Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/dma/imx-sdma.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0+
2
//
3
// drivers/dma/imx-sdma.c
4
//
5
// This file contains a driver for the Freescale Smart DMA engine
6
//
7
// Copyright 2010 Sascha Hauer, Pengutronix <[email protected]>
8
//
9
// Based on code from Freescale:
10
//
11
// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13
#include <linux/init.h>
14
#include <linux/iopoll.h>
15
#include <linux/module.h>
16
#include <linux/types.h>
17
#include <linux/bitfield.h>
18
#include <linux/bitops.h>
19
#include <linux/mm.h>
20
#include <linux/interrupt.h>
21
#include <linux/clk.h>
22
#include <linux/delay.h>
23
#include <linux/sched.h>
24
#include <linux/semaphore.h>
25
#include <linux/spinlock.h>
26
#include <linux/device.h>
27
#include <linux/genalloc.h>
28
#include <linux/dma-mapping.h>
29
#include <linux/firmware.h>
30
#include <linux/slab.h>
31
#include <linux/platform_device.h>
32
#include <linux/dmaengine.h>
33
#include <linux/of.h>
34
#include <linux/of_address.h>
35
#include <linux/of_dma.h>
36
#include <linux/workqueue.h>
37
38
#include <asm/irq.h>
39
#include <linux/dma/imx-dma.h>
40
#include <linux/regmap.h>
41
#include <linux/mfd/syscon.h>
42
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43
44
#include "dmaengine.h"
45
#include "virt-dma.h"
46
47
/* SDMA registers */
48
#define SDMA_H_C0PTR 0x000
49
#define SDMA_H_INTR 0x004
50
#define SDMA_H_STATSTOP 0x008
51
#define SDMA_H_START 0x00c
52
#define SDMA_H_EVTOVR 0x010
53
#define SDMA_H_DSPOVR 0x014
54
#define SDMA_H_HOSTOVR 0x018
55
#define SDMA_H_EVTPEND 0x01c
56
#define SDMA_H_DSPENBL 0x020
57
#define SDMA_H_RESET 0x024
58
#define SDMA_H_EVTERR 0x028
59
#define SDMA_H_INTRMSK 0x02c
60
#define SDMA_H_PSW 0x030
61
#define SDMA_H_EVTERRDBG 0x034
62
#define SDMA_H_CONFIG 0x038
63
#define SDMA_ONCE_ENB 0x040
64
#define SDMA_ONCE_DATA 0x044
65
#define SDMA_ONCE_INSTR 0x048
66
#define SDMA_ONCE_STAT 0x04c
67
#define SDMA_ONCE_CMD 0x050
68
#define SDMA_EVT_MIRROR 0x054
69
#define SDMA_ILLINSTADDR 0x058
70
#define SDMA_CHN0ADDR 0x05c
71
#define SDMA_ONCE_RTB 0x060
72
#define SDMA_XTRIG_CONF1 0x070
73
#define SDMA_XTRIG_CONF2 0x074
74
#define SDMA_CHNENBL0_IMX35 0x200
75
#define SDMA_CHNENBL0_IMX31 0x080
76
#define SDMA_CHNPRI_0 0x100
77
#define SDMA_DONE0_CONFIG 0x1000
78
79
/*
80
* Buffer descriptor status values.
81
*/
82
#define BD_DONE 0x01
83
#define BD_WRAP 0x02
84
#define BD_CONT 0x04
85
#define BD_INTR 0x08
86
#define BD_RROR 0x10
87
#define BD_LAST 0x20
88
#define BD_EXTD 0x80
89
90
/*
91
* Data Node descriptor status values.
92
*/
93
#define DND_END_OF_FRAME 0x80
94
#define DND_END_OF_XFER 0x40
95
#define DND_DONE 0x20
96
#define DND_UNUSED 0x01
97
98
/*
99
* IPCV2 descriptor status values.
100
*/
101
#define BD_IPCV2_END_OF_FRAME 0x40
102
103
#define IPCV2_MAX_NODES 50
104
/*
105
* Error bit set in the CCB status field by the SDMA,
106
* in setbd routine, in case of a transfer error
107
*/
108
#define DATA_ERROR 0x10000000
109
110
/*
111
* Buffer descriptor commands.
112
*/
113
#define C0_ADDR 0x01
114
#define C0_LOAD 0x02
115
#define C0_DUMP 0x03
116
#define C0_SETCTX 0x07
117
#define C0_GETCTX 0x03
118
#define C0_SETDM 0x01
119
#define C0_SETPM 0x04
120
#define C0_GETDM 0x02
121
#define C0_GETPM 0x08
122
/*
123
* Change endianness indicator in the BD command field
124
*/
125
#define CHANGE_ENDIANNESS 0x80
126
127
/*
128
* p_2_p watermark_level description
129
* Bits Name Description
130
* 0-7 Lower WML Lower watermark level
131
* 8 PS 1: Pad Swallowing
132
* 0: No Pad Swallowing
133
* 9 PA 1: Pad Adding
134
* 0: No Pad Adding
135
* 10 SPDIF If this bit is set both source
136
* and destination are on SPBA
137
* 11 Source Bit(SP) 1: Source on SPBA
138
* 0: Source on AIPS
139
* 12 Destination Bit(DP) 1: Destination on SPBA
140
* 0: Destination on AIPS
141
* 13 Source FIFO 1: Source is dual FIFO
142
* 0: Source is single FIFO
143
* 14 Destination FIFO 1: Destination is dual FIFO
144
* 0: Destination is single FIFO
145
* 15 --------- MUST BE 0
146
* 16-23 Higher WML HWML
147
* 24-27 N Total number of samples after
148
* which Pad adding/Swallowing
149
* must be done. It must be odd.
150
* 28 Lower WML Event(LWE) SDMA events reg to check for
151
* LWML event mask
152
* 0: LWE in EVENTS register
153
* 1: LWE in EVENTS2 register
154
* 29 Higher WML Event(HWE) SDMA events reg to check for
155
* HWML event mask
156
* 0: HWE in EVENTS register
157
* 1: HWE in EVENTS2 register
158
* 30 --------- MUST BE 0
159
* 31 CONT 1: Amount of samples to be
160
* transferred is unknown and
161
* script will keep on
162
* transferring samples as long as
163
* both events are detected and
164
* script must be manually stopped
165
* by the application
166
* 0: The amount of samples to be
167
* transferred is equal to the
168
* count field of mode word
169
*/
170
#define SDMA_WATERMARK_LEVEL_LWML 0xFF
171
#define SDMA_WATERMARK_LEVEL_PS BIT(8)
172
#define SDMA_WATERMARK_LEVEL_PA BIT(9)
173
#define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
174
#define SDMA_WATERMARK_LEVEL_SP BIT(11)
175
#define SDMA_WATERMARK_LEVEL_DP BIT(12)
176
#define SDMA_WATERMARK_LEVEL_SD BIT(13)
177
#define SDMA_WATERMARK_LEVEL_DD BIT(14)
178
#define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
179
#define SDMA_WATERMARK_LEVEL_LWE BIT(28)
180
#define SDMA_WATERMARK_LEVEL_HWE BIT(29)
181
#define SDMA_WATERMARK_LEVEL_CONT BIT(31)
182
183
#define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
184
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
185
BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
186
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
187
188
#define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
189
BIT(DMA_MEM_TO_DEV) | \
190
BIT(DMA_DEV_TO_DEV))
191
192
#define SDMA_WATERMARK_LEVEL_N_FIFOS GENMASK(15, 12)
193
#define SDMA_WATERMARK_LEVEL_OFF_FIFOS GENMASK(19, 16)
194
#define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO GENMASK(31, 28)
195
#define SDMA_WATERMARK_LEVEL_SW_DONE BIT(23)
196
197
#define SDMA_DONE0_CONFIG_DONE_SEL BIT(7)
198
#define SDMA_DONE0_CONFIG_DONE_DIS BIT(6)
199
200
/*
201
* struct sdma_script_start_addrs - SDMA script start pointers
202
*
203
* start addresses of the different functions in the physical
204
* address space of the SDMA engine.
205
*/
206
struct sdma_script_start_addrs {
207
s32 ap_2_ap_addr;
208
s32 ap_2_bp_addr;
209
s32 ap_2_ap_fixed_addr;
210
s32 bp_2_ap_addr;
211
s32 loopback_on_dsp_side_addr;
212
s32 mcu_interrupt_only_addr;
213
s32 firi_2_per_addr;
214
s32 firi_2_mcu_addr;
215
s32 per_2_firi_addr;
216
s32 mcu_2_firi_addr;
217
s32 uart_2_per_addr;
218
s32 uart_2_mcu_addr;
219
s32 per_2_app_addr;
220
s32 mcu_2_app_addr;
221
s32 per_2_per_addr;
222
s32 uartsh_2_per_addr;
223
s32 uartsh_2_mcu_addr;
224
s32 per_2_shp_addr;
225
s32 mcu_2_shp_addr;
226
s32 ata_2_mcu_addr;
227
s32 mcu_2_ata_addr;
228
s32 app_2_per_addr;
229
s32 app_2_mcu_addr;
230
s32 shp_2_per_addr;
231
s32 shp_2_mcu_addr;
232
s32 mshc_2_mcu_addr;
233
s32 mcu_2_mshc_addr;
234
s32 spdif_2_mcu_addr;
235
s32 mcu_2_spdif_addr;
236
s32 asrc_2_mcu_addr;
237
s32 ext_mem_2_ipu_addr;
238
s32 descrambler_addr;
239
s32 dptc_dvfs_addr;
240
s32 utra_addr;
241
s32 ram_code_start_addr;
242
/* End of v1 array */
243
union { s32 v1_end; s32 mcu_2_ssish_addr; };
244
s32 ssish_2_mcu_addr;
245
s32 hdmi_dma_addr;
246
/* End of v2 array */
247
union { s32 v2_end; s32 zcanfd_2_mcu_addr; };
248
s32 zqspi_2_mcu_addr;
249
s32 mcu_2_ecspi_addr;
250
s32 mcu_2_sai_addr;
251
s32 sai_2_mcu_addr;
252
s32 uart_2_mcu_rom_addr;
253
s32 uartsh_2_mcu_rom_addr;
254
s32 i2c_2_mcu_addr;
255
s32 mcu_2_i2c_addr;
256
/* End of v3 array */
257
union { s32 v3_end; s32 mcu_2_zqspi_addr; };
258
/* End of v4 array */
259
s32 v4_end[0];
260
};
261
262
/*
263
* Mode/Count of data node descriptors - IPCv2
264
*/
265
struct sdma_mode_count {
266
#define SDMA_BD_MAX_CNT 0xffff
267
u32 count : 16; /* size of the buffer pointed by this BD */
268
u32 status : 8; /* E,R,I,C,W,D status bits stored here */
269
u32 command : 8; /* command mostly used for channel 0 */
270
};
271
272
/*
273
* Buffer descriptor
274
*/
275
struct sdma_buffer_descriptor {
276
struct sdma_mode_count mode;
277
u32 buffer_addr; /* address of the buffer described */
278
u32 ext_buffer_addr; /* extended buffer address */
279
} __attribute__ ((packed));
280
281
/**
282
* struct sdma_channel_control - Channel control Block
283
*
284
* @current_bd_ptr: current buffer descriptor processed
285
* @base_bd_ptr: first element of buffer descriptor array
286
* @unused: padding. The SDMA engine expects an array of 128 byte
287
* control blocks
288
*/
289
struct sdma_channel_control {
290
u32 current_bd_ptr;
291
u32 base_bd_ptr;
292
u32 unused[2];
293
} __attribute__ ((packed));
294
295
/**
296
* struct sdma_state_registers - SDMA context for a channel
297
*
298
* @pc: program counter
299
* @unused1: unused
300
* @t: test bit: status of arithmetic & test instruction
301
* @rpc: return program counter
302
* @unused0: unused
303
* @sf: source fault while loading data
304
* @spc: loop start program counter
305
* @unused2: unused
306
* @df: destination fault while storing data
307
* @epc: loop end program counter
308
* @lm: loop mode
309
*/
310
struct sdma_state_registers {
311
u32 pc :14;
312
u32 unused1: 1;
313
u32 t : 1;
314
u32 rpc :14;
315
u32 unused0: 1;
316
u32 sf : 1;
317
u32 spc :14;
318
u32 unused2: 1;
319
u32 df : 1;
320
u32 epc :14;
321
u32 lm : 2;
322
} __attribute__ ((packed));
323
324
/**
325
* struct sdma_context_data - sdma context specific to a channel
326
*
327
* @channel_state: channel state bits
328
* @gReg: general registers
329
* @mda: burst dma destination address register
330
* @msa: burst dma source address register
331
* @ms: burst dma status register
332
* @md: burst dma data register
333
* @pda: peripheral dma destination address register
334
* @psa: peripheral dma source address register
335
* @ps: peripheral dma status register
336
* @pd: peripheral dma data register
337
* @ca: CRC polynomial register
338
* @cs: CRC accumulator register
339
* @dda: dedicated core destination address register
340
* @dsa: dedicated core source address register
341
* @ds: dedicated core status register
342
* @dd: dedicated core data register
343
* @scratch0: 1st word of dedicated ram for context switch
344
* @scratch1: 2nd word of dedicated ram for context switch
345
* @scratch2: 3rd word of dedicated ram for context switch
346
* @scratch3: 4th word of dedicated ram for context switch
347
* @scratch4: 5th word of dedicated ram for context switch
348
* @scratch5: 6th word of dedicated ram for context switch
349
* @scratch6: 7th word of dedicated ram for context switch
350
* @scratch7: 8th word of dedicated ram for context switch
351
*/
352
struct sdma_context_data {
353
struct sdma_state_registers channel_state;
354
u32 gReg[8];
355
u32 mda;
356
u32 msa;
357
u32 ms;
358
u32 md;
359
u32 pda;
360
u32 psa;
361
u32 ps;
362
u32 pd;
363
u32 ca;
364
u32 cs;
365
u32 dda;
366
u32 dsa;
367
u32 ds;
368
u32 dd;
369
u32 scratch0;
370
u32 scratch1;
371
u32 scratch2;
372
u32 scratch3;
373
u32 scratch4;
374
u32 scratch5;
375
u32 scratch6;
376
u32 scratch7;
377
} __attribute__ ((packed));
378
379
380
struct sdma_engine;
381
382
/**
383
* struct sdma_desc - descriptor structor for one transfer
384
* @vd: descriptor for virt dma
385
* @num_bd: number of descriptors currently handling
386
* @bd_phys: physical address of bd
387
* @buf_tail: ID of the buffer that was processed
388
* @buf_ptail: ID of the previous buffer that was processed
389
* @period_len: period length, used in cyclic.
390
* @chn_real_count: the real count updated from bd->mode.count
391
* @chn_count: the transfer count set
392
* @sdmac: sdma_channel pointer
393
* @bd: pointer of allocate bd
394
*/
395
struct sdma_desc {
396
struct virt_dma_desc vd;
397
unsigned int num_bd;
398
dma_addr_t bd_phys;
399
unsigned int buf_tail;
400
unsigned int buf_ptail;
401
unsigned int period_len;
402
unsigned int chn_real_count;
403
unsigned int chn_count;
404
struct sdma_channel *sdmac;
405
struct sdma_buffer_descriptor *bd;
406
};
407
408
/**
409
* struct sdma_channel - housekeeping for a SDMA channel
410
*
411
* @vc: virt_dma base structure
412
* @desc: sdma description including vd and other special member
413
* @sdma: pointer to the SDMA engine for this channel
414
* @channel: the channel number, matches dmaengine chan_id + 1
415
* @direction: transfer type. Needed for setting SDMA script
416
* @slave_config: Slave configuration
417
* @peripheral_type: Peripheral type. Needed for setting SDMA script
418
* @event_id0: aka dma request line
419
* @event_id1: for channels that use 2 events
420
* @word_size: peripheral access size
421
* @pc_from_device: script address for those device_2_memory
422
* @pc_to_device: script address for those memory_2_device
423
* @device_to_device: script address for those device_2_device
424
* @pc_to_pc: script address for those memory_2_memory
425
* @flags: loop mode or not
426
* @per_address: peripheral source or destination address in common case
427
* destination address in p_2_p case
428
* @per_address2: peripheral source address in p_2_p case
429
* @event_mask: event mask used in p_2_p script
430
* @watermark_level: value for gReg[7], some script will extend it from
431
* basic watermark such as p_2_p
432
* @shp_addr: value for gReg[6]
433
* @per_addr: value for gReg[2]
434
* @status: status of dma channel
435
* @data: specific sdma interface structure
436
* @terminate_worker: used to call back into terminate work function
437
* @terminated: terminated list
438
* @is_ram_script: flag for script in ram
439
* @n_fifos_src: number of source device fifos
440
* @n_fifos_dst: number of destination device fifos
441
* @sw_done: software done flag
442
* @stride_fifos_src: stride for source device FIFOs
443
* @stride_fifos_dst: stride for destination device FIFOs
444
* @words_per_fifo: copy number of words one time for one FIFO
445
*/
446
struct sdma_channel {
447
struct virt_dma_chan vc;
448
struct sdma_desc *desc;
449
struct sdma_engine *sdma;
450
unsigned int channel;
451
enum dma_transfer_direction direction;
452
struct dma_slave_config slave_config;
453
enum sdma_peripheral_type peripheral_type;
454
unsigned int event_id0;
455
unsigned int event_id1;
456
enum dma_slave_buswidth word_size;
457
unsigned int pc_from_device, pc_to_device;
458
unsigned int device_to_device;
459
unsigned int pc_to_pc;
460
unsigned long flags;
461
dma_addr_t per_address, per_address2;
462
unsigned long event_mask[2];
463
unsigned long watermark_level;
464
u32 shp_addr, per_addr;
465
enum dma_status status;
466
struct imx_dma_data data;
467
struct work_struct terminate_worker;
468
struct list_head terminated;
469
bool is_ram_script;
470
unsigned int n_fifos_src;
471
unsigned int n_fifos_dst;
472
unsigned int stride_fifos_src;
473
unsigned int stride_fifos_dst;
474
unsigned int words_per_fifo;
475
bool sw_done;
476
};
477
478
#define IMX_DMA_SG_LOOP BIT(0)
479
480
#define MAX_DMA_CHANNELS 32
481
#define MXC_SDMA_DEFAULT_PRIORITY 1
482
#define MXC_SDMA_MIN_PRIORITY 1
483
#define MXC_SDMA_MAX_PRIORITY 7
484
485
#define SDMA_FIRMWARE_MAGIC 0x414d4453
486
487
/**
488
* struct sdma_firmware_header - Layout of the firmware image
489
*
490
* @magic: "SDMA"
491
* @version_major: increased whenever layout of struct
492
* sdma_script_start_addrs changes.
493
* @version_minor: firmware minor version (for binary compatible changes)
494
* @script_addrs_start: offset of struct sdma_script_start_addrs in this image
495
* @num_script_addrs: Number of script addresses in this image
496
* @ram_code_start: offset of SDMA ram image in this firmware image
497
* @ram_code_size: size of SDMA ram image
498
*/
499
struct sdma_firmware_header {
500
u32 magic;
501
u32 version_major;
502
u32 version_minor;
503
u32 script_addrs_start;
504
u32 num_script_addrs;
505
u32 ram_code_start;
506
u32 ram_code_size;
507
};
508
509
struct sdma_driver_data {
510
int chnenbl0;
511
int num_events;
512
struct sdma_script_start_addrs *script_addrs;
513
bool check_ratio;
514
/*
515
* ecspi ERR009165 fixed should be done in sdma script
516
* and it has been fixed in soc from i.mx6ul.
517
* please get more information from the below link:
518
* https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
519
*/
520
bool ecspi_fixed;
521
};
522
523
struct sdma_engine {
524
struct device *dev;
525
struct sdma_channel channel[MAX_DMA_CHANNELS];
526
struct sdma_channel_control *channel_control;
527
void __iomem *regs;
528
struct sdma_context_data *context;
529
dma_addr_t context_phys;
530
struct dma_device dma_device;
531
struct clk *clk_ipg;
532
struct clk *clk_ahb;
533
spinlock_t channel_0_lock;
534
u32 script_number;
535
struct sdma_script_start_addrs *script_addrs;
536
const struct sdma_driver_data *drvdata;
537
u32 spba_start_addr;
538
u32 spba_end_addr;
539
unsigned int irq;
540
dma_addr_t bd0_phys;
541
struct sdma_buffer_descriptor *bd0;
542
/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
543
bool clk_ratio;
544
bool fw_loaded;
545
struct gen_pool *iram_pool;
546
};
547
548
static int sdma_config_write(struct dma_chan *chan,
549
struct dma_slave_config *dmaengine_cfg,
550
enum dma_transfer_direction direction);
551
552
static struct sdma_driver_data sdma_imx31 = {
553
.chnenbl0 = SDMA_CHNENBL0_IMX31,
554
.num_events = 32,
555
};
556
557
static struct sdma_script_start_addrs sdma_script_imx25 = {
558
.ap_2_ap_addr = 729,
559
.uart_2_mcu_addr = 904,
560
.per_2_app_addr = 1255,
561
.mcu_2_app_addr = 834,
562
.uartsh_2_mcu_addr = 1120,
563
.per_2_shp_addr = 1329,
564
.mcu_2_shp_addr = 1048,
565
.ata_2_mcu_addr = 1560,
566
.mcu_2_ata_addr = 1479,
567
.app_2_per_addr = 1189,
568
.app_2_mcu_addr = 770,
569
.shp_2_per_addr = 1407,
570
.shp_2_mcu_addr = 979,
571
};
572
573
static struct sdma_driver_data sdma_imx25 = {
574
.chnenbl0 = SDMA_CHNENBL0_IMX35,
575
.num_events = 48,
576
.script_addrs = &sdma_script_imx25,
577
};
578
579
static struct sdma_driver_data sdma_imx35 = {
580
.chnenbl0 = SDMA_CHNENBL0_IMX35,
581
.num_events = 48,
582
};
583
584
static struct sdma_script_start_addrs sdma_script_imx51 = {
585
.ap_2_ap_addr = 642,
586
.uart_2_mcu_addr = 817,
587
.mcu_2_app_addr = 747,
588
.mcu_2_shp_addr = 961,
589
.ata_2_mcu_addr = 1473,
590
.mcu_2_ata_addr = 1392,
591
.app_2_per_addr = 1033,
592
.app_2_mcu_addr = 683,
593
.shp_2_per_addr = 1251,
594
.shp_2_mcu_addr = 892,
595
};
596
597
static struct sdma_driver_data sdma_imx51 = {
598
.chnenbl0 = SDMA_CHNENBL0_IMX35,
599
.num_events = 48,
600
.script_addrs = &sdma_script_imx51,
601
};
602
603
static struct sdma_script_start_addrs sdma_script_imx53 = {
604
.ap_2_ap_addr = 642,
605
.app_2_mcu_addr = 683,
606
.mcu_2_app_addr = 747,
607
.uart_2_mcu_addr = 817,
608
.shp_2_mcu_addr = 891,
609
.mcu_2_shp_addr = 960,
610
.uartsh_2_mcu_addr = 1032,
611
.spdif_2_mcu_addr = 1100,
612
.mcu_2_spdif_addr = 1134,
613
.firi_2_mcu_addr = 1193,
614
.mcu_2_firi_addr = 1290,
615
};
616
617
static struct sdma_driver_data sdma_imx53 = {
618
.chnenbl0 = SDMA_CHNENBL0_IMX35,
619
.num_events = 48,
620
.script_addrs = &sdma_script_imx53,
621
};
622
623
static struct sdma_script_start_addrs sdma_script_imx6q = {
624
.ap_2_ap_addr = 642,
625
.uart_2_mcu_addr = 817,
626
.mcu_2_app_addr = 747,
627
.per_2_per_addr = 6331,
628
.uartsh_2_mcu_addr = 1032,
629
.mcu_2_shp_addr = 960,
630
.app_2_mcu_addr = 683,
631
.shp_2_mcu_addr = 891,
632
.spdif_2_mcu_addr = 1100,
633
.mcu_2_spdif_addr = 1134,
634
};
635
636
static struct sdma_driver_data sdma_imx6q = {
637
.chnenbl0 = SDMA_CHNENBL0_IMX35,
638
.num_events = 48,
639
.script_addrs = &sdma_script_imx6q,
640
};
641
642
static struct sdma_driver_data sdma_imx6ul = {
643
.chnenbl0 = SDMA_CHNENBL0_IMX35,
644
.num_events = 48,
645
.script_addrs = &sdma_script_imx6q,
646
.ecspi_fixed = true,
647
};
648
649
static struct sdma_script_start_addrs sdma_script_imx7d = {
650
.ap_2_ap_addr = 644,
651
.uart_2_mcu_addr = 819,
652
.mcu_2_app_addr = 749,
653
.uartsh_2_mcu_addr = 1034,
654
.mcu_2_shp_addr = 962,
655
.app_2_mcu_addr = 685,
656
.shp_2_mcu_addr = 893,
657
.spdif_2_mcu_addr = 1102,
658
.mcu_2_spdif_addr = 1136,
659
};
660
661
static struct sdma_driver_data sdma_imx7d = {
662
.chnenbl0 = SDMA_CHNENBL0_IMX35,
663
.num_events = 48,
664
.script_addrs = &sdma_script_imx7d,
665
};
666
667
static struct sdma_driver_data sdma_imx8mq = {
668
.chnenbl0 = SDMA_CHNENBL0_IMX35,
669
.num_events = 48,
670
.script_addrs = &sdma_script_imx7d,
671
.check_ratio = 1,
672
};
673
674
static const struct of_device_id sdma_dt_ids[] = {
675
{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
676
{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
677
{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
678
{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
679
{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
680
{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
681
{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
682
{ .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
683
{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
684
{ /* sentinel */ }
685
};
686
MODULE_DEVICE_TABLE(of, sdma_dt_ids);
687
688
#define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
689
#define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
690
#define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
691
#define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
692
693
static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
694
{
695
u32 chnenbl0 = sdma->drvdata->chnenbl0;
696
return chnenbl0 + event * 4;
697
}
698
699
static int sdma_config_ownership(struct sdma_channel *sdmac,
700
bool event_override, bool mcu_override, bool dsp_override)
701
{
702
struct sdma_engine *sdma = sdmac->sdma;
703
int channel = sdmac->channel;
704
unsigned long evt, mcu, dsp;
705
706
if (event_override && mcu_override && dsp_override)
707
return -EINVAL;
708
709
evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
710
mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
711
dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
712
713
if (dsp_override)
714
__clear_bit(channel, &dsp);
715
else
716
__set_bit(channel, &dsp);
717
718
if (event_override)
719
__clear_bit(channel, &evt);
720
else
721
__set_bit(channel, &evt);
722
723
if (mcu_override)
724
__clear_bit(channel, &mcu);
725
else
726
__set_bit(channel, &mcu);
727
728
writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
729
writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
730
writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
731
732
return 0;
733
}
734
735
static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
736
{
737
return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
738
}
739
740
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
741
{
742
writel(BIT(channel), sdma->regs + SDMA_H_START);
743
}
744
745
/*
746
* sdma_run_channel0 - run a channel and wait till it's done
747
*/
748
static int sdma_run_channel0(struct sdma_engine *sdma)
749
{
750
int ret;
751
u32 reg;
752
753
sdma_enable_channel(sdma, 0);
754
755
ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
756
reg, !(reg & 1), 1, 500);
757
if (ret)
758
dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
759
760
/* Set bits of CONFIG register with dynamic context switching */
761
reg = readl(sdma->regs + SDMA_H_CONFIG);
762
if ((reg & SDMA_H_CONFIG_CSM) == 0) {
763
reg |= SDMA_H_CONFIG_CSM;
764
writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
765
}
766
767
return ret;
768
}
769
770
static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
771
u32 address)
772
{
773
struct sdma_buffer_descriptor *bd0 = sdma->bd0;
774
void *buf_virt;
775
dma_addr_t buf_phys;
776
int ret;
777
unsigned long flags;
778
779
buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
780
if (!buf_virt)
781
return -ENOMEM;
782
783
spin_lock_irqsave(&sdma->channel_0_lock, flags);
784
785
bd0->mode.command = C0_SETPM;
786
bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
787
bd0->mode.count = size / 2;
788
bd0->buffer_addr = buf_phys;
789
bd0->ext_buffer_addr = address;
790
791
memcpy(buf_virt, buf, size);
792
793
ret = sdma_run_channel0(sdma);
794
795
spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
796
797
dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
798
799
return ret;
800
}
801
802
static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
803
{
804
struct sdma_engine *sdma = sdmac->sdma;
805
int channel = sdmac->channel;
806
unsigned long val;
807
u32 chnenbl = chnenbl_ofs(sdma, event);
808
809
val = readl_relaxed(sdma->regs + chnenbl);
810
__set_bit(channel, &val);
811
writel_relaxed(val, sdma->regs + chnenbl);
812
813
/* Set SDMA_DONEx_CONFIG is sw_done enabled */
814
if (sdmac->sw_done) {
815
val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
816
val |= SDMA_DONE0_CONFIG_DONE_SEL;
817
val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
818
writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
819
}
820
}
821
822
static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
823
{
824
struct sdma_engine *sdma = sdmac->sdma;
825
int channel = sdmac->channel;
826
u32 chnenbl = chnenbl_ofs(sdma, event);
827
unsigned long val;
828
829
val = readl_relaxed(sdma->regs + chnenbl);
830
__clear_bit(channel, &val);
831
writel_relaxed(val, sdma->regs + chnenbl);
832
}
833
834
static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
835
{
836
return container_of(t, struct sdma_desc, vd.tx);
837
}
838
839
static void sdma_start_desc(struct sdma_channel *sdmac)
840
{
841
struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
842
struct sdma_desc *desc;
843
struct sdma_engine *sdma = sdmac->sdma;
844
int channel = sdmac->channel;
845
846
if (!vd) {
847
sdmac->desc = NULL;
848
return;
849
}
850
sdmac->desc = desc = to_sdma_desc(&vd->tx);
851
852
list_del(&vd->node);
853
854
sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
855
sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
856
sdma_enable_channel(sdma, sdmac->channel);
857
}
858
859
static void sdma_update_channel_loop(struct sdma_channel *sdmac)
860
{
861
struct sdma_buffer_descriptor *bd;
862
int error = 0;
863
enum dma_status old_status = sdmac->status;
864
865
/*
866
* loop mode. Iterate over descriptors, re-setup them and
867
* call callback function.
868
*/
869
while (sdmac->desc) {
870
struct sdma_desc *desc = sdmac->desc;
871
872
bd = &desc->bd[desc->buf_tail];
873
874
if (bd->mode.status & BD_DONE)
875
break;
876
877
if (bd->mode.status & BD_RROR) {
878
bd->mode.status &= ~BD_RROR;
879
sdmac->status = DMA_ERROR;
880
error = -EIO;
881
}
882
883
/*
884
* We use bd->mode.count to calculate the residue, since contains
885
* the number of bytes present in the current buffer descriptor.
886
*/
887
888
desc->chn_real_count = bd->mode.count;
889
bd->mode.count = desc->period_len;
890
desc->buf_ptail = desc->buf_tail;
891
desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
892
893
/*
894
* The callback is called from the interrupt context in order
895
* to reduce latency and to avoid the risk of altering the
896
* SDMA transaction status by the time the client tasklet is
897
* executed.
898
*/
899
spin_unlock(&sdmac->vc.lock);
900
dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
901
spin_lock(&sdmac->vc.lock);
902
903
/* Assign buffer ownership to SDMA */
904
bd->mode.status |= BD_DONE;
905
906
if (error)
907
sdmac->status = old_status;
908
}
909
910
/*
911
* SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
912
* owned buffer is available (i.e. BD_DONE was set too late).
913
*/
914
if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
915
dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
916
sdma_enable_channel(sdmac->sdma, sdmac->channel);
917
}
918
}
919
920
static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
921
{
922
struct sdma_channel *sdmac = (struct sdma_channel *) data;
923
struct sdma_buffer_descriptor *bd;
924
int i, error = 0;
925
926
sdmac->desc->chn_real_count = 0;
927
/*
928
* non loop mode. Iterate over all descriptors, collect
929
* errors and call callback function
930
*/
931
for (i = 0; i < sdmac->desc->num_bd; i++) {
932
bd = &sdmac->desc->bd[i];
933
934
if (bd->mode.status & (BD_DONE | BD_RROR))
935
error = -EIO;
936
sdmac->desc->chn_real_count += bd->mode.count;
937
}
938
939
if (error)
940
sdmac->status = DMA_ERROR;
941
else
942
sdmac->status = DMA_COMPLETE;
943
}
944
945
static irqreturn_t sdma_int_handler(int irq, void *dev_id)
946
{
947
struct sdma_engine *sdma = dev_id;
948
unsigned long stat;
949
950
stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
951
writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
952
/* channel 0 is special and not handled here, see run_channel0() */
953
stat &= ~1;
954
955
while (stat) {
956
int channel = fls(stat) - 1;
957
struct sdma_channel *sdmac = &sdma->channel[channel];
958
struct sdma_desc *desc;
959
960
spin_lock(&sdmac->vc.lock);
961
desc = sdmac->desc;
962
if (desc) {
963
if (sdmac->flags & IMX_DMA_SG_LOOP) {
964
if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
965
sdma_update_channel_loop(sdmac);
966
else
967
vchan_cyclic_callback(&desc->vd);
968
} else {
969
mxc_sdma_handle_channel_normal(sdmac);
970
vchan_cookie_complete(&desc->vd);
971
sdma_start_desc(sdmac);
972
}
973
}
974
975
spin_unlock(&sdmac->vc.lock);
976
__clear_bit(channel, &stat);
977
}
978
979
return IRQ_HANDLED;
980
}
981
982
/*
983
* sets the pc of SDMA script according to the peripheral type
984
*/
985
static int sdma_get_pc(struct sdma_channel *sdmac,
986
enum sdma_peripheral_type peripheral_type)
987
{
988
struct sdma_engine *sdma = sdmac->sdma;
989
int per_2_emi = 0, emi_2_per = 0;
990
/*
991
* These are needed once we start to support transfers between
992
* two peripherals or memory-to-memory transfers
993
*/
994
int per_2_per = 0, emi_2_emi = 0;
995
996
sdmac->pc_from_device = 0;
997
sdmac->pc_to_device = 0;
998
sdmac->device_to_device = 0;
999
sdmac->pc_to_pc = 0;
1000
sdmac->is_ram_script = false;
1001
1002
switch (peripheral_type) {
1003
case IMX_DMATYPE_MEMORY:
1004
emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
1005
break;
1006
case IMX_DMATYPE_DSP:
1007
emi_2_per = sdma->script_addrs->bp_2_ap_addr;
1008
per_2_emi = sdma->script_addrs->ap_2_bp_addr;
1009
break;
1010
case IMX_DMATYPE_FIRI:
1011
per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1012
emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1013
break;
1014
case IMX_DMATYPE_UART:
1015
per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1016
emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1017
break;
1018
case IMX_DMATYPE_UART_SP:
1019
per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1020
emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1021
break;
1022
case IMX_DMATYPE_ATA:
1023
per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1024
emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1025
break;
1026
case IMX_DMATYPE_CSPI:
1027
per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1028
1029
/* Use rom script mcu_2_app if ERR009165 fixed */
1030
if (sdmac->sdma->drvdata->ecspi_fixed) {
1031
emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1032
} else {
1033
emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1034
sdmac->is_ram_script = true;
1035
}
1036
1037
break;
1038
case IMX_DMATYPE_EXT:
1039
case IMX_DMATYPE_SSI:
1040
case IMX_DMATYPE_SAI:
1041
per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1042
emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1043
break;
1044
case IMX_DMATYPE_SSI_DUAL:
1045
per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1046
emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1047
sdmac->is_ram_script = true;
1048
break;
1049
case IMX_DMATYPE_SSI_SP:
1050
case IMX_DMATYPE_MMC:
1051
case IMX_DMATYPE_SDHC:
1052
case IMX_DMATYPE_CSPI_SP:
1053
case IMX_DMATYPE_ESAI:
1054
case IMX_DMATYPE_MSHC_SP:
1055
per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1056
emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1057
break;
1058
case IMX_DMATYPE_ASRC:
1059
per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1060
emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1061
per_2_per = sdma->script_addrs->per_2_per_addr;
1062
sdmac->is_ram_script = true;
1063
break;
1064
case IMX_DMATYPE_ASRC_SP:
1065
per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1066
emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1067
per_2_per = sdma->script_addrs->per_2_per_addr;
1068
break;
1069
case IMX_DMATYPE_MSHC:
1070
per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1071
emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1072
break;
1073
case IMX_DMATYPE_CCM:
1074
per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1075
break;
1076
case IMX_DMATYPE_SPDIF:
1077
per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1078
emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1079
break;
1080
case IMX_DMATYPE_IPU_MEMORY:
1081
emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1082
break;
1083
case IMX_DMATYPE_MULTI_SAI:
1084
per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1085
emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1086
break;
1087
case IMX_DMATYPE_I2C:
1088
per_2_emi = sdma->script_addrs->i2c_2_mcu_addr;
1089
emi_2_per = sdma->script_addrs->mcu_2_i2c_addr;
1090
sdmac->is_ram_script = true;
1091
break;
1092
case IMX_DMATYPE_HDMI:
1093
emi_2_per = sdma->script_addrs->hdmi_dma_addr;
1094
sdmac->is_ram_script = true;
1095
break;
1096
default:
1097
dev_err(sdma->dev, "Unsupported transfer type %d\n",
1098
peripheral_type);
1099
return -EINVAL;
1100
}
1101
1102
sdmac->pc_from_device = per_2_emi;
1103
sdmac->pc_to_device = emi_2_per;
1104
sdmac->device_to_device = per_2_per;
1105
sdmac->pc_to_pc = emi_2_emi;
1106
1107
return 0;
1108
}
1109
1110
static int sdma_load_context(struct sdma_channel *sdmac)
1111
{
1112
struct sdma_engine *sdma = sdmac->sdma;
1113
int channel = sdmac->channel;
1114
int load_address;
1115
struct sdma_context_data *context = sdma->context;
1116
struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1117
int ret;
1118
unsigned long flags;
1119
1120
if (sdmac->direction == DMA_DEV_TO_MEM)
1121
load_address = sdmac->pc_from_device;
1122
else if (sdmac->direction == DMA_DEV_TO_DEV)
1123
load_address = sdmac->device_to_device;
1124
else if (sdmac->direction == DMA_MEM_TO_MEM)
1125
load_address = sdmac->pc_to_pc;
1126
else
1127
load_address = sdmac->pc_to_device;
1128
1129
if (load_address < 0)
1130
return load_address;
1131
1132
dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1133
dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1134
dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1135
dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1136
dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1137
dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1138
1139
spin_lock_irqsave(&sdma->channel_0_lock, flags);
1140
1141
memset(context, 0, sizeof(*context));
1142
context->channel_state.pc = load_address;
1143
1144
/* Send by context the event mask,base address for peripheral
1145
* and watermark level
1146
*/
1147
if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1148
context->gReg[4] = sdmac->per_addr;
1149
context->gReg[6] = sdmac->shp_addr;
1150
} else {
1151
context->gReg[0] = sdmac->event_mask[1];
1152
context->gReg[1] = sdmac->event_mask[0];
1153
context->gReg[2] = sdmac->per_addr;
1154
context->gReg[6] = sdmac->shp_addr;
1155
context->gReg[7] = sdmac->watermark_level;
1156
}
1157
1158
bd0->mode.command = C0_SETDM;
1159
bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1160
bd0->mode.count = sizeof(*context) / 4;
1161
bd0->buffer_addr = sdma->context_phys;
1162
bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1163
ret = sdma_run_channel0(sdma);
1164
1165
spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1166
1167
return ret;
1168
}
1169
1170
static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1171
{
1172
return container_of(chan, struct sdma_channel, vc.chan);
1173
}
1174
1175
static int sdma_disable_channel(struct dma_chan *chan)
1176
{
1177
struct sdma_channel *sdmac = to_sdma_chan(chan);
1178
struct sdma_engine *sdma = sdmac->sdma;
1179
int channel = sdmac->channel;
1180
1181
writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1182
sdmac->status = DMA_ERROR;
1183
1184
return 0;
1185
}
1186
static void sdma_channel_terminate_work(struct work_struct *work)
1187
{
1188
struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1189
terminate_worker);
1190
/*
1191
* According to NXP R&D team a delay of one BD SDMA cost time
1192
* (maximum is 1ms) should be added after disable of the channel
1193
* bit, to ensure SDMA core has really been stopped after SDMA
1194
* clients call .device_terminate_all.
1195
*/
1196
usleep_range(1000, 2000);
1197
1198
vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1199
}
1200
1201
static int sdma_terminate_all(struct dma_chan *chan)
1202
{
1203
struct sdma_channel *sdmac = to_sdma_chan(chan);
1204
unsigned long flags;
1205
1206
spin_lock_irqsave(&sdmac->vc.lock, flags);
1207
1208
sdma_disable_channel(chan);
1209
1210
if (sdmac->desc) {
1211
vchan_terminate_vdesc(&sdmac->desc->vd);
1212
/*
1213
* move out current descriptor into terminated list so that
1214
* it could be free in sdma_channel_terminate_work alone
1215
* later without potential involving next descriptor raised
1216
* up before the last descriptor terminated.
1217
*/
1218
vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1219
sdmac->desc = NULL;
1220
schedule_work(&sdmac->terminate_worker);
1221
}
1222
1223
spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1224
1225
return 0;
1226
}
1227
1228
static void sdma_channel_synchronize(struct dma_chan *chan)
1229
{
1230
struct sdma_channel *sdmac = to_sdma_chan(chan);
1231
1232
vchan_synchronize(&sdmac->vc);
1233
1234
flush_work(&sdmac->terminate_worker);
1235
}
1236
1237
static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1238
{
1239
struct sdma_engine *sdma = sdmac->sdma;
1240
1241
int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1242
int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1243
1244
set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1245
set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1246
1247
if (sdmac->event_id0 > 31)
1248
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1249
1250
if (sdmac->event_id1 > 31)
1251
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1252
1253
/*
1254
* If LWML(src_maxburst) > HWML(dst_maxburst), we need
1255
* swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1256
* r0(event_mask[1]) and r1(event_mask[0]).
1257
*/
1258
if (lwml > hwml) {
1259
sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1260
SDMA_WATERMARK_LEVEL_HWML);
1261
sdmac->watermark_level |= hwml;
1262
sdmac->watermark_level |= lwml << 16;
1263
swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1264
}
1265
1266
if (sdmac->per_address2 >= sdma->spba_start_addr &&
1267
sdmac->per_address2 <= sdma->spba_end_addr)
1268
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1269
1270
if (sdmac->per_address >= sdma->spba_start_addr &&
1271
sdmac->per_address <= sdma->spba_end_addr)
1272
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1273
1274
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1275
1276
/*
1277
* Limitation: The p2p script support dual fifos in maximum,
1278
* So when fifo number is larger than 1, force enable dual
1279
* fifos.
1280
*/
1281
if (sdmac->n_fifos_src > 1)
1282
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SD;
1283
if (sdmac->n_fifos_dst > 1)
1284
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DD;
1285
}
1286
1287
static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1288
{
1289
unsigned int n_fifos;
1290
unsigned int stride_fifos;
1291
unsigned int words_per_fifo;
1292
1293
if (sdmac->sw_done)
1294
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1295
1296
if (sdmac->direction == DMA_DEV_TO_MEM) {
1297
n_fifos = sdmac->n_fifos_src;
1298
stride_fifos = sdmac->stride_fifos_src;
1299
} else {
1300
n_fifos = sdmac->n_fifos_dst;
1301
stride_fifos = sdmac->stride_fifos_dst;
1302
}
1303
1304
words_per_fifo = sdmac->words_per_fifo;
1305
1306
sdmac->watermark_level |=
1307
FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1308
sdmac->watermark_level |=
1309
FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1310
if (words_per_fifo)
1311
sdmac->watermark_level |=
1312
FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1313
}
1314
1315
static int sdma_config_channel(struct dma_chan *chan)
1316
{
1317
struct sdma_channel *sdmac = to_sdma_chan(chan);
1318
int ret;
1319
1320
sdma_disable_channel(chan);
1321
1322
sdmac->event_mask[0] = 0;
1323
sdmac->event_mask[1] = 0;
1324
sdmac->shp_addr = 0;
1325
sdmac->per_addr = 0;
1326
1327
switch (sdmac->peripheral_type) {
1328
case IMX_DMATYPE_DSP:
1329
sdma_config_ownership(sdmac, false, true, true);
1330
break;
1331
case IMX_DMATYPE_MEMORY:
1332
sdma_config_ownership(sdmac, false, true, false);
1333
break;
1334
default:
1335
sdma_config_ownership(sdmac, true, true, false);
1336
break;
1337
}
1338
1339
ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1340
if (ret)
1341
return ret;
1342
1343
if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1344
(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1345
/* Handle multiple event channels differently */
1346
if (sdmac->event_id1) {
1347
if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1348
sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1349
sdma_set_watermarklevel_for_p2p(sdmac);
1350
} else {
1351
if (sdmac->peripheral_type ==
1352
IMX_DMATYPE_MULTI_SAI)
1353
sdma_set_watermarklevel_for_sais(sdmac);
1354
1355
__set_bit(sdmac->event_id0, sdmac->event_mask);
1356
}
1357
1358
/* Address */
1359
sdmac->shp_addr = sdmac->per_address;
1360
sdmac->per_addr = sdmac->per_address2;
1361
} else {
1362
sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1363
}
1364
1365
return 0;
1366
}
1367
1368
static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1369
unsigned int priority)
1370
{
1371
struct sdma_engine *sdma = sdmac->sdma;
1372
int channel = sdmac->channel;
1373
1374
if (priority < MXC_SDMA_MIN_PRIORITY
1375
|| priority > MXC_SDMA_MAX_PRIORITY) {
1376
return -EINVAL;
1377
}
1378
1379
writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1380
1381
return 0;
1382
}
1383
1384
static int sdma_request_channel0(struct sdma_engine *sdma)
1385
{
1386
int ret = -EBUSY;
1387
1388
if (sdma->iram_pool)
1389
sdma->bd0 = gen_pool_dma_alloc(sdma->iram_pool,
1390
sizeof(struct sdma_buffer_descriptor),
1391
&sdma->bd0_phys);
1392
else
1393
sdma->bd0 = dma_alloc_coherent(sdma->dev,
1394
sizeof(struct sdma_buffer_descriptor),
1395
&sdma->bd0_phys, GFP_NOWAIT);
1396
if (!sdma->bd0) {
1397
ret = -ENOMEM;
1398
goto out;
1399
}
1400
1401
sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1402
sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1403
1404
sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1405
return 0;
1406
out:
1407
1408
return ret;
1409
}
1410
1411
1412
static int sdma_alloc_bd(struct sdma_desc *desc)
1413
{
1414
u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1415
struct sdma_engine *sdma = desc->sdmac->sdma;
1416
int ret = 0;
1417
1418
if (sdma->iram_pool)
1419
desc->bd = gen_pool_dma_alloc(sdma->iram_pool, bd_size, &desc->bd_phys);
1420
else
1421
desc->bd = dma_alloc_coherent(sdma->dev, bd_size, &desc->bd_phys, GFP_NOWAIT);
1422
1423
if (!desc->bd) {
1424
ret = -ENOMEM;
1425
goto out;
1426
}
1427
out:
1428
return ret;
1429
}
1430
1431
static void sdma_free_bd(struct sdma_desc *desc)
1432
{
1433
u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1434
struct sdma_engine *sdma = desc->sdmac->sdma;
1435
1436
if (sdma->iram_pool)
1437
gen_pool_free(sdma->iram_pool, (unsigned long)desc->bd, bd_size);
1438
else
1439
dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd, desc->bd_phys);
1440
}
1441
1442
static void sdma_desc_free(struct virt_dma_desc *vd)
1443
{
1444
struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1445
1446
sdma_free_bd(desc);
1447
kfree(desc);
1448
}
1449
1450
static int sdma_alloc_chan_resources(struct dma_chan *chan)
1451
{
1452
struct sdma_channel *sdmac = to_sdma_chan(chan);
1453
struct imx_dma_data *data = chan->private;
1454
struct imx_dma_data mem_data;
1455
int prio, ret;
1456
1457
/*
1458
* MEMCPY may never setup chan->private by filter function such as
1459
* dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1460
* Please note in any other slave case, you have to setup chan->private
1461
* with 'struct imx_dma_data' in your own filter function if you want to
1462
* request DMA channel by dma_request_channel(), otherwise, 'MEMCPY in
1463
* case?' will appear to warn you to correct your filter function.
1464
*/
1465
if (!data) {
1466
dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1467
mem_data.priority = 2;
1468
mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1469
mem_data.dma_request = 0;
1470
mem_data.dma_request2 = 0;
1471
data = &mem_data;
1472
1473
ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1474
if (ret)
1475
return ret;
1476
}
1477
1478
switch (data->priority) {
1479
case DMA_PRIO_HIGH:
1480
prio = 3;
1481
break;
1482
case DMA_PRIO_MEDIUM:
1483
prio = 2;
1484
break;
1485
case DMA_PRIO_LOW:
1486
default:
1487
prio = 1;
1488
break;
1489
}
1490
1491
sdmac->peripheral_type = data->peripheral_type;
1492
sdmac->event_id0 = data->dma_request;
1493
sdmac->event_id1 = data->dma_request2;
1494
1495
ret = clk_enable(sdmac->sdma->clk_ipg);
1496
if (ret)
1497
return ret;
1498
ret = clk_enable(sdmac->sdma->clk_ahb);
1499
if (ret)
1500
goto disable_clk_ipg;
1501
1502
ret = sdma_set_channel_priority(sdmac, prio);
1503
if (ret)
1504
goto disable_clk_ahb;
1505
1506
return 0;
1507
1508
disable_clk_ahb:
1509
clk_disable(sdmac->sdma->clk_ahb);
1510
disable_clk_ipg:
1511
clk_disable(sdmac->sdma->clk_ipg);
1512
return ret;
1513
}
1514
1515
static void sdma_free_chan_resources(struct dma_chan *chan)
1516
{
1517
struct sdma_channel *sdmac = to_sdma_chan(chan);
1518
struct sdma_engine *sdma = sdmac->sdma;
1519
1520
sdma_terminate_all(chan);
1521
1522
sdma_channel_synchronize(chan);
1523
1524
sdma_event_disable(sdmac, sdmac->event_id0);
1525
if (sdmac->event_id1)
1526
sdma_event_disable(sdmac, sdmac->event_id1);
1527
1528
sdmac->event_id0 = 0;
1529
sdmac->event_id1 = 0;
1530
1531
sdma_set_channel_priority(sdmac, 0);
1532
1533
clk_disable(sdma->clk_ipg);
1534
clk_disable(sdma->clk_ahb);
1535
}
1536
1537
static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1538
enum dma_transfer_direction direction, u32 bds)
1539
{
1540
struct sdma_desc *desc;
1541
1542
if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1543
dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1544
goto err_out;
1545
}
1546
1547
desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1548
if (!desc)
1549
goto err_out;
1550
1551
sdmac->status = DMA_IN_PROGRESS;
1552
sdmac->direction = direction;
1553
sdmac->flags = 0;
1554
1555
desc->chn_count = 0;
1556
desc->chn_real_count = 0;
1557
desc->buf_tail = 0;
1558
desc->buf_ptail = 0;
1559
desc->sdmac = sdmac;
1560
desc->num_bd = bds;
1561
1562
if (bds && sdma_alloc_bd(desc))
1563
goto err_desc_out;
1564
1565
/* No slave_config called in MEMCPY case, so do here */
1566
if (direction == DMA_MEM_TO_MEM)
1567
sdma_config_ownership(sdmac, false, true, false);
1568
1569
if (sdma_load_context(sdmac))
1570
goto err_bd_out;
1571
1572
return desc;
1573
1574
err_bd_out:
1575
sdma_free_bd(desc);
1576
err_desc_out:
1577
kfree(desc);
1578
err_out:
1579
return NULL;
1580
}
1581
1582
static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1583
struct dma_chan *chan, dma_addr_t dma_dst,
1584
dma_addr_t dma_src, size_t len, unsigned long flags)
1585
{
1586
struct sdma_channel *sdmac = to_sdma_chan(chan);
1587
struct sdma_engine *sdma = sdmac->sdma;
1588
int channel = sdmac->channel;
1589
size_t count;
1590
int i = 0, param;
1591
struct sdma_buffer_descriptor *bd;
1592
struct sdma_desc *desc;
1593
1594
if (!chan || !len)
1595
return NULL;
1596
1597
dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1598
&dma_src, &dma_dst, len, channel);
1599
1600
desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1601
len / SDMA_BD_MAX_CNT + 1);
1602
if (!desc)
1603
return NULL;
1604
1605
do {
1606
count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1607
bd = &desc->bd[i];
1608
bd->buffer_addr = dma_src;
1609
bd->ext_buffer_addr = dma_dst;
1610
bd->mode.count = count;
1611
desc->chn_count += count;
1612
bd->mode.command = 0;
1613
1614
dma_src += count;
1615
dma_dst += count;
1616
len -= count;
1617
i++;
1618
1619
param = BD_DONE | BD_EXTD | BD_CONT;
1620
/* last bd */
1621
if (!len) {
1622
param |= BD_INTR;
1623
param |= BD_LAST;
1624
param &= ~BD_CONT;
1625
}
1626
1627
dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1628
i, count, bd->buffer_addr,
1629
param & BD_WRAP ? "wrap" : "",
1630
param & BD_INTR ? " intr" : "");
1631
1632
bd->mode.status = param;
1633
} while (len);
1634
1635
return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1636
}
1637
1638
static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1639
struct dma_chan *chan, struct scatterlist *sgl,
1640
unsigned int sg_len, enum dma_transfer_direction direction,
1641
unsigned long flags, void *context)
1642
{
1643
struct sdma_channel *sdmac = to_sdma_chan(chan);
1644
struct sdma_engine *sdma = sdmac->sdma;
1645
int i, count;
1646
int channel = sdmac->channel;
1647
struct scatterlist *sg;
1648
struct sdma_desc *desc;
1649
1650
sdma_config_write(chan, &sdmac->slave_config, direction);
1651
1652
desc = sdma_transfer_init(sdmac, direction, sg_len);
1653
if (!desc)
1654
goto err_out;
1655
1656
dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1657
sg_len, channel);
1658
1659
for_each_sg(sgl, sg, sg_len, i) {
1660
struct sdma_buffer_descriptor *bd = &desc->bd[i];
1661
int param;
1662
1663
bd->buffer_addr = sg->dma_address;
1664
1665
count = sg_dma_len(sg);
1666
1667
if (count > SDMA_BD_MAX_CNT) {
1668
dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1669
channel, count, SDMA_BD_MAX_CNT);
1670
goto err_bd_out;
1671
}
1672
1673
bd->mode.count = count;
1674
desc->chn_count += count;
1675
1676
if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1677
goto err_bd_out;
1678
1679
switch (sdmac->word_size) {
1680
case DMA_SLAVE_BUSWIDTH_4_BYTES:
1681
bd->mode.command = 0;
1682
if (count & 3 || sg->dma_address & 3)
1683
goto err_bd_out;
1684
break;
1685
case DMA_SLAVE_BUSWIDTH_3_BYTES:
1686
bd->mode.command = 3;
1687
break;
1688
case DMA_SLAVE_BUSWIDTH_2_BYTES:
1689
bd->mode.command = 2;
1690
if (count & 1 || sg->dma_address & 1)
1691
goto err_bd_out;
1692
break;
1693
case DMA_SLAVE_BUSWIDTH_1_BYTE:
1694
bd->mode.command = 1;
1695
break;
1696
default:
1697
goto err_bd_out;
1698
}
1699
1700
param = BD_DONE | BD_EXTD | BD_CONT;
1701
1702
if (i + 1 == sg_len) {
1703
param |= BD_INTR;
1704
param |= BD_LAST;
1705
param &= ~BD_CONT;
1706
}
1707
1708
dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1709
i, count, (u64)sg->dma_address,
1710
param & BD_WRAP ? "wrap" : "",
1711
param & BD_INTR ? " intr" : "");
1712
1713
bd->mode.status = param;
1714
}
1715
1716
return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1717
err_bd_out:
1718
sdma_free_bd(desc);
1719
kfree(desc);
1720
err_out:
1721
sdmac->status = DMA_ERROR;
1722
return NULL;
1723
}
1724
1725
static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1726
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1727
size_t period_len, enum dma_transfer_direction direction,
1728
unsigned long flags)
1729
{
1730
struct sdma_channel *sdmac = to_sdma_chan(chan);
1731
struct sdma_engine *sdma = sdmac->sdma;
1732
int num_periods = 0;
1733
int channel = sdmac->channel;
1734
int i = 0, buf = 0;
1735
struct sdma_desc *desc;
1736
1737
dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1738
1739
if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
1740
num_periods = buf_len / period_len;
1741
1742
sdma_config_write(chan, &sdmac->slave_config, direction);
1743
1744
desc = sdma_transfer_init(sdmac, direction, num_periods);
1745
if (!desc)
1746
goto err_out;
1747
1748
desc->period_len = period_len;
1749
1750
sdmac->flags |= IMX_DMA_SG_LOOP;
1751
1752
if (period_len > SDMA_BD_MAX_CNT) {
1753
dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1754
channel, period_len, SDMA_BD_MAX_CNT);
1755
goto err_bd_out;
1756
}
1757
1758
if (sdmac->peripheral_type == IMX_DMATYPE_HDMI)
1759
return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1760
1761
while (buf < buf_len) {
1762
struct sdma_buffer_descriptor *bd = &desc->bd[i];
1763
int param;
1764
1765
bd->buffer_addr = dma_addr;
1766
1767
bd->mode.count = period_len;
1768
1769
if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1770
goto err_bd_out;
1771
if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1772
bd->mode.command = 0;
1773
else
1774
bd->mode.command = sdmac->word_size;
1775
1776
param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1777
if (i + 1 == num_periods)
1778
param |= BD_WRAP;
1779
1780
dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1781
i, period_len, (u64)dma_addr,
1782
param & BD_WRAP ? "wrap" : "",
1783
param & BD_INTR ? " intr" : "");
1784
1785
bd->mode.status = param;
1786
1787
dma_addr += period_len;
1788
buf += period_len;
1789
1790
i++;
1791
}
1792
1793
return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1794
err_bd_out:
1795
sdma_free_bd(desc);
1796
kfree(desc);
1797
err_out:
1798
sdmac->status = DMA_ERROR;
1799
return NULL;
1800
}
1801
1802
static int sdma_config_write(struct dma_chan *chan,
1803
struct dma_slave_config *dmaengine_cfg,
1804
enum dma_transfer_direction direction)
1805
{
1806
struct sdma_channel *sdmac = to_sdma_chan(chan);
1807
1808
if (direction == DMA_DEV_TO_MEM) {
1809
sdmac->per_address = dmaengine_cfg->src_addr;
1810
sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1811
dmaengine_cfg->src_addr_width;
1812
sdmac->word_size = dmaengine_cfg->src_addr_width;
1813
} else if (direction == DMA_DEV_TO_DEV) {
1814
sdmac->per_address2 = dmaengine_cfg->src_addr;
1815
sdmac->per_address = dmaengine_cfg->dst_addr;
1816
sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1817
SDMA_WATERMARK_LEVEL_LWML;
1818
sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1819
SDMA_WATERMARK_LEVEL_HWML;
1820
sdmac->word_size = dmaengine_cfg->dst_addr_width;
1821
} else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1822
sdmac->per_address = dmaengine_cfg->dst_addr;
1823
sdmac->per_address2 = dmaengine_cfg->src_addr;
1824
sdmac->watermark_level = 0;
1825
} else {
1826
sdmac->per_address = dmaengine_cfg->dst_addr;
1827
sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1828
dmaengine_cfg->dst_addr_width;
1829
sdmac->word_size = dmaengine_cfg->dst_addr_width;
1830
}
1831
sdmac->direction = direction;
1832
return sdma_config_channel(chan);
1833
}
1834
1835
static int sdma_config(struct dma_chan *chan,
1836
struct dma_slave_config *dmaengine_cfg)
1837
{
1838
struct sdma_channel *sdmac = to_sdma_chan(chan);
1839
struct sdma_engine *sdma = sdmac->sdma;
1840
1841
memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1842
1843
if (dmaengine_cfg->peripheral_config) {
1844
struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1845
if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1846
dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1847
dmaengine_cfg->peripheral_size,
1848
sizeof(struct sdma_peripheral_config));
1849
return -EINVAL;
1850
}
1851
sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1852
sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1853
sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1854
sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1855
sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1856
sdmac->sw_done = sdmacfg->sw_done;
1857
}
1858
1859
/* Set ENBLn earlier to make sure dma request triggered after that */
1860
if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1861
return -EINVAL;
1862
sdma_event_enable(sdmac, sdmac->event_id0);
1863
1864
if (sdmac->event_id1) {
1865
if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1866
return -EINVAL;
1867
sdma_event_enable(sdmac, sdmac->event_id1);
1868
}
1869
1870
return 0;
1871
}
1872
1873
static enum dma_status sdma_tx_status(struct dma_chan *chan,
1874
dma_cookie_t cookie,
1875
struct dma_tx_state *txstate)
1876
{
1877
struct sdma_channel *sdmac = to_sdma_chan(chan);
1878
struct sdma_desc *desc = NULL;
1879
u32 residue;
1880
struct virt_dma_desc *vd;
1881
enum dma_status ret;
1882
unsigned long flags;
1883
1884
ret = dma_cookie_status(chan, cookie, txstate);
1885
if (ret == DMA_COMPLETE || !txstate)
1886
return ret;
1887
1888
spin_lock_irqsave(&sdmac->vc.lock, flags);
1889
1890
vd = vchan_find_desc(&sdmac->vc, cookie);
1891
if (vd)
1892
desc = to_sdma_desc(&vd->tx);
1893
else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1894
desc = sdmac->desc;
1895
1896
if (desc) {
1897
if (sdmac->flags & IMX_DMA_SG_LOOP)
1898
residue = (desc->num_bd - desc->buf_ptail) *
1899
desc->period_len - desc->chn_real_count;
1900
else
1901
residue = desc->chn_count - desc->chn_real_count;
1902
} else {
1903
residue = 0;
1904
}
1905
1906
spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1907
1908
dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1909
residue);
1910
1911
return sdmac->status;
1912
}
1913
1914
static void sdma_issue_pending(struct dma_chan *chan)
1915
{
1916
struct sdma_channel *sdmac = to_sdma_chan(chan);
1917
unsigned long flags;
1918
1919
spin_lock_irqsave(&sdmac->vc.lock, flags);
1920
if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1921
sdma_start_desc(sdmac);
1922
spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1923
}
1924
1925
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 \
1926
(offsetof(struct sdma_script_start_addrs, v1_end) / sizeof(s32))
1927
1928
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 \
1929
(offsetof(struct sdma_script_start_addrs, v2_end) / sizeof(s32))
1930
1931
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 \
1932
(offsetof(struct sdma_script_start_addrs, v3_end) / sizeof(s32))
1933
1934
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 \
1935
(offsetof(struct sdma_script_start_addrs, v4_end) / sizeof(s32))
1936
1937
static void sdma_add_scripts(struct sdma_engine *sdma,
1938
const struct sdma_script_start_addrs *addr)
1939
{
1940
s32 *addr_arr = (u32 *)addr;
1941
s32 *saddr_arr = (u32 *)sdma->script_addrs;
1942
int i;
1943
1944
/* use the default firmware in ROM if missing external firmware */
1945
if (!sdma->script_number)
1946
sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1947
1948
if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1949
/ sizeof(s32)) {
1950
dev_err(sdma->dev,
1951
"SDMA script number %d not match with firmware.\n",
1952
sdma->script_number);
1953
return;
1954
}
1955
1956
for (i = 0; i < sdma->script_number; i++)
1957
if (addr_arr[i] > 0)
1958
saddr_arr[i] = addr_arr[i];
1959
1960
/*
1961
* For compatibility with NXP internal legacy kernel before 4.19 which
1962
* is based on uart ram script and mainline kernel based on uart rom
1963
* script, both uart ram/rom scripts are present in newer sdma
1964
* firmware. Use the rom versions if they are present (V3 or newer).
1965
*/
1966
if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1967
if (addr->uart_2_mcu_rom_addr)
1968
sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1969
if (addr->uartsh_2_mcu_rom_addr)
1970
sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1971
}
1972
}
1973
1974
static void sdma_load_firmware(const struct firmware *fw, void *context)
1975
{
1976
struct sdma_engine *sdma = context;
1977
const struct sdma_firmware_header *header;
1978
const struct sdma_script_start_addrs *addr;
1979
unsigned short *ram_code;
1980
1981
if (!fw) {
1982
dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1983
/* In this case we just use the ROM firmware. */
1984
return;
1985
}
1986
1987
if (fw->size < sizeof(*header))
1988
goto err_firmware;
1989
1990
header = (struct sdma_firmware_header *)fw->data;
1991
1992
if (header->magic != SDMA_FIRMWARE_MAGIC)
1993
goto err_firmware;
1994
if (header->ram_code_start + header->ram_code_size > fw->size)
1995
goto err_firmware;
1996
switch (header->version_major) {
1997
case 1:
1998
sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1999
break;
2000
case 2:
2001
sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
2002
break;
2003
case 3:
2004
sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
2005
break;
2006
case 4:
2007
sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
2008
break;
2009
default:
2010
dev_err(sdma->dev, "unknown firmware version\n");
2011
goto err_firmware;
2012
}
2013
2014
addr = (void *)header + header->script_addrs_start;
2015
ram_code = (void *)header + header->ram_code_start;
2016
2017
clk_enable(sdma->clk_ipg);
2018
clk_enable(sdma->clk_ahb);
2019
/* download the RAM image for SDMA */
2020
sdma_load_script(sdma, ram_code,
2021
header->ram_code_size,
2022
addr->ram_code_start_addr);
2023
clk_disable(sdma->clk_ipg);
2024
clk_disable(sdma->clk_ahb);
2025
2026
sdma_add_scripts(sdma, addr);
2027
2028
sdma->fw_loaded = true;
2029
2030
dev_info(sdma->dev, "loaded firmware %d.%d\n",
2031
header->version_major,
2032
header->version_minor);
2033
2034
err_firmware:
2035
release_firmware(fw);
2036
}
2037
2038
#define EVENT_REMAP_CELLS 3
2039
2040
static int sdma_event_remap(struct sdma_engine *sdma)
2041
{
2042
struct device_node *np = sdma->dev->of_node;
2043
struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
2044
struct property *event_remap;
2045
struct regmap *gpr;
2046
char propname[] = "fsl,sdma-event-remap";
2047
u32 reg, val, shift, num_map, i;
2048
int ret = 0;
2049
2050
if (IS_ERR(np) || !gpr_np)
2051
goto out;
2052
2053
event_remap = of_find_property(np, propname, NULL);
2054
num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
2055
if (!num_map) {
2056
dev_dbg(sdma->dev, "no event needs to be remapped\n");
2057
goto out;
2058
} else if (num_map % EVENT_REMAP_CELLS) {
2059
dev_err(sdma->dev, "the property %s must modulo %d\n",
2060
propname, EVENT_REMAP_CELLS);
2061
ret = -EINVAL;
2062
goto out;
2063
}
2064
2065
gpr = syscon_node_to_regmap(gpr_np);
2066
if (IS_ERR(gpr)) {
2067
dev_err(sdma->dev, "failed to get gpr regmap\n");
2068
ret = PTR_ERR(gpr);
2069
goto out;
2070
}
2071
2072
for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2073
ret = of_property_read_u32_index(np, propname, i, &reg);
2074
if (ret) {
2075
dev_err(sdma->dev, "failed to read property %s index %d\n",
2076
propname, i);
2077
goto out;
2078
}
2079
2080
ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2081
if (ret) {
2082
dev_err(sdma->dev, "failed to read property %s index %d\n",
2083
propname, i + 1);
2084
goto out;
2085
}
2086
2087
ret = of_property_read_u32_index(np, propname, i + 2, &val);
2088
if (ret) {
2089
dev_err(sdma->dev, "failed to read property %s index %d\n",
2090
propname, i + 2);
2091
goto out;
2092
}
2093
2094
regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2095
}
2096
2097
out:
2098
if (gpr_np)
2099
of_node_put(gpr_np);
2100
2101
return ret;
2102
}
2103
2104
static int sdma_get_firmware(struct sdma_engine *sdma,
2105
const char *fw_name)
2106
{
2107
int ret;
2108
2109
ret = firmware_request_nowait_nowarn(THIS_MODULE, fw_name, sdma->dev,
2110
GFP_KERNEL, sdma, sdma_load_firmware);
2111
2112
return ret;
2113
}
2114
2115
static int sdma_init(struct sdma_engine *sdma)
2116
{
2117
int i, ret;
2118
dma_addr_t ccb_phys;
2119
int ccbsize;
2120
2121
ret = clk_enable(sdma->clk_ipg);
2122
if (ret)
2123
return ret;
2124
ret = clk_enable(sdma->clk_ahb);
2125
if (ret)
2126
goto disable_clk_ipg;
2127
2128
if (sdma->drvdata->check_ratio &&
2129
(clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2130
sdma->clk_ratio = 1;
2131
2132
/* Be sure SDMA has not started yet */
2133
writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2134
2135
ccbsize = MAX_DMA_CHANNELS * (sizeof(struct sdma_channel_control)
2136
+ sizeof(struct sdma_context_data));
2137
2138
if (sdma->iram_pool)
2139
sdma->channel_control = gen_pool_dma_alloc(sdma->iram_pool, ccbsize, &ccb_phys);
2140
else
2141
sdma->channel_control = dma_alloc_coherent(sdma->dev, ccbsize, &ccb_phys,
2142
GFP_KERNEL);
2143
2144
if (!sdma->channel_control) {
2145
ret = -ENOMEM;
2146
goto err_dma_alloc;
2147
}
2148
2149
sdma->context = (void *)sdma->channel_control +
2150
MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2151
sdma->context_phys = ccb_phys +
2152
MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2153
2154
/* disable all channels */
2155
for (i = 0; i < sdma->drvdata->num_events; i++)
2156
writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2157
2158
/* All channels have priority 0 */
2159
for (i = 0; i < MAX_DMA_CHANNELS; i++)
2160
writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2161
2162
ret = sdma_request_channel0(sdma);
2163
if (ret)
2164
goto err_dma_alloc;
2165
2166
sdma_config_ownership(&sdma->channel[0], false, true, false);
2167
2168
/* Set Command Channel (Channel Zero) */
2169
writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2170
2171
/* Set bits of CONFIG register but with static context switching */
2172
if (sdma->clk_ratio)
2173
writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2174
else
2175
writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2176
2177
writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2178
2179
/* Initializes channel's priorities */
2180
sdma_set_channel_priority(&sdma->channel[0], 7);
2181
2182
clk_disable(sdma->clk_ipg);
2183
clk_disable(sdma->clk_ahb);
2184
2185
return 0;
2186
2187
err_dma_alloc:
2188
clk_disable(sdma->clk_ahb);
2189
disable_clk_ipg:
2190
clk_disable(sdma->clk_ipg);
2191
dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2192
return ret;
2193
}
2194
2195
static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2196
{
2197
struct sdma_channel *sdmac = to_sdma_chan(chan);
2198
struct imx_dma_data *data = fn_param;
2199
2200
if (!imx_dma_is_general_purpose(chan))
2201
return false;
2202
2203
sdmac->data = *data;
2204
chan->private = &sdmac->data;
2205
2206
return true;
2207
}
2208
2209
static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2210
struct of_dma *ofdma)
2211
{
2212
struct sdma_engine *sdma = ofdma->of_dma_data;
2213
dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2214
struct imx_dma_data data;
2215
2216
if (dma_spec->args_count != 3)
2217
return NULL;
2218
2219
data.dma_request = dma_spec->args[0];
2220
data.peripheral_type = dma_spec->args[1];
2221
data.priority = dma_spec->args[2];
2222
/*
2223
* init dma_request2 to zero, which is not used by the dts.
2224
* For P2P, dma_request2 is init from dma_request_channel(),
2225
* chan->private will point to the imx_dma_data, and in
2226
* device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2227
* be set to sdmac->event_id1.
2228
*/
2229
data.dma_request2 = 0;
2230
2231
return __dma_request_channel(&mask, sdma_filter_fn, &data,
2232
ofdma->of_node);
2233
}
2234
2235
static int sdma_probe(struct platform_device *pdev)
2236
{
2237
struct device_node *np = pdev->dev.of_node;
2238
struct device_node *spba_bus;
2239
const char *fw_name;
2240
int ret;
2241
int irq;
2242
struct resource spba_res;
2243
int i;
2244
struct sdma_engine *sdma;
2245
s32 *saddr_arr;
2246
2247
ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2248
if (ret)
2249
return ret;
2250
2251
sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2252
if (!sdma)
2253
return -ENOMEM;
2254
2255
spin_lock_init(&sdma->channel_0_lock);
2256
2257
sdma->dev = &pdev->dev;
2258
sdma->drvdata = of_device_get_match_data(sdma->dev);
2259
2260
irq = platform_get_irq(pdev, 0);
2261
if (irq < 0)
2262
return irq;
2263
2264
sdma->regs = devm_platform_ioremap_resource(pdev, 0);
2265
if (IS_ERR(sdma->regs))
2266
return PTR_ERR(sdma->regs);
2267
2268
sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2269
if (IS_ERR(sdma->clk_ipg))
2270
return PTR_ERR(sdma->clk_ipg);
2271
2272
sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2273
if (IS_ERR(sdma->clk_ahb))
2274
return PTR_ERR(sdma->clk_ahb);
2275
2276
ret = clk_prepare(sdma->clk_ipg);
2277
if (ret)
2278
return ret;
2279
2280
ret = clk_prepare(sdma->clk_ahb);
2281
if (ret)
2282
goto err_clk;
2283
2284
ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2285
dev_name(&pdev->dev), sdma);
2286
if (ret)
2287
goto err_irq;
2288
2289
sdma->irq = irq;
2290
2291
sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2292
if (!sdma->script_addrs) {
2293
ret = -ENOMEM;
2294
goto err_irq;
2295
}
2296
2297
/* initially no scripts available */
2298
saddr_arr = (s32 *)sdma->script_addrs;
2299
for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2300
saddr_arr[i] = -EINVAL;
2301
2302
dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2303
dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2304
dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2305
dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask);
2306
2307
INIT_LIST_HEAD(&sdma->dma_device.channels);
2308
/* Initialize channel parameters */
2309
for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2310
struct sdma_channel *sdmac = &sdma->channel[i];
2311
2312
sdmac->sdma = sdma;
2313
2314
sdmac->channel = i;
2315
sdmac->vc.desc_free = sdma_desc_free;
2316
INIT_LIST_HEAD(&sdmac->terminated);
2317
INIT_WORK(&sdmac->terminate_worker,
2318
sdma_channel_terminate_work);
2319
/*
2320
* Add the channel to the DMAC list. Do not add channel 0 though
2321
* because we need it internally in the SDMA driver. This also means
2322
* that channel 0 in dmaengine counting matches sdma channel 1.
2323
*/
2324
if (i)
2325
vchan_init(&sdmac->vc, &sdma->dma_device);
2326
}
2327
2328
if (np) {
2329
sdma->iram_pool = of_gen_pool_get(np, "iram", 0);
2330
if (sdma->iram_pool)
2331
dev_info(&pdev->dev, "alloc bd from iram.\n");
2332
}
2333
2334
ret = sdma_init(sdma);
2335
if (ret)
2336
goto err_init;
2337
2338
ret = sdma_event_remap(sdma);
2339
if (ret)
2340
goto err_init;
2341
2342
if (sdma->drvdata->script_addrs)
2343
sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2344
2345
sdma->dma_device.dev = &pdev->dev;
2346
2347
sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2348
sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2349
sdma->dma_device.device_tx_status = sdma_tx_status;
2350
sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2351
sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2352
sdma->dma_device.device_config = sdma_config;
2353
sdma->dma_device.device_terminate_all = sdma_terminate_all;
2354
sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2355
sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2356
sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2357
sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2358
sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2359
sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2360
sdma->dma_device.device_issue_pending = sdma_issue_pending;
2361
sdma->dma_device.copy_align = 2;
2362
dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2363
2364
platform_set_drvdata(pdev, sdma);
2365
2366
ret = dma_async_device_register(&sdma->dma_device);
2367
if (ret) {
2368
dev_err(&pdev->dev, "unable to register\n");
2369
goto err_init;
2370
}
2371
2372
if (np) {
2373
ret = of_dma_controller_register(np, sdma_xlate, sdma);
2374
if (ret) {
2375
dev_err(&pdev->dev, "failed to register controller\n");
2376
goto err_register;
2377
}
2378
2379
spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2380
ret = of_address_to_resource(spba_bus, 0, &spba_res);
2381
if (!ret) {
2382
sdma->spba_start_addr = spba_res.start;
2383
sdma->spba_end_addr = spba_res.end;
2384
}
2385
of_node_put(spba_bus);
2386
}
2387
2388
/*
2389
* Because that device tree does not encode ROM script address,
2390
* the RAM script in firmware is mandatory for device tree
2391
* probe, otherwise it fails.
2392
*/
2393
ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2394
&fw_name);
2395
if (ret) {
2396
dev_warn(&pdev->dev, "failed to get firmware name\n");
2397
} else {
2398
ret = sdma_get_firmware(sdma, fw_name);
2399
if (ret)
2400
dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2401
}
2402
2403
return 0;
2404
2405
err_register:
2406
dma_async_device_unregister(&sdma->dma_device);
2407
err_init:
2408
kfree(sdma->script_addrs);
2409
err_irq:
2410
clk_unprepare(sdma->clk_ahb);
2411
err_clk:
2412
clk_unprepare(sdma->clk_ipg);
2413
return ret;
2414
}
2415
2416
static void sdma_remove(struct platform_device *pdev)
2417
{
2418
struct sdma_engine *sdma = platform_get_drvdata(pdev);
2419
int i;
2420
2421
devm_free_irq(&pdev->dev, sdma->irq, sdma);
2422
dma_async_device_unregister(&sdma->dma_device);
2423
kfree(sdma->script_addrs);
2424
clk_unprepare(sdma->clk_ahb);
2425
clk_unprepare(sdma->clk_ipg);
2426
/* Kill the tasklet */
2427
for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2428
struct sdma_channel *sdmac = &sdma->channel[i];
2429
2430
tasklet_kill(&sdmac->vc.task);
2431
sdma_free_chan_resources(&sdmac->vc.chan);
2432
}
2433
2434
platform_set_drvdata(pdev, NULL);
2435
}
2436
2437
static struct platform_driver sdma_driver = {
2438
.driver = {
2439
.name = "imx-sdma",
2440
.of_match_table = sdma_dt_ids,
2441
},
2442
.remove = sdma_remove,
2443
.probe = sdma_probe,
2444
};
2445
2446
module_platform_driver(sdma_driver);
2447
2448
MODULE_AUTHOR("Sascha Hauer, Pengutronix <[email protected]>");
2449
MODULE_DESCRIPTION("i.MX SDMA driver");
2450
#if IS_ENABLED(CONFIG_SOC_IMX6Q)
2451
MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2452
#endif
2453
#if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2454
MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2455
#endif
2456
MODULE_LICENSE("GPL");
2457
2458