Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/dma/idxd/irq.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3
#include <linux/init.h>
4
#include <linux/kernel.h>
5
#include <linux/module.h>
6
#include <linux/pci.h>
7
#include <linux/io-64-nonatomic-lo-hi.h>
8
#include <linux/dmaengine.h>
9
#include <linux/delay.h>
10
#include <linux/iommu.h>
11
#include <linux/sched/mm.h>
12
#include <uapi/linux/idxd.h>
13
#include "../dmaengine.h"
14
#include "idxd.h"
15
#include "registers.h"
16
17
enum irq_work_type {
18
IRQ_WORK_NORMAL = 0,
19
IRQ_WORK_PROCESS_FAULT,
20
};
21
22
struct idxd_resubmit {
23
struct work_struct work;
24
struct idxd_desc *desc;
25
};
26
27
struct idxd_int_handle_revoke {
28
struct work_struct work;
29
struct idxd_device *idxd;
30
};
31
32
static void idxd_device_reinit(struct work_struct *work)
33
{
34
struct idxd_device *idxd = container_of(work, struct idxd_device, work);
35
struct device *dev = &idxd->pdev->dev;
36
int rc, i;
37
38
idxd_device_reset(idxd);
39
rc = idxd_device_config(idxd);
40
if (rc < 0)
41
goto out;
42
43
rc = idxd_device_enable(idxd);
44
if (rc < 0)
45
goto out;
46
47
for (i = 0; i < idxd->max_wqs; i++) {
48
if (test_bit(i, idxd->wq_enable_map)) {
49
struct idxd_wq *wq = idxd->wqs[i];
50
51
rc = idxd_wq_enable(wq);
52
if (rc < 0) {
53
clear_bit(i, idxd->wq_enable_map);
54
dev_warn(dev, "Unable to re-enable wq %s\n",
55
dev_name(wq_confdev(wq)));
56
}
57
}
58
}
59
60
return;
61
62
out:
63
idxd_device_clear_state(idxd);
64
}
65
66
/*
67
* The function sends a drain descriptor for the interrupt handle. The drain ensures
68
* all descriptors with this interrupt handle is flushed and the interrupt
69
* will allow the cleanup of the outstanding descriptors.
70
*/
71
static void idxd_int_handle_revoke_drain(struct idxd_irq_entry *ie)
72
{
73
struct idxd_wq *wq = ie_to_wq(ie);
74
struct idxd_device *idxd = wq->idxd;
75
struct device *dev = &idxd->pdev->dev;
76
struct dsa_hw_desc desc = {};
77
void __iomem *portal;
78
int rc;
79
80
/* Issue a simple drain operation with interrupt but no completion record */
81
desc.flags = IDXD_OP_FLAG_RCI;
82
desc.opcode = DSA_OPCODE_DRAIN;
83
desc.priv = 1;
84
85
if (ie->pasid != IOMMU_PASID_INVALID)
86
desc.pasid = ie->pasid;
87
desc.int_handle = ie->int_handle;
88
portal = idxd_wq_portal_addr(wq);
89
90
/*
91
* The wmb() makes sure that the descriptor is all there before we
92
* issue.
93
*/
94
wmb();
95
if (wq_dedicated(wq)) {
96
iosubmit_cmds512(portal, &desc, 1);
97
} else {
98
rc = idxd_enqcmds(wq, portal, &desc);
99
/* This should not fail unless hardware failed. */
100
if (rc < 0)
101
dev_warn(dev, "Failed to submit drain desc on wq %d\n", wq->id);
102
}
103
}
104
105
static void idxd_abort_invalid_int_handle_descs(struct idxd_irq_entry *ie)
106
{
107
LIST_HEAD(flist);
108
struct idxd_desc *d, *t;
109
struct llist_node *head;
110
111
spin_lock(&ie->list_lock);
112
head = llist_del_all(&ie->pending_llist);
113
if (head) {
114
llist_for_each_entry_safe(d, t, head, llnode)
115
list_add_tail(&d->list, &ie->work_list);
116
}
117
118
list_for_each_entry_safe(d, t, &ie->work_list, list) {
119
if (d->completion->status == DSA_COMP_INT_HANDLE_INVAL)
120
list_move_tail(&d->list, &flist);
121
}
122
spin_unlock(&ie->list_lock);
123
124
list_for_each_entry_safe(d, t, &flist, list) {
125
list_del(&d->list);
126
idxd_desc_complete(d, IDXD_COMPLETE_ABORT, true);
127
}
128
}
129
130
static void idxd_int_handle_revoke(struct work_struct *work)
131
{
132
struct idxd_int_handle_revoke *revoke =
133
container_of(work, struct idxd_int_handle_revoke, work);
134
struct idxd_device *idxd = revoke->idxd;
135
struct pci_dev *pdev = idxd->pdev;
136
struct device *dev = &pdev->dev;
137
int i, new_handle, rc;
138
139
if (!idxd->request_int_handles) {
140
kfree(revoke);
141
dev_warn(dev, "Unexpected int handle refresh interrupt.\n");
142
return;
143
}
144
145
/*
146
* The loop attempts to acquire new interrupt handle for all interrupt
147
* vectors that supports a handle. If a new interrupt handle is acquired and the
148
* wq is kernel type, the driver will kill the percpu_ref to pause all
149
* ongoing descriptor submissions. The interrupt handle is then changed.
150
* After change, the percpu_ref is revived and all the pending submissions
151
* are woken to try again. A drain is sent to for the interrupt handle
152
* at the end to make sure all invalid int handle descriptors are processed.
153
*/
154
for (i = 1; i < idxd->irq_cnt; i++) {
155
struct idxd_irq_entry *ie = idxd_get_ie(idxd, i);
156
struct idxd_wq *wq = ie_to_wq(ie);
157
158
if (ie->int_handle == INVALID_INT_HANDLE)
159
continue;
160
161
rc = idxd_device_request_int_handle(idxd, i, &new_handle, IDXD_IRQ_MSIX);
162
if (rc < 0) {
163
dev_warn(dev, "get int handle %d failed: %d\n", i, rc);
164
/*
165
* Failed to acquire new interrupt handle. Kill the WQ
166
* and release all the pending submitters. The submitters will
167
* get error return code and handle appropriately.
168
*/
169
ie->int_handle = INVALID_INT_HANDLE;
170
idxd_wq_quiesce(wq);
171
idxd_abort_invalid_int_handle_descs(ie);
172
continue;
173
}
174
175
/* No change in interrupt handle, nothing needs to be done */
176
if (ie->int_handle == new_handle)
177
continue;
178
179
if (wq->state != IDXD_WQ_ENABLED || wq->type != IDXD_WQT_KERNEL) {
180
/*
181
* All the MSIX interrupts are allocated at once during probe.
182
* Therefore we need to update all interrupts even if the WQ
183
* isn't supporting interrupt operations.
184
*/
185
ie->int_handle = new_handle;
186
continue;
187
}
188
189
mutex_lock(&wq->wq_lock);
190
reinit_completion(&wq->wq_resurrect);
191
192
/* Kill percpu_ref to pause additional descriptor submissions */
193
percpu_ref_kill(&wq->wq_active);
194
195
/* Wait for all submitters quiesce before we change interrupt handle */
196
wait_for_completion(&wq->wq_dead);
197
198
ie->int_handle = new_handle;
199
200
/* Revive percpu ref and wake up all the waiting submitters */
201
percpu_ref_reinit(&wq->wq_active);
202
complete_all(&wq->wq_resurrect);
203
mutex_unlock(&wq->wq_lock);
204
205
/*
206
* The delay here is to wait for all possible MOVDIR64B that
207
* are issued before percpu_ref_kill() has happened to have
208
* reached the PCIe domain before the drain is issued. The driver
209
* needs to ensure that the drain descriptor issued does not pass
210
* all the other issued descriptors that contain the invalid
211
* interrupt handle in order to ensure that the drain descriptor
212
* interrupt will allow the cleanup of all the descriptors with
213
* invalid interrupt handle.
214
*/
215
if (wq_dedicated(wq))
216
udelay(100);
217
idxd_int_handle_revoke_drain(ie);
218
}
219
kfree(revoke);
220
}
221
222
static void idxd_evl_fault_work(struct work_struct *work)
223
{
224
struct idxd_evl_fault *fault = container_of(work, struct idxd_evl_fault, work);
225
struct idxd_wq *wq = fault->wq;
226
struct idxd_device *idxd = wq->idxd;
227
struct device *dev = &idxd->pdev->dev;
228
struct idxd_evl *evl = idxd->evl;
229
struct __evl_entry *entry_head = fault->entry;
230
void *cr = (void *)entry_head + idxd->data->evl_cr_off;
231
int cr_size = idxd->data->compl_size;
232
u8 *status = (u8 *)cr + idxd->data->cr_status_off;
233
u8 *result = (u8 *)cr + idxd->data->cr_result_off;
234
int copied, copy_size;
235
bool *bf;
236
237
switch (fault->status) {
238
case DSA_COMP_CRA_XLAT:
239
if (entry_head->batch && entry_head->first_err_in_batch)
240
evl->batch_fail[entry_head->batch_id] = false;
241
242
copy_size = cr_size;
243
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
244
break;
245
case DSA_COMP_BATCH_EVL_ERR:
246
bf = &evl->batch_fail[entry_head->batch_id];
247
248
copy_size = entry_head->rcr || *bf ? cr_size : 0;
249
if (*bf) {
250
if (*status == DSA_COMP_SUCCESS)
251
*status = DSA_COMP_BATCH_FAIL;
252
*result = 1;
253
*bf = false;
254
}
255
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
256
break;
257
case DSA_COMP_DRAIN_EVL:
258
copy_size = cr_size;
259
break;
260
default:
261
copy_size = 0;
262
dev_dbg_ratelimited(dev, "Unrecognized error code: %#x\n", fault->status);
263
break;
264
}
265
266
if (copy_size == 0)
267
return;
268
269
/*
270
* Copy completion record to fault_addr in user address space
271
* that is found by wq and PASID.
272
*/
273
copied = idxd_copy_cr(wq, entry_head->pasid, entry_head->fault_addr,
274
cr, copy_size);
275
/*
276
* The task that triggered the page fault is unknown currently
277
* because multiple threads may share the user address
278
* space or the task exits already before this fault.
279
* So if the copy fails, SIGSEGV can not be sent to the task.
280
* Just print an error for the failure. The user application
281
* waiting for the completion record will time out on this
282
* failure.
283
*/
284
switch (fault->status) {
285
case DSA_COMP_CRA_XLAT:
286
if (copied != copy_size) {
287
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
288
dev_dbg_ratelimited(dev, "Failed to write to completion record: (%d:%d)\n",
289
copy_size, copied);
290
if (entry_head->batch)
291
evl->batch_fail[entry_head->batch_id] = true;
292
}
293
break;
294
case DSA_COMP_BATCH_EVL_ERR:
295
if (copied != copy_size) {
296
idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
297
dev_dbg_ratelimited(dev, "Failed to write to batch completion record: (%d:%d)\n",
298
copy_size, copied);
299
}
300
break;
301
case DSA_COMP_DRAIN_EVL:
302
if (copied != copy_size)
303
dev_dbg_ratelimited(dev, "Failed to write to drain completion record: (%d:%d)\n",
304
copy_size, copied);
305
break;
306
}
307
308
kmem_cache_free(idxd->evl_cache, fault);
309
}
310
311
static void process_evl_entry(struct idxd_device *idxd,
312
struct __evl_entry *entry_head, unsigned int index)
313
{
314
struct device *dev = &idxd->pdev->dev;
315
struct idxd_evl *evl = idxd->evl;
316
u8 status;
317
318
if (test_bit(index, evl->bmap)) {
319
clear_bit(index, evl->bmap);
320
} else {
321
status = DSA_COMP_STATUS(entry_head->error);
322
323
if (status == DSA_COMP_CRA_XLAT || status == DSA_COMP_DRAIN_EVL ||
324
status == DSA_COMP_BATCH_EVL_ERR) {
325
struct idxd_evl_fault *fault;
326
int ent_size = evl_ent_size(idxd);
327
328
if (entry_head->rci)
329
dev_dbg(dev, "Completion Int Req set, ignoring!\n");
330
331
if (!entry_head->rcr && status == DSA_COMP_DRAIN_EVL)
332
return;
333
334
fault = kmem_cache_alloc(idxd->evl_cache, GFP_ATOMIC);
335
if (fault) {
336
struct idxd_wq *wq = idxd->wqs[entry_head->wq_idx];
337
338
fault->wq = wq;
339
fault->status = status;
340
memcpy(&fault->entry, entry_head, ent_size);
341
INIT_WORK(&fault->work, idxd_evl_fault_work);
342
queue_work(wq->wq, &fault->work);
343
} else {
344
dev_warn(dev, "Failed to service fault work.\n");
345
}
346
} else {
347
dev_warn_ratelimited(dev, "Device error %#x operation: %#x fault addr: %#llx\n",
348
status, entry_head->operation,
349
entry_head->fault_addr);
350
}
351
}
352
}
353
354
static void process_evl_entries(struct idxd_device *idxd)
355
{
356
union evl_status_reg evl_status;
357
unsigned int h, t;
358
struct idxd_evl *evl = idxd->evl;
359
struct __evl_entry *entry_head;
360
unsigned int ent_size = evl_ent_size(idxd);
361
u32 size;
362
363
evl_status.bits = 0;
364
evl_status.int_pending = 1;
365
366
mutex_lock(&evl->lock);
367
/* Clear interrupt pending bit */
368
iowrite32(evl_status.bits_upper32,
369
idxd->reg_base + IDXD_EVLSTATUS_OFFSET + sizeof(u32));
370
evl_status.bits = ioread64(idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
371
t = evl_status.tail;
372
h = evl_status.head;
373
size = idxd->evl->size;
374
375
while (h != t) {
376
entry_head = (struct __evl_entry *)(evl->log + (h * ent_size));
377
process_evl_entry(idxd, entry_head, h);
378
h = (h + 1) % size;
379
}
380
381
evl_status.head = h;
382
iowrite32(evl_status.bits_lower32, idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
383
mutex_unlock(&evl->lock);
384
}
385
386
static void idxd_device_flr(struct work_struct *work)
387
{
388
struct idxd_device *idxd = container_of(work, struct idxd_device, work);
389
int rc;
390
391
/*
392
* IDXD device requires a Function Level Reset (FLR).
393
* pci_reset_function() will reset the device with FLR.
394
*/
395
rc = pci_reset_function(idxd->pdev);
396
if (rc)
397
dev_err(&idxd->pdev->dev, "FLR failed\n");
398
}
399
400
static irqreturn_t idxd_halt(struct idxd_device *idxd)
401
{
402
union gensts_reg gensts;
403
404
gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
405
if (gensts.state == IDXD_DEVICE_STATE_HALT) {
406
idxd->state = IDXD_DEV_HALTED;
407
if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
408
/*
409
* If we need a software reset, we will throw the work
410
* on a system workqueue in order to allow interrupts
411
* for the device command completions.
412
*/
413
INIT_WORK(&idxd->work, idxd_device_reinit);
414
queue_work(idxd->wq, &idxd->work);
415
} else if (gensts.reset_type == IDXD_DEVICE_RESET_FLR) {
416
idxd->state = IDXD_DEV_HALTED;
417
idxd_mask_error_interrupts(idxd);
418
dev_dbg(&idxd->pdev->dev,
419
"idxd halted, doing FLR. After FLR, configs are restored\n");
420
INIT_WORK(&idxd->work, idxd_device_flr);
421
queue_work(idxd->wq, &idxd->work);
422
423
} else {
424
idxd->state = IDXD_DEV_HALTED;
425
idxd_wqs_quiesce(idxd);
426
idxd_wqs_unmap_portal(idxd);
427
idxd_device_clear_state(idxd);
428
dev_err(&idxd->pdev->dev,
429
"idxd halted, need system reset");
430
431
return -ENXIO;
432
}
433
}
434
435
return IRQ_HANDLED;
436
}
437
438
irqreturn_t idxd_misc_thread(int vec, void *data)
439
{
440
struct idxd_irq_entry *irq_entry = data;
441
struct idxd_device *idxd = ie_to_idxd(irq_entry);
442
struct device *dev = &idxd->pdev->dev;
443
u32 val = 0;
444
int i;
445
u32 cause;
446
447
cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
448
if (!cause)
449
return IRQ_NONE;
450
451
iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
452
453
if (cause & IDXD_INTC_HALT_STATE)
454
return idxd_halt(idxd);
455
456
if (cause & IDXD_INTC_ERR) {
457
spin_lock(&idxd->dev_lock);
458
for (i = 0; i < 4; i++)
459
idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
460
IDXD_SWERR_OFFSET + i * sizeof(u64));
461
462
iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK,
463
idxd->reg_base + IDXD_SWERR_OFFSET);
464
465
if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
466
int id = idxd->sw_err.wq_idx;
467
struct idxd_wq *wq = idxd->wqs[id];
468
469
if (wq->type == IDXD_WQT_USER)
470
wake_up_interruptible(&wq->err_queue);
471
} else {
472
int i;
473
474
for (i = 0; i < idxd->max_wqs; i++) {
475
struct idxd_wq *wq = idxd->wqs[i];
476
477
if (wq->type == IDXD_WQT_USER)
478
wake_up_interruptible(&wq->err_queue);
479
}
480
}
481
482
spin_unlock(&idxd->dev_lock);
483
val |= IDXD_INTC_ERR;
484
485
for (i = 0; i < 4; i++)
486
dev_warn_ratelimited(dev, "err[%d]: %#16.16llx\n",
487
i, idxd->sw_err.bits[i]);
488
}
489
490
if (cause & IDXD_INTC_INT_HANDLE_REVOKED) {
491
struct idxd_int_handle_revoke *revoke;
492
493
val |= IDXD_INTC_INT_HANDLE_REVOKED;
494
495
revoke = kzalloc(sizeof(*revoke), GFP_ATOMIC);
496
if (revoke) {
497
revoke->idxd = idxd;
498
INIT_WORK(&revoke->work, idxd_int_handle_revoke);
499
queue_work(idxd->wq, &revoke->work);
500
501
} else {
502
dev_err(dev, "Failed to allocate work for int handle revoke\n");
503
idxd_wqs_quiesce(idxd);
504
}
505
}
506
507
if (cause & IDXD_INTC_CMD) {
508
val |= IDXD_INTC_CMD;
509
complete(idxd->cmd_done);
510
}
511
512
if (cause & IDXD_INTC_OCCUPY) {
513
/* Driver does not utilize occupancy interrupt */
514
val |= IDXD_INTC_OCCUPY;
515
}
516
517
if (cause & IDXD_INTC_PERFMON_OVFL) {
518
val |= IDXD_INTC_PERFMON_OVFL;
519
perfmon_counter_overflow(idxd);
520
}
521
522
if (cause & IDXD_INTC_EVL) {
523
val |= IDXD_INTC_EVL;
524
process_evl_entries(idxd);
525
}
526
527
val ^= cause;
528
if (val)
529
dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
530
val);
531
532
return IRQ_HANDLED;
533
}
534
535
static void idxd_int_handle_resubmit_work(struct work_struct *work)
536
{
537
struct idxd_resubmit *irw = container_of(work, struct idxd_resubmit, work);
538
struct idxd_desc *desc = irw->desc;
539
struct idxd_wq *wq = desc->wq;
540
int rc;
541
542
desc->completion->status = 0;
543
rc = idxd_submit_desc(wq, desc);
544
if (rc < 0) {
545
dev_dbg(&wq->idxd->pdev->dev, "Failed to resubmit desc %d to wq %d.\n",
546
desc->id, wq->id);
547
/*
548
* If the error is not -EAGAIN, it means the submission failed due to wq
549
* has been killed instead of ENQCMDS failure. Here the driver needs to
550
* notify the submitter of the failure by reporting abort status.
551
*
552
* -EAGAIN comes from ENQCMDS failure. idxd_submit_desc() will handle the
553
* abort.
554
*/
555
if (rc != -EAGAIN) {
556
desc->completion->status = IDXD_COMP_DESC_ABORT;
557
idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, false);
558
}
559
idxd_free_desc(wq, desc);
560
}
561
kfree(irw);
562
}
563
564
bool idxd_queue_int_handle_resubmit(struct idxd_desc *desc)
565
{
566
struct idxd_wq *wq = desc->wq;
567
struct idxd_device *idxd = wq->idxd;
568
struct idxd_resubmit *irw;
569
570
irw = kzalloc(sizeof(*irw), GFP_KERNEL);
571
if (!irw)
572
return false;
573
574
irw->desc = desc;
575
INIT_WORK(&irw->work, idxd_int_handle_resubmit_work);
576
queue_work(idxd->wq, &irw->work);
577
return true;
578
}
579
580
static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry)
581
{
582
struct idxd_desc *desc, *t;
583
struct llist_node *head;
584
585
head = llist_del_all(&irq_entry->pending_llist);
586
if (!head)
587
return;
588
589
llist_for_each_entry_safe(desc, t, head, llnode) {
590
u8 status = desc->completion->status & DSA_COMP_STATUS_MASK;
591
592
if (status) {
593
/*
594
* Check against the original status as ABORT is software defined
595
* and 0xff, which DSA_COMP_STATUS_MASK can mask out.
596
*/
597
if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
598
idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
599
continue;
600
}
601
602
idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
603
} else {
604
spin_lock(&irq_entry->list_lock);
605
list_add_tail(&desc->list,
606
&irq_entry->work_list);
607
spin_unlock(&irq_entry->list_lock);
608
}
609
}
610
}
611
612
static void irq_process_work_list(struct idxd_irq_entry *irq_entry)
613
{
614
LIST_HEAD(flist);
615
struct idxd_desc *desc, *n;
616
617
/*
618
* This lock protects list corruption from access of list outside of the irq handler
619
* thread.
620
*/
621
spin_lock(&irq_entry->list_lock);
622
if (list_empty(&irq_entry->work_list)) {
623
spin_unlock(&irq_entry->list_lock);
624
return;
625
}
626
627
list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
628
if (desc->completion->status) {
629
list_move_tail(&desc->list, &flist);
630
}
631
}
632
633
spin_unlock(&irq_entry->list_lock);
634
635
list_for_each_entry_safe(desc, n, &flist, list) {
636
/*
637
* Check against the original status as ABORT is software defined
638
* and 0xff, which DSA_COMP_STATUS_MASK can mask out.
639
*/
640
list_del(&desc->list);
641
642
if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
643
idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
644
continue;
645
}
646
647
idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
648
}
649
}
650
651
irqreturn_t idxd_wq_thread(int irq, void *data)
652
{
653
struct idxd_irq_entry *irq_entry = data;
654
655
/*
656
* There are two lists we are processing. The pending_llist is where
657
* submmiter adds all the submitted descriptor after sending it to
658
* the workqueue. It's a lockless singly linked list. The work_list
659
* is the common linux double linked list. We are in a scenario of
660
* multiple producers and a single consumer. The producers are all
661
* the kernel submitters of descriptors, and the consumer is the
662
* kernel irq handler thread for the msix vector when using threaded
663
* irq. To work with the restrictions of llist to remain lockless,
664
* we are doing the following steps:
665
* 1. Iterate through the work_list and process any completed
666
* descriptor. Delete the completed entries during iteration.
667
* 2. llist_del_all() from the pending list.
668
* 3. Iterate through the llist that was deleted from the pending list
669
* and process the completed entries.
670
* 4. If the entry is still waiting on hardware, list_add_tail() to
671
* the work_list.
672
*/
673
irq_process_work_list(irq_entry);
674
irq_process_pending_llist(irq_entry);
675
676
return IRQ_HANDLED;
677
}
678
679