Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/dma/fsldma.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Freescale MPC85xx, MPC83xx DMA Engine support
4
*
5
* Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
6
*
7
* Author:
8
* Zhang Wei <[email protected]>, Jul 2007
9
* Ebony Zhu <[email protected]>, May 2007
10
*
11
* Description:
12
* DMA engine driver for Freescale MPC8540 DMA controller, which is
13
* also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
14
* The support for MPC8349 DMA controller is also added.
15
*
16
* This driver instructs the DMA controller to issue the PCI Read Multiple
17
* command for PCI read operations, instead of using the default PCI Read Line
18
* command. Please be aware that this setting may result in read pre-fetching
19
* on some platforms.
20
*/
21
22
#include <linux/init.h>
23
#include <linux/module.h>
24
#include <linux/pci.h>
25
#include <linux/slab.h>
26
#include <linux/interrupt.h>
27
#include <linux/dmaengine.h>
28
#include <linux/delay.h>
29
#include <linux/dma-mapping.h>
30
#include <linux/dmapool.h>
31
#include <linux/of.h>
32
#include <linux/of_address.h>
33
#include <linux/of_irq.h>
34
#include <linux/platform_device.h>
35
#include <linux/fsldma.h>
36
#include "dmaengine.h"
37
#include "fsldma.h"
38
39
#define chan_dbg(chan, fmt, arg...) \
40
dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
41
#define chan_err(chan, fmt, arg...) \
42
dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
43
44
static const char msg_ld_oom[] = "No free memory for link descriptor";
45
46
/*
47
* Register Helpers
48
*/
49
50
static void set_sr(struct fsldma_chan *chan, u32 val)
51
{
52
FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
53
}
54
55
static u32 get_sr(struct fsldma_chan *chan)
56
{
57
return FSL_DMA_IN(chan, &chan->regs->sr, 32);
58
}
59
60
static void set_mr(struct fsldma_chan *chan, u32 val)
61
{
62
FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
63
}
64
65
static u32 get_mr(struct fsldma_chan *chan)
66
{
67
return FSL_DMA_IN(chan, &chan->regs->mr, 32);
68
}
69
70
static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
71
{
72
FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
73
}
74
75
static dma_addr_t get_cdar(struct fsldma_chan *chan)
76
{
77
return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
78
}
79
80
static void set_bcr(struct fsldma_chan *chan, u32 val)
81
{
82
FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
83
}
84
85
static u32 get_bcr(struct fsldma_chan *chan)
86
{
87
return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
88
}
89
90
/*
91
* Descriptor Helpers
92
*/
93
94
static void set_desc_cnt(struct fsldma_chan *chan,
95
struct fsl_dma_ld_hw *hw, u32 count)
96
{
97
hw->count = CPU_TO_DMA(chan, count, 32);
98
}
99
100
static void set_desc_src(struct fsldma_chan *chan,
101
struct fsl_dma_ld_hw *hw, dma_addr_t src)
102
{
103
u64 snoop_bits;
104
105
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
106
? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
107
hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
108
}
109
110
static void set_desc_dst(struct fsldma_chan *chan,
111
struct fsl_dma_ld_hw *hw, dma_addr_t dst)
112
{
113
u64 snoop_bits;
114
115
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
116
? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
117
hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
118
}
119
120
static void set_desc_next(struct fsldma_chan *chan,
121
struct fsl_dma_ld_hw *hw, dma_addr_t next)
122
{
123
u64 snoop_bits;
124
125
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
126
? FSL_DMA_SNEN : 0;
127
hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
128
}
129
130
static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
131
{
132
u64 snoop_bits;
133
134
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
135
? FSL_DMA_SNEN : 0;
136
137
desc->hw.next_ln_addr = CPU_TO_DMA(chan,
138
DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
139
| snoop_bits, 64);
140
}
141
142
/*
143
* DMA Engine Hardware Control Helpers
144
*/
145
146
static void dma_init(struct fsldma_chan *chan)
147
{
148
/* Reset the channel */
149
set_mr(chan, 0);
150
151
switch (chan->feature & FSL_DMA_IP_MASK) {
152
case FSL_DMA_IP_85XX:
153
/* Set the channel to below modes:
154
* EIE - Error interrupt enable
155
* EOLNIE - End of links interrupt enable
156
* BWC - Bandwidth sharing among channels
157
*/
158
set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
159
| FSL_DMA_MR_EOLNIE);
160
break;
161
case FSL_DMA_IP_83XX:
162
/* Set the channel to below modes:
163
* EOTIE - End-of-transfer interrupt enable
164
* PRC_RM - PCI read multiple
165
*/
166
set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
167
break;
168
}
169
}
170
171
static int dma_is_idle(struct fsldma_chan *chan)
172
{
173
u32 sr = get_sr(chan);
174
return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
175
}
176
177
/*
178
* Start the DMA controller
179
*
180
* Preconditions:
181
* - the CDAR register must point to the start descriptor
182
* - the MRn[CS] bit must be cleared
183
*/
184
static void dma_start(struct fsldma_chan *chan)
185
{
186
u32 mode;
187
188
mode = get_mr(chan);
189
190
if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
191
set_bcr(chan, 0);
192
mode |= FSL_DMA_MR_EMP_EN;
193
} else {
194
mode &= ~FSL_DMA_MR_EMP_EN;
195
}
196
197
if (chan->feature & FSL_DMA_CHAN_START_EXT) {
198
mode |= FSL_DMA_MR_EMS_EN;
199
} else {
200
mode &= ~FSL_DMA_MR_EMS_EN;
201
mode |= FSL_DMA_MR_CS;
202
}
203
204
set_mr(chan, mode);
205
}
206
207
static void dma_halt(struct fsldma_chan *chan)
208
{
209
u32 mode;
210
int i;
211
212
/* read the mode register */
213
mode = get_mr(chan);
214
215
/*
216
* The 85xx controller supports channel abort, which will stop
217
* the current transfer. On 83xx, this bit is the transfer error
218
* mask bit, which should not be changed.
219
*/
220
if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
221
mode |= FSL_DMA_MR_CA;
222
set_mr(chan, mode);
223
224
mode &= ~FSL_DMA_MR_CA;
225
}
226
227
/* stop the DMA controller */
228
mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
229
set_mr(chan, mode);
230
231
/* wait for the DMA controller to become idle */
232
for (i = 0; i < 100; i++) {
233
if (dma_is_idle(chan))
234
return;
235
236
udelay(10);
237
}
238
239
if (!dma_is_idle(chan))
240
chan_err(chan, "DMA halt timeout!\n");
241
}
242
243
/**
244
* fsl_chan_set_src_loop_size - Set source address hold transfer size
245
* @chan : Freescale DMA channel
246
* @size : Address loop size, 0 for disable loop
247
*
248
* The set source address hold transfer size. The source
249
* address hold or loop transfer size is when the DMA transfer
250
* data from source address (SA), if the loop size is 4, the DMA will
251
* read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
252
* SA + 1 ... and so on.
253
*/
254
static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
255
{
256
u32 mode;
257
258
mode = get_mr(chan);
259
260
switch (size) {
261
case 0:
262
mode &= ~FSL_DMA_MR_SAHE;
263
break;
264
case 1:
265
case 2:
266
case 4:
267
case 8:
268
mode &= ~FSL_DMA_MR_SAHTS_MASK;
269
mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
270
break;
271
}
272
273
set_mr(chan, mode);
274
}
275
276
/**
277
* fsl_chan_set_dst_loop_size - Set destination address hold transfer size
278
* @chan : Freescale DMA channel
279
* @size : Address loop size, 0 for disable loop
280
*
281
* The set destination address hold transfer size. The destination
282
* address hold or loop transfer size is when the DMA transfer
283
* data to destination address (TA), if the loop size is 4, the DMA will
284
* write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
285
* TA + 1 ... and so on.
286
*/
287
static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
288
{
289
u32 mode;
290
291
mode = get_mr(chan);
292
293
switch (size) {
294
case 0:
295
mode &= ~FSL_DMA_MR_DAHE;
296
break;
297
case 1:
298
case 2:
299
case 4:
300
case 8:
301
mode &= ~FSL_DMA_MR_DAHTS_MASK;
302
mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
303
break;
304
}
305
306
set_mr(chan, mode);
307
}
308
309
/**
310
* fsl_chan_set_request_count - Set DMA Request Count for external control
311
* @chan : Freescale DMA channel
312
* @size : Number of bytes to transfer in a single request
313
*
314
* The Freescale DMA channel can be controlled by the external signal DREQ#.
315
* The DMA request count is how many bytes are allowed to transfer before
316
* pausing the channel, after which a new assertion of DREQ# resumes channel
317
* operation.
318
*
319
* A size of 0 disables external pause control. The maximum size is 1024.
320
*/
321
static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
322
{
323
u32 mode;
324
325
BUG_ON(size > 1024);
326
327
mode = get_mr(chan);
328
mode &= ~FSL_DMA_MR_BWC_MASK;
329
mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
330
331
set_mr(chan, mode);
332
}
333
334
/**
335
* fsl_chan_toggle_ext_pause - Toggle channel external pause status
336
* @chan : Freescale DMA channel
337
* @enable : 0 is disabled, 1 is enabled.
338
*
339
* The Freescale DMA channel can be controlled by the external signal DREQ#.
340
* The DMA Request Count feature should be used in addition to this feature
341
* to set the number of bytes to transfer before pausing the channel.
342
*/
343
static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
344
{
345
if (enable)
346
chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
347
else
348
chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
349
}
350
351
/**
352
* fsl_chan_toggle_ext_start - Toggle channel external start status
353
* @chan : Freescale DMA channel
354
* @enable : 0 is disabled, 1 is enabled.
355
*
356
* If enable the external start, the channel can be started by an
357
* external DMA start pin. So the dma_start() does not start the
358
* transfer immediately. The DMA channel will wait for the
359
* control pin asserted.
360
*/
361
static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
362
{
363
if (enable)
364
chan->feature |= FSL_DMA_CHAN_START_EXT;
365
else
366
chan->feature &= ~FSL_DMA_CHAN_START_EXT;
367
}
368
369
int fsl_dma_external_start(struct dma_chan *dchan, int enable)
370
{
371
struct fsldma_chan *chan;
372
373
if (!dchan)
374
return -EINVAL;
375
376
chan = to_fsl_chan(dchan);
377
378
fsl_chan_toggle_ext_start(chan, enable);
379
return 0;
380
}
381
EXPORT_SYMBOL_GPL(fsl_dma_external_start);
382
383
static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
384
{
385
struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
386
387
if (list_empty(&chan->ld_pending))
388
goto out_splice;
389
390
/*
391
* Add the hardware descriptor to the chain of hardware descriptors
392
* that already exists in memory.
393
*
394
* This will un-set the EOL bit of the existing transaction, and the
395
* last link in this transaction will become the EOL descriptor.
396
*/
397
set_desc_next(chan, &tail->hw, desc->async_tx.phys);
398
399
/*
400
* Add the software descriptor and all children to the list
401
* of pending transactions
402
*/
403
out_splice:
404
list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
405
}
406
407
static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
408
{
409
struct fsldma_chan *chan = to_fsl_chan(tx->chan);
410
struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
411
struct fsl_desc_sw *child;
412
dma_cookie_t cookie = -EINVAL;
413
414
spin_lock_bh(&chan->desc_lock);
415
416
#ifdef CONFIG_PM
417
if (unlikely(chan->pm_state != RUNNING)) {
418
chan_dbg(chan, "cannot submit due to suspend\n");
419
spin_unlock_bh(&chan->desc_lock);
420
return -1;
421
}
422
#endif
423
424
/*
425
* assign cookies to all of the software descriptors
426
* that make up this transaction
427
*/
428
list_for_each_entry(child, &desc->tx_list, node) {
429
cookie = dma_cookie_assign(&child->async_tx);
430
}
431
432
/* put this transaction onto the tail of the pending queue */
433
append_ld_queue(chan, desc);
434
435
spin_unlock_bh(&chan->desc_lock);
436
437
return cookie;
438
}
439
440
/**
441
* fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
442
* @chan : Freescale DMA channel
443
* @desc: descriptor to be freed
444
*/
445
static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
446
struct fsl_desc_sw *desc)
447
{
448
list_del(&desc->node);
449
chan_dbg(chan, "LD %p free\n", desc);
450
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
451
}
452
453
/**
454
* fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
455
* @chan : Freescale DMA channel
456
*
457
* Return - The descriptor allocated. NULL for failed.
458
*/
459
static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
460
{
461
struct fsl_desc_sw *desc;
462
dma_addr_t pdesc;
463
464
desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
465
if (!desc) {
466
chan_dbg(chan, "out of memory for link descriptor\n");
467
return NULL;
468
}
469
470
INIT_LIST_HEAD(&desc->tx_list);
471
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
472
desc->async_tx.tx_submit = fsl_dma_tx_submit;
473
desc->async_tx.phys = pdesc;
474
475
chan_dbg(chan, "LD %p allocated\n", desc);
476
477
return desc;
478
}
479
480
/**
481
* fsldma_clean_completed_descriptor - free all descriptors which
482
* has been completed and acked
483
* @chan: Freescale DMA channel
484
*
485
* This function is used on all completed and acked descriptors.
486
* All descriptors should only be freed in this function.
487
*/
488
static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
489
{
490
struct fsl_desc_sw *desc, *_desc;
491
492
/* Run the callback for each descriptor, in order */
493
list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
494
if (async_tx_test_ack(&desc->async_tx))
495
fsl_dma_free_descriptor(chan, desc);
496
}
497
498
/**
499
* fsldma_run_tx_complete_actions - cleanup a single link descriptor
500
* @chan: Freescale DMA channel
501
* @desc: descriptor to cleanup and free
502
* @cookie: Freescale DMA transaction identifier
503
*
504
* This function is used on a descriptor which has been executed by the DMA
505
* controller. It will run any callbacks, submit any dependencies.
506
*/
507
static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
508
struct fsl_desc_sw *desc, dma_cookie_t cookie)
509
{
510
struct dma_async_tx_descriptor *txd = &desc->async_tx;
511
dma_cookie_t ret = cookie;
512
513
BUG_ON(txd->cookie < 0);
514
515
if (txd->cookie > 0) {
516
ret = txd->cookie;
517
518
dma_descriptor_unmap(txd);
519
/* Run the link descriptor callback function */
520
dmaengine_desc_get_callback_invoke(txd, NULL);
521
}
522
523
/* Run any dependencies */
524
dma_run_dependencies(txd);
525
526
return ret;
527
}
528
529
/**
530
* fsldma_clean_running_descriptor - move the completed descriptor from
531
* ld_running to ld_completed
532
* @chan: Freescale DMA channel
533
* @desc: the descriptor which is completed
534
*
535
* Free the descriptor directly if acked by async_tx api, or move it to
536
* queue ld_completed.
537
*/
538
static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
539
struct fsl_desc_sw *desc)
540
{
541
/* Remove from the list of transactions */
542
list_del(&desc->node);
543
544
/*
545
* the client is allowed to attach dependent operations
546
* until 'ack' is set
547
*/
548
if (!async_tx_test_ack(&desc->async_tx)) {
549
/*
550
* Move this descriptor to the list of descriptors which is
551
* completed, but still awaiting the 'ack' bit to be set.
552
*/
553
list_add_tail(&desc->node, &chan->ld_completed);
554
return;
555
}
556
557
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
558
}
559
560
/**
561
* fsl_chan_xfer_ld_queue - transfer any pending transactions
562
* @chan : Freescale DMA channel
563
*
564
* HARDWARE STATE: idle
565
* LOCKING: must hold chan->desc_lock
566
*/
567
static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
568
{
569
struct fsl_desc_sw *desc;
570
571
/*
572
* If the list of pending descriptors is empty, then we
573
* don't need to do any work at all
574
*/
575
if (list_empty(&chan->ld_pending)) {
576
chan_dbg(chan, "no pending LDs\n");
577
return;
578
}
579
580
/*
581
* The DMA controller is not idle, which means that the interrupt
582
* handler will start any queued transactions when it runs after
583
* this transaction finishes
584
*/
585
if (!chan->idle) {
586
chan_dbg(chan, "DMA controller still busy\n");
587
return;
588
}
589
590
/*
591
* If there are some link descriptors which have not been
592
* transferred, we need to start the controller
593
*/
594
595
/*
596
* Move all elements from the queue of pending transactions
597
* onto the list of running transactions
598
*/
599
chan_dbg(chan, "idle, starting controller\n");
600
desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
601
list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
602
603
/*
604
* The 85xx DMA controller doesn't clear the channel start bit
605
* automatically at the end of a transfer. Therefore we must clear
606
* it in software before starting the transfer.
607
*/
608
if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
609
u32 mode;
610
611
mode = get_mr(chan);
612
mode &= ~FSL_DMA_MR_CS;
613
set_mr(chan, mode);
614
}
615
616
/*
617
* Program the descriptor's address into the DMA controller,
618
* then start the DMA transaction
619
*/
620
set_cdar(chan, desc->async_tx.phys);
621
get_cdar(chan);
622
623
dma_start(chan);
624
chan->idle = false;
625
}
626
627
/**
628
* fsldma_cleanup_descriptors - cleanup link descriptors which are completed
629
* and move them to ld_completed to free until flag 'ack' is set
630
* @chan: Freescale DMA channel
631
*
632
* This function is used on descriptors which have been executed by the DMA
633
* controller. It will run any callbacks, submit any dependencies, then
634
* free these descriptors if flag 'ack' is set.
635
*/
636
static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
637
{
638
struct fsl_desc_sw *desc, *_desc;
639
dma_cookie_t cookie = 0;
640
dma_addr_t curr_phys = get_cdar(chan);
641
int seen_current = 0;
642
643
fsldma_clean_completed_descriptor(chan);
644
645
/* Run the callback for each descriptor, in order */
646
list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
647
/*
648
* do not advance past the current descriptor loaded into the
649
* hardware channel, subsequent descriptors are either in
650
* process or have not been submitted
651
*/
652
if (seen_current)
653
break;
654
655
/*
656
* stop the search if we reach the current descriptor and the
657
* channel is busy
658
*/
659
if (desc->async_tx.phys == curr_phys) {
660
seen_current = 1;
661
if (!dma_is_idle(chan))
662
break;
663
}
664
665
cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
666
667
fsldma_clean_running_descriptor(chan, desc);
668
}
669
670
/*
671
* Start any pending transactions automatically
672
*
673
* In the ideal case, we keep the DMA controller busy while we go
674
* ahead and free the descriptors below.
675
*/
676
fsl_chan_xfer_ld_queue(chan);
677
678
if (cookie > 0)
679
chan->common.completed_cookie = cookie;
680
}
681
682
/**
683
* fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
684
* @chan : Freescale DMA channel
685
*
686
* This function will create a dma pool for descriptor allocation.
687
*
688
* Return - The number of descriptors allocated.
689
*/
690
static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
691
{
692
struct fsldma_chan *chan = to_fsl_chan(dchan);
693
694
/* Has this channel already been allocated? */
695
if (chan->desc_pool)
696
return 1;
697
698
/*
699
* We need the descriptor to be aligned to 32bytes
700
* for meeting FSL DMA specification requirement.
701
*/
702
chan->desc_pool = dma_pool_create(chan->name, chan->dev,
703
sizeof(struct fsl_desc_sw),
704
__alignof__(struct fsl_desc_sw), 0);
705
if (!chan->desc_pool) {
706
chan_err(chan, "unable to allocate descriptor pool\n");
707
return -ENOMEM;
708
}
709
710
/* there is at least one descriptor free to be allocated */
711
return 1;
712
}
713
714
/**
715
* fsldma_free_desc_list - Free all descriptors in a queue
716
* @chan: Freescae DMA channel
717
* @list: the list to free
718
*
719
* LOCKING: must hold chan->desc_lock
720
*/
721
static void fsldma_free_desc_list(struct fsldma_chan *chan,
722
struct list_head *list)
723
{
724
struct fsl_desc_sw *desc, *_desc;
725
726
list_for_each_entry_safe(desc, _desc, list, node)
727
fsl_dma_free_descriptor(chan, desc);
728
}
729
730
static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
731
struct list_head *list)
732
{
733
struct fsl_desc_sw *desc, *_desc;
734
735
list_for_each_entry_safe_reverse(desc, _desc, list, node)
736
fsl_dma_free_descriptor(chan, desc);
737
}
738
739
/**
740
* fsl_dma_free_chan_resources - Free all resources of the channel.
741
* @chan : Freescale DMA channel
742
*/
743
static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
744
{
745
struct fsldma_chan *chan = to_fsl_chan(dchan);
746
747
chan_dbg(chan, "free all channel resources\n");
748
spin_lock_bh(&chan->desc_lock);
749
fsldma_cleanup_descriptors(chan);
750
fsldma_free_desc_list(chan, &chan->ld_pending);
751
fsldma_free_desc_list(chan, &chan->ld_running);
752
fsldma_free_desc_list(chan, &chan->ld_completed);
753
spin_unlock_bh(&chan->desc_lock);
754
755
dma_pool_destroy(chan->desc_pool);
756
chan->desc_pool = NULL;
757
}
758
759
static struct dma_async_tx_descriptor *
760
fsl_dma_prep_memcpy(struct dma_chan *dchan,
761
dma_addr_t dma_dst, dma_addr_t dma_src,
762
size_t len, unsigned long flags)
763
{
764
struct fsldma_chan *chan;
765
struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
766
size_t copy;
767
768
if (!dchan)
769
return NULL;
770
771
if (!len)
772
return NULL;
773
774
chan = to_fsl_chan(dchan);
775
776
do {
777
778
/* Allocate the link descriptor from DMA pool */
779
new = fsl_dma_alloc_descriptor(chan);
780
if (!new) {
781
chan_err(chan, "%s\n", msg_ld_oom);
782
goto fail;
783
}
784
785
copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
786
787
set_desc_cnt(chan, &new->hw, copy);
788
set_desc_src(chan, &new->hw, dma_src);
789
set_desc_dst(chan, &new->hw, dma_dst);
790
791
if (!first)
792
first = new;
793
else
794
set_desc_next(chan, &prev->hw, new->async_tx.phys);
795
796
new->async_tx.cookie = 0;
797
async_tx_ack(&new->async_tx);
798
799
prev = new;
800
len -= copy;
801
dma_src += copy;
802
dma_dst += copy;
803
804
/* Insert the link descriptor to the LD ring */
805
list_add_tail(&new->node, &first->tx_list);
806
} while (len);
807
808
new->async_tx.flags = flags; /* client is in control of this ack */
809
new->async_tx.cookie = -EBUSY;
810
811
/* Set End-of-link to the last link descriptor of new list */
812
set_ld_eol(chan, new);
813
814
return &first->async_tx;
815
816
fail:
817
if (!first)
818
return NULL;
819
820
fsldma_free_desc_list_reverse(chan, &first->tx_list);
821
return NULL;
822
}
823
824
static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
825
{
826
struct fsldma_chan *chan;
827
828
if (!dchan)
829
return -EINVAL;
830
831
chan = to_fsl_chan(dchan);
832
833
spin_lock_bh(&chan->desc_lock);
834
835
/* Halt the DMA engine */
836
dma_halt(chan);
837
838
/* Remove and free all of the descriptors in the LD queue */
839
fsldma_free_desc_list(chan, &chan->ld_pending);
840
fsldma_free_desc_list(chan, &chan->ld_running);
841
fsldma_free_desc_list(chan, &chan->ld_completed);
842
chan->idle = true;
843
844
spin_unlock_bh(&chan->desc_lock);
845
return 0;
846
}
847
848
static int fsl_dma_device_config(struct dma_chan *dchan,
849
struct dma_slave_config *config)
850
{
851
struct fsldma_chan *chan;
852
int size;
853
854
if (!dchan)
855
return -EINVAL;
856
857
chan = to_fsl_chan(dchan);
858
859
/* make sure the channel supports setting burst size */
860
if (!chan->set_request_count)
861
return -ENXIO;
862
863
/* we set the controller burst size depending on direction */
864
if (config->direction == DMA_MEM_TO_DEV)
865
size = config->dst_addr_width * config->dst_maxburst;
866
else
867
size = config->src_addr_width * config->src_maxburst;
868
869
chan->set_request_count(chan, size);
870
return 0;
871
}
872
873
874
/**
875
* fsl_dma_memcpy_issue_pending - Issue the DMA start command
876
* @chan : Freescale DMA channel
877
*/
878
static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
879
{
880
struct fsldma_chan *chan = to_fsl_chan(dchan);
881
882
spin_lock_bh(&chan->desc_lock);
883
fsl_chan_xfer_ld_queue(chan);
884
spin_unlock_bh(&chan->desc_lock);
885
}
886
887
/**
888
* fsl_tx_status - Determine the DMA status
889
* @chan : Freescale DMA channel
890
*/
891
static enum dma_status fsl_tx_status(struct dma_chan *dchan,
892
dma_cookie_t cookie,
893
struct dma_tx_state *txstate)
894
{
895
struct fsldma_chan *chan = to_fsl_chan(dchan);
896
enum dma_status ret;
897
898
ret = dma_cookie_status(dchan, cookie, txstate);
899
if (ret == DMA_COMPLETE)
900
return ret;
901
902
spin_lock_bh(&chan->desc_lock);
903
fsldma_cleanup_descriptors(chan);
904
spin_unlock_bh(&chan->desc_lock);
905
906
return dma_cookie_status(dchan, cookie, txstate);
907
}
908
909
/*----------------------------------------------------------------------------*/
910
/* Interrupt Handling */
911
/*----------------------------------------------------------------------------*/
912
913
static irqreturn_t fsldma_chan_irq(int irq, void *data)
914
{
915
struct fsldma_chan *chan = data;
916
u32 stat;
917
918
/* save and clear the status register */
919
stat = get_sr(chan);
920
set_sr(chan, stat);
921
chan_dbg(chan, "irq: stat = 0x%x\n", stat);
922
923
/* check that this was really our device */
924
stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
925
if (!stat)
926
return IRQ_NONE;
927
928
if (stat & FSL_DMA_SR_TE)
929
chan_err(chan, "Transfer Error!\n");
930
931
/*
932
* Programming Error
933
* The DMA_INTERRUPT async_tx is a NULL transfer, which will
934
* trigger a PE interrupt.
935
*/
936
if (stat & FSL_DMA_SR_PE) {
937
chan_dbg(chan, "irq: Programming Error INT\n");
938
stat &= ~FSL_DMA_SR_PE;
939
if (get_bcr(chan) != 0)
940
chan_err(chan, "Programming Error!\n");
941
}
942
943
/*
944
* For MPC8349, EOCDI event need to update cookie
945
* and start the next transfer if it exist.
946
*/
947
if (stat & FSL_DMA_SR_EOCDI) {
948
chan_dbg(chan, "irq: End-of-Chain link INT\n");
949
stat &= ~FSL_DMA_SR_EOCDI;
950
}
951
952
/*
953
* If it current transfer is the end-of-transfer,
954
* we should clear the Channel Start bit for
955
* prepare next transfer.
956
*/
957
if (stat & FSL_DMA_SR_EOLNI) {
958
chan_dbg(chan, "irq: End-of-link INT\n");
959
stat &= ~FSL_DMA_SR_EOLNI;
960
}
961
962
/* check that the DMA controller is really idle */
963
if (!dma_is_idle(chan))
964
chan_err(chan, "irq: controller not idle!\n");
965
966
/* check that we handled all of the bits */
967
if (stat)
968
chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
969
970
/*
971
* Schedule the tasklet to handle all cleanup of the current
972
* transaction. It will start a new transaction if there is
973
* one pending.
974
*/
975
tasklet_schedule(&chan->tasklet);
976
chan_dbg(chan, "irq: Exit\n");
977
return IRQ_HANDLED;
978
}
979
980
static void dma_do_tasklet(struct tasklet_struct *t)
981
{
982
struct fsldma_chan *chan = from_tasklet(chan, t, tasklet);
983
984
chan_dbg(chan, "tasklet entry\n");
985
986
spin_lock(&chan->desc_lock);
987
988
/* the hardware is now idle and ready for more */
989
chan->idle = true;
990
991
/* Run all cleanup for descriptors which have been completed */
992
fsldma_cleanup_descriptors(chan);
993
994
spin_unlock(&chan->desc_lock);
995
996
chan_dbg(chan, "tasklet exit\n");
997
}
998
999
static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1000
{
1001
struct fsldma_device *fdev = data;
1002
struct fsldma_chan *chan;
1003
unsigned int handled = 0;
1004
u32 gsr, mask;
1005
int i;
1006
1007
gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1008
: in_le32(fdev->regs);
1009
mask = 0xff000000;
1010
dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1011
1012
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1013
chan = fdev->chan[i];
1014
if (!chan)
1015
continue;
1016
1017
if (gsr & mask) {
1018
dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1019
fsldma_chan_irq(irq, chan);
1020
handled++;
1021
}
1022
1023
gsr &= ~mask;
1024
mask >>= 8;
1025
}
1026
1027
return IRQ_RETVAL(handled);
1028
}
1029
1030
static void fsldma_free_irqs(struct fsldma_device *fdev)
1031
{
1032
struct fsldma_chan *chan;
1033
int i;
1034
1035
if (fdev->irq) {
1036
dev_dbg(fdev->dev, "free per-controller IRQ\n");
1037
free_irq(fdev->irq, fdev);
1038
return;
1039
}
1040
1041
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1042
chan = fdev->chan[i];
1043
if (chan && chan->irq) {
1044
chan_dbg(chan, "free per-channel IRQ\n");
1045
free_irq(chan->irq, chan);
1046
}
1047
}
1048
}
1049
1050
static int fsldma_request_irqs(struct fsldma_device *fdev)
1051
{
1052
struct fsldma_chan *chan;
1053
int ret;
1054
int i;
1055
1056
/* if we have a per-controller IRQ, use that */
1057
if (fdev->irq) {
1058
dev_dbg(fdev->dev, "request per-controller IRQ\n");
1059
ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1060
"fsldma-controller", fdev);
1061
return ret;
1062
}
1063
1064
/* no per-controller IRQ, use the per-channel IRQs */
1065
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1066
chan = fdev->chan[i];
1067
if (!chan)
1068
continue;
1069
1070
if (!chan->irq) {
1071
chan_err(chan, "interrupts property missing in device tree\n");
1072
ret = -ENODEV;
1073
goto out_unwind;
1074
}
1075
1076
chan_dbg(chan, "request per-channel IRQ\n");
1077
ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1078
"fsldma-chan", chan);
1079
if (ret) {
1080
chan_err(chan, "unable to request per-channel IRQ\n");
1081
goto out_unwind;
1082
}
1083
}
1084
1085
return 0;
1086
1087
out_unwind:
1088
for (/* none */; i >= 0; i--) {
1089
chan = fdev->chan[i];
1090
if (!chan)
1091
continue;
1092
1093
if (!chan->irq)
1094
continue;
1095
1096
free_irq(chan->irq, chan);
1097
}
1098
1099
return ret;
1100
}
1101
1102
/*----------------------------------------------------------------------------*/
1103
/* OpenFirmware Subsystem */
1104
/*----------------------------------------------------------------------------*/
1105
1106
static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1107
struct device_node *node, u32 feature, const char *compatible)
1108
{
1109
struct fsldma_chan *chan;
1110
struct resource res;
1111
int err;
1112
1113
/* alloc channel */
1114
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1115
if (!chan) {
1116
err = -ENOMEM;
1117
goto out_return;
1118
}
1119
1120
/* ioremap registers for use */
1121
chan->regs = of_iomap(node, 0);
1122
if (!chan->regs) {
1123
dev_err(fdev->dev, "unable to ioremap registers\n");
1124
err = -ENOMEM;
1125
goto out_free_chan;
1126
}
1127
1128
err = of_address_to_resource(node, 0, &res);
1129
if (err) {
1130
dev_err(fdev->dev, "unable to find 'reg' property\n");
1131
goto out_iounmap_regs;
1132
}
1133
1134
chan->feature = feature;
1135
if (!fdev->feature)
1136
fdev->feature = chan->feature;
1137
1138
/*
1139
* If the DMA device's feature is different than the feature
1140
* of its channels, report the bug
1141
*/
1142
WARN_ON(fdev->feature != chan->feature);
1143
1144
chan->dev = fdev->dev;
1145
chan->id = (res.start & 0xfff) < 0x300 ?
1146
((res.start - 0x100) & 0xfff) >> 7 :
1147
((res.start - 0x200) & 0xfff) >> 7;
1148
if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1149
dev_err(fdev->dev, "too many channels for device\n");
1150
err = -EINVAL;
1151
goto out_iounmap_regs;
1152
}
1153
1154
fdev->chan[chan->id] = chan;
1155
tasklet_setup(&chan->tasklet, dma_do_tasklet);
1156
snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1157
1158
/* Initialize the channel */
1159
dma_init(chan);
1160
1161
/* Clear cdar registers */
1162
set_cdar(chan, 0);
1163
1164
switch (chan->feature & FSL_DMA_IP_MASK) {
1165
case FSL_DMA_IP_85XX:
1166
chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1167
fallthrough;
1168
case FSL_DMA_IP_83XX:
1169
chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1170
chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1171
chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1172
chan->set_request_count = fsl_chan_set_request_count;
1173
}
1174
1175
spin_lock_init(&chan->desc_lock);
1176
INIT_LIST_HEAD(&chan->ld_pending);
1177
INIT_LIST_HEAD(&chan->ld_running);
1178
INIT_LIST_HEAD(&chan->ld_completed);
1179
chan->idle = true;
1180
#ifdef CONFIG_PM
1181
chan->pm_state = RUNNING;
1182
#endif
1183
1184
chan->common.device = &fdev->common;
1185
dma_cookie_init(&chan->common);
1186
1187
/* find the IRQ line, if it exists in the device tree */
1188
chan->irq = irq_of_parse_and_map(node, 0);
1189
1190
/* Add the channel to DMA device channel list */
1191
list_add_tail(&chan->common.device_node, &fdev->common.channels);
1192
1193
dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1194
chan->irq ? chan->irq : fdev->irq);
1195
1196
return 0;
1197
1198
out_iounmap_regs:
1199
iounmap(chan->regs);
1200
out_free_chan:
1201
kfree(chan);
1202
out_return:
1203
return err;
1204
}
1205
1206
static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1207
{
1208
irq_dispose_mapping(chan->irq);
1209
list_del(&chan->common.device_node);
1210
iounmap(chan->regs);
1211
kfree(chan);
1212
}
1213
1214
static int fsldma_of_probe(struct platform_device *op)
1215
{
1216
struct fsldma_device *fdev;
1217
struct device_node *child;
1218
unsigned int i;
1219
int err;
1220
1221
fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1222
if (!fdev) {
1223
err = -ENOMEM;
1224
goto out_return;
1225
}
1226
1227
fdev->dev = &op->dev;
1228
INIT_LIST_HEAD(&fdev->common.channels);
1229
/* The DMA address bits supported for this device. */
1230
fdev->addr_bits = (long)device_get_match_data(fdev->dev);
1231
1232
/* ioremap the registers for use */
1233
fdev->regs = of_iomap(op->dev.of_node, 0);
1234
if (!fdev->regs) {
1235
dev_err(&op->dev, "unable to ioremap registers\n");
1236
err = -ENOMEM;
1237
goto out_free;
1238
}
1239
1240
/* map the channel IRQ if it exists, but don't hookup the handler yet */
1241
fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1242
1243
dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1244
dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1245
fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1246
fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1247
fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1248
fdev->common.device_tx_status = fsl_tx_status;
1249
fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1250
fdev->common.device_config = fsl_dma_device_config;
1251
fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1252
fdev->common.dev = &op->dev;
1253
1254
fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1255
fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1256
fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1257
fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1258
1259
dma_set_mask(&(op->dev), DMA_BIT_MASK(fdev->addr_bits));
1260
1261
platform_set_drvdata(op, fdev);
1262
1263
/*
1264
* We cannot use of_platform_bus_probe() because there is no
1265
* of_platform_bus_remove(). Instead, we manually instantiate every DMA
1266
* channel object.
1267
*/
1268
for_each_child_of_node(op->dev.of_node, child) {
1269
if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1270
fsl_dma_chan_probe(fdev, child,
1271
FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1272
"fsl,eloplus-dma-channel");
1273
}
1274
1275
if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1276
fsl_dma_chan_probe(fdev, child,
1277
FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1278
"fsl,elo-dma-channel");
1279
}
1280
}
1281
1282
/*
1283
* Hookup the IRQ handler(s)
1284
*
1285
* If we have a per-controller interrupt, we prefer that to the
1286
* per-channel interrupts to reduce the number of shared interrupt
1287
* handlers on the same IRQ line
1288
*/
1289
err = fsldma_request_irqs(fdev);
1290
if (err) {
1291
dev_err(fdev->dev, "unable to request IRQs\n");
1292
goto out_free_fdev;
1293
}
1294
1295
dma_async_device_register(&fdev->common);
1296
return 0;
1297
1298
out_free_fdev:
1299
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1300
if (fdev->chan[i])
1301
fsl_dma_chan_remove(fdev->chan[i]);
1302
}
1303
irq_dispose_mapping(fdev->irq);
1304
iounmap(fdev->regs);
1305
out_free:
1306
kfree(fdev);
1307
out_return:
1308
return err;
1309
}
1310
1311
static void fsldma_of_remove(struct platform_device *op)
1312
{
1313
struct fsldma_device *fdev;
1314
unsigned int i;
1315
1316
fdev = platform_get_drvdata(op);
1317
dma_async_device_unregister(&fdev->common);
1318
1319
fsldma_free_irqs(fdev);
1320
1321
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1322
if (fdev->chan[i])
1323
fsl_dma_chan_remove(fdev->chan[i]);
1324
}
1325
irq_dispose_mapping(fdev->irq);
1326
1327
iounmap(fdev->regs);
1328
kfree(fdev);
1329
}
1330
1331
#ifdef CONFIG_PM
1332
static int fsldma_suspend_late(struct device *dev)
1333
{
1334
struct fsldma_device *fdev = dev_get_drvdata(dev);
1335
struct fsldma_chan *chan;
1336
int i;
1337
1338
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1339
chan = fdev->chan[i];
1340
if (!chan)
1341
continue;
1342
1343
spin_lock_bh(&chan->desc_lock);
1344
if (unlikely(!chan->idle))
1345
goto out;
1346
chan->regs_save.mr = get_mr(chan);
1347
chan->pm_state = SUSPENDED;
1348
spin_unlock_bh(&chan->desc_lock);
1349
}
1350
return 0;
1351
1352
out:
1353
for (; i >= 0; i--) {
1354
chan = fdev->chan[i];
1355
if (!chan)
1356
continue;
1357
chan->pm_state = RUNNING;
1358
spin_unlock_bh(&chan->desc_lock);
1359
}
1360
return -EBUSY;
1361
}
1362
1363
static int fsldma_resume_early(struct device *dev)
1364
{
1365
struct fsldma_device *fdev = dev_get_drvdata(dev);
1366
struct fsldma_chan *chan;
1367
u32 mode;
1368
int i;
1369
1370
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1371
chan = fdev->chan[i];
1372
if (!chan)
1373
continue;
1374
1375
spin_lock_bh(&chan->desc_lock);
1376
mode = chan->regs_save.mr
1377
& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1378
set_mr(chan, mode);
1379
chan->pm_state = RUNNING;
1380
spin_unlock_bh(&chan->desc_lock);
1381
}
1382
1383
return 0;
1384
}
1385
1386
static const struct dev_pm_ops fsldma_pm_ops = {
1387
.suspend_late = fsldma_suspend_late,
1388
.resume_early = fsldma_resume_early,
1389
};
1390
#endif
1391
1392
/* The .data field is used for dma-bit-mask. */
1393
static const struct of_device_id fsldma_of_ids[] = {
1394
{
1395
.compatible = "fsl,elo3-dma",
1396
.data = (void *)40,
1397
},
1398
{
1399
.compatible = "fsl,eloplus-dma",
1400
.data = (void *)36,
1401
},
1402
{
1403
.compatible = "fsl,elo-dma",
1404
.data = (void *)32,
1405
},
1406
{}
1407
};
1408
MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1409
1410
static struct platform_driver fsldma_of_driver = {
1411
.driver = {
1412
.name = "fsl-elo-dma",
1413
.of_match_table = fsldma_of_ids,
1414
#ifdef CONFIG_PM
1415
.pm = &fsldma_pm_ops,
1416
#endif
1417
},
1418
.probe = fsldma_of_probe,
1419
.remove = fsldma_of_remove,
1420
};
1421
1422
/*----------------------------------------------------------------------------*/
1423
/* Module Init / Exit */
1424
/*----------------------------------------------------------------------------*/
1425
1426
static __init int fsldma_init(void)
1427
{
1428
pr_info("Freescale Elo series DMA driver\n");
1429
return platform_driver_register(&fsldma_of_driver);
1430
}
1431
1432
static void __exit fsldma_exit(void)
1433
{
1434
platform_driver_unregister(&fsldma_of_driver);
1435
}
1436
1437
subsys_initcall(fsldma_init);
1438
module_exit(fsldma_exit);
1439
1440
MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1441
MODULE_LICENSE("GPL");
1442
1443