_LIST_HEAD(&chan->submit_q);
692
INIT_LIST_HEAD(&chan->free_q);
693
694
chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
695
GFP_KERNEL, &chan->inb_phys_addr);
696
if (!chan->inb_ring_virt_addr) {
697
dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
698
ret = -ENOMEM;
699
goto err_free;
700
}
701
702
chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
703
GFP_KERNEL, &chan->oub_phys_addr);
704
if (!chan->oub_ring_virt_addr) {
705
dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
706
ret = -ENOMEM;
707
goto err_free_1;
708
}
709
710
/* Program the Inbound/Outbound ring base addresses and size */
711
out_be32(&chan->jrregs->inbring_base_h,
712
chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK);
713
out_be32(&chan->jrregs->oubring_base_h,
714
chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK);
715
out_be32(&chan->jrregs->inbring_base_l,
716
chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
717
out_be32(&chan->jrregs->oubring_base_l,
718
chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
719
out_be32(&chan->jrregs->inbring_size,
720
FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
721
out_be32(&chan->jrregs->oubring_size,
722
FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
723
724
/* Read LIODN value from u-boot */
725
status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK;
726
727
/* Program the CFG reg */
728
out_be32(&chan->jrregs->jr_config_1,
729
FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status);
730
731
dev_set_drvdata(chandev, chan);
732
733
/* Enable RE/CHAN */
734
out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE);
735
736
return 0;
737
738
err_free_1:
739
dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
740
chan->inb_phys_addr);
741
err_free:
742
return ret;
743
}
744
745
/* Probe function for RAID Engine */
746
static int fsl_re_probe(struct platform_device *ofdev)
747
{
748
struct fsl_re_drv_private *re_priv;
749
struct device_node *np;
750
struct device_node *child;
751
u32 off;
752
u8 ridx = 0;
753
struct dma_device *dma_dev;
754
struct resource *res;
755
int rc;
756
struct device *dev = &ofdev->dev;
757
758
re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL);
759
if (!re_priv)
760
return -ENOMEM;
761
762
res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
763
if (!res)
764
return -ENODEV;
765
766
/* IOMAP the entire RAID Engine region */
767
re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res));
768
if (!re_priv->re_regs)
769
return -EBUSY;
770
771
/* Program the RE mode */
772
out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE);
773
774
/* Program Galois Field polynomial */
775
out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY);
776
777
dev_info(dev, "version %x, mode %x, gfp %x\n",
778
in_be32(&re_priv->re_regs->re_version_id),
779
in_be32(&re_priv->re_regs->global_config),
780
in_be32(&re_priv->re_regs->galois_field_config));
781
782
dma_dev = &re_priv->dma_dev;
783
dma_dev->dev = dev;
784
INIT_LIST_HEAD(&dma_dev->channels);
785
dma_set_mask(dev, DMA_BIT_MASK(40));
786
787
dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources;
788
dma_dev->device_tx_status = fsl_re_tx_status;
789
dma_dev->device_issue_pending = fsl_re_issue_pending;
790
791
dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS;
792
dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor;
793
dma_cap_set(DMA_XOR, dma_dev->cap_mask);
794
795
dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS;
796
dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq;
797
dma_cap_set(DMA_PQ, dma_dev->cap_mask);
798
799
dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy;
800
dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
801
802
dma_dev->device_free_chan_resources = fsl_re_free_chan_resources;
803
804
re_priv->total_chans = 0;
805
806
re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev,
807
FSL_RE_CF_CDB_SIZE,
808
FSL_RE_CF_CDB_ALIGN, 0);
809
810
if (!re_priv->cf_desc_pool) {
811
dev_err(dev, "No memory for fsl re_cf desc pool\n");
812
return -ENOMEM;
813
}
814
815
re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev,
816
sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE,
817
FSL_RE_FRAME_ALIGN, 0);
818
if (!re_priv->hw_desc_pool) {
819
dev_err(dev, "No memory for fsl re_hw desc pool\n");
820
return -ENOMEM;
821
}
822
823
dev_set_drvdata(dev, re_priv);
824
825
/* Parse Device tree to find out the total number of JQs present */
826
for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
827
rc = of_property_read_u32(np, "reg", &off);
828
if (rc) {
829
dev_err(dev, "Reg property not found in JQ node\n");
830
of_node_put(np);
831
return -ENODEV;
832
}
833
/* Find out the Job Rings present under each JQ */
834
for_each_child_of_node(np, child) {
835
rc = of_device_is_compatible(child,
836
"fsl,raideng-v1.0-job-ring");
837
if (rc) {
838
fsl_re_chan_probe(ofdev, child, ridx++, off);
839
re_priv->total_chans++;
840
}
841
}
842
}
843
844
dma_async_device_register(dma_dev);
845
846
return 0;
847
}
848
849
static void fsl_re_remove_chan(struct fsl_re_chan *chan)
850
{
851
tasklet_kill(&chan->irqtask);
852
853
dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
854
chan->inb_phys_addr);
855
856
dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr,
857
chan->oub_phys_addr);
858
}
859
860
static void fsl_re_remove(struct platform_device *ofdev)
861
{
862
struct fsl_re_drv_private *re_priv;
863
struct device *dev;
864
int i;
865
866
dev = &ofdev->dev;
867
re_priv = dev_get_drvdata(dev);
868
869
/* Cleanup chan related memory areas */
870
for (i = 0; i < re_priv->total_chans; i++)
871
fsl_re_remove_chan(re_priv->re_jrs[i]);
872
873
/* Unregister the driver */
874
dma_async_device_unregister(&re_priv->dma_dev);
875
}
876
877
static const struct of_device_id fsl_re_ids[] = {
878
{ .compatible = "fsl,raideng-v1.0", },
879
{}
880
};
881
MODULE_DEVICE_TABLE(of, fsl_re_ids);
882
883
static struct platform_driver fsl_re_driver = {
884
.driver = {
885
.name = "fsl-raideng",
886
.of_match_table = fsl_re_ids,
887
},
888
.probe = fsl_re_probe,
889
.remove = fsl_re_remove,
890
};
891
892
module_platform_driver(fsl_re_driver);
893
894
MODULE_AUTHOR("Harninder Rai <[email protected]>");
895
MODULE_LICENSE("GPL v2");
896
MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");
897
898