Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/edac/altera_edac.c
49621 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4
* Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5
* Copyright 2011-2012 Calxeda, Inc.
6
*/
7
8
#include <asm/cacheflush.h>
9
#include <linux/ctype.h>
10
#include <linux/delay.h>
11
#include <linux/edac.h>
12
#include <linux/firmware/intel/stratix10-smc.h>
13
#include <linux/genalloc.h>
14
#include <linux/interrupt.h>
15
#include <linux/irqchip/chained_irq.h>
16
#include <linux/kernel.h>
17
#include <linux/mfd/altera-sysmgr.h>
18
#include <linux/mfd/syscon.h>
19
#include <linux/notifier.h>
20
#include <linux/of_address.h>
21
#include <linux/of_irq.h>
22
#include <linux/of_platform.h>
23
#include <linux/panic_notifier.h>
24
#include <linux/platform_device.h>
25
#include <linux/property.h>
26
#include <linux/regmap.h>
27
#include <linux/types.h>
28
#include <linux/uaccess.h>
29
30
#include "altera_edac.h"
31
#include "edac_module.h"
32
33
#define EDAC_MOD_STR "altera_edac"
34
#define EDAC_DEVICE "Altera"
35
36
#ifdef CONFIG_EDAC_ALTERA_SDRAM
37
static const struct altr_sdram_prv_data c5_data = {
38
.ecc_ctrl_offset = CV_CTLCFG_OFST,
39
.ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN,
40
.ecc_stat_offset = CV_DRAMSTS_OFST,
41
.ecc_stat_ce_mask = CV_DRAMSTS_SBEERR,
42
.ecc_stat_ue_mask = CV_DRAMSTS_DBEERR,
43
.ecc_saddr_offset = CV_ERRADDR_OFST,
44
.ecc_daddr_offset = CV_ERRADDR_OFST,
45
.ecc_cecnt_offset = CV_SBECOUNT_OFST,
46
.ecc_uecnt_offset = CV_DBECOUNT_OFST,
47
.ecc_irq_en_offset = CV_DRAMINTR_OFST,
48
.ecc_irq_en_mask = CV_DRAMINTR_INTREN,
49
.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
50
.ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
51
.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
52
.ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR,
53
.ce_ue_trgr_offset = CV_CTLCFG_OFST,
54
.ce_set_mask = CV_CTLCFG_GEN_SB_ERR,
55
.ue_set_mask = CV_CTLCFG_GEN_DB_ERR,
56
};
57
58
static const struct altr_sdram_prv_data a10_data = {
59
.ecc_ctrl_offset = A10_ECCCTRL1_OFST,
60
.ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN,
61
.ecc_stat_offset = A10_INTSTAT_OFST,
62
.ecc_stat_ce_mask = A10_INTSTAT_SBEERR,
63
.ecc_stat_ue_mask = A10_INTSTAT_DBEERR,
64
.ecc_saddr_offset = A10_SERRADDR_OFST,
65
.ecc_daddr_offset = A10_DERRADDR_OFST,
66
.ecc_irq_en_offset = A10_ERRINTEN_OFST,
67
.ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK,
68
.ecc_irq_clr_offset = A10_INTSTAT_OFST,
69
.ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
70
.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
71
.ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK,
72
.ce_ue_trgr_offset = A10_DIAGINTTEST_OFST,
73
.ce_set_mask = A10_DIAGINT_TSERRA_MASK,
74
.ue_set_mask = A10_DIAGINT_TDERRA_MASK,
75
};
76
77
/*********************** EDAC Memory Controller Functions ****************/
78
79
/* The SDRAM controller uses the EDAC Memory Controller framework. */
80
81
static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
82
{
83
struct mem_ctl_info *mci = dev_id;
84
struct altr_sdram_mc_data *drvdata = mci->pvt_info;
85
const struct altr_sdram_prv_data *priv = drvdata->data;
86
u32 status, err_count = 1, err_addr;
87
88
regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
89
90
if (status & priv->ecc_stat_ue_mask) {
91
regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
92
&err_addr);
93
if (priv->ecc_uecnt_offset)
94
regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
95
&err_count);
96
panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
97
err_count, err_addr);
98
}
99
if (status & priv->ecc_stat_ce_mask) {
100
regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
101
&err_addr);
102
if (priv->ecc_cecnt_offset)
103
regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset,
104
&err_count);
105
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
106
err_addr >> PAGE_SHIFT,
107
err_addr & ~PAGE_MASK, 0,
108
0, 0, -1, mci->ctl_name, "");
109
/* Clear IRQ to resume */
110
regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
111
priv->ecc_irq_clr_mask);
112
113
return IRQ_HANDLED;
114
}
115
return IRQ_NONE;
116
}
117
118
static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
119
const char __user *data,
120
size_t count, loff_t *ppos)
121
{
122
struct mem_ctl_info *mci = file->private_data;
123
struct altr_sdram_mc_data *drvdata = mci->pvt_info;
124
const struct altr_sdram_prv_data *priv = drvdata->data;
125
u32 *ptemp;
126
dma_addr_t dma_handle;
127
u32 reg, read_reg;
128
129
ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
130
if (!ptemp) {
131
edac_printk(KERN_ERR, EDAC_MC,
132
"Inject: Buffer Allocation error\n");
133
return -ENOMEM;
134
}
135
136
regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
137
&read_reg);
138
read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
139
140
/* Error are injected by writing a word while the SBE or DBE
141
* bit in the CTLCFG register is set. Reading the word will
142
* trigger the SBE or DBE error and the corresponding IRQ.
143
*/
144
if (count == 3) {
145
edac_printk(KERN_ALERT, EDAC_MC,
146
"Inject Double bit error\n");
147
local_irq_disable();
148
regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
149
(read_reg | priv->ue_set_mask));
150
local_irq_enable();
151
} else {
152
edac_printk(KERN_ALERT, EDAC_MC,
153
"Inject Single bit error\n");
154
local_irq_disable();
155
regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
156
(read_reg | priv->ce_set_mask));
157
local_irq_enable();
158
}
159
160
ptemp[0] = 0x5A5A5A5A;
161
ptemp[1] = 0xA5A5A5A5;
162
163
/* Clear the error injection bits */
164
regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
165
/* Ensure it has been written out */
166
wmb();
167
168
/*
169
* To trigger the error, we need to read the data back
170
* (the data was written with errors above).
171
* The READ_ONCE macros and printk are used to prevent the
172
* the compiler optimizing these reads out.
173
*/
174
reg = READ_ONCE(ptemp[0]);
175
read_reg = READ_ONCE(ptemp[1]);
176
/* Force Read */
177
rmb();
178
179
edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
180
reg, read_reg);
181
182
dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
183
184
return count;
185
}
186
187
static const struct file_operations altr_sdr_mc_debug_inject_fops = {
188
.open = simple_open,
189
.write = altr_sdr_mc_err_inject_write,
190
.llseek = generic_file_llseek,
191
};
192
193
static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
194
{
195
if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
196
return;
197
198
if (!mci->debugfs)
199
return;
200
201
edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
202
&altr_sdr_mc_debug_inject_fops);
203
}
204
205
/* Get total memory size from Open Firmware DTB */
206
static unsigned long get_total_mem(void)
207
{
208
struct device_node *np = NULL;
209
struct resource res;
210
int ret;
211
unsigned long total_mem = 0;
212
213
for_each_node_by_type(np, "memory") {
214
ret = of_address_to_resource(np, 0, &res);
215
if (ret)
216
continue;
217
218
total_mem += resource_size(&res);
219
}
220
edac_dbg(0, "total_mem 0x%lx\n", total_mem);
221
return total_mem;
222
}
223
224
static const struct of_device_id altr_sdram_ctrl_of_match[] = {
225
{ .compatible = "altr,sdram-edac", .data = &c5_data},
226
{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
227
{},
228
};
229
MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
230
231
static int a10_init(struct regmap *mc_vbase)
232
{
233
if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
234
A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
235
edac_printk(KERN_ERR, EDAC_MC,
236
"Error setting SB IRQ mode\n");
237
return -ENODEV;
238
}
239
240
if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
241
edac_printk(KERN_ERR, EDAC_MC,
242
"Error setting trigger count\n");
243
return -ENODEV;
244
}
245
246
return 0;
247
}
248
249
static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
250
{
251
void __iomem *sm_base;
252
int ret = 0;
253
254
if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
255
dev_name(&pdev->dev))) {
256
edac_printk(KERN_ERR, EDAC_MC,
257
"Unable to request mem region\n");
258
return -EBUSY;
259
}
260
261
sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
262
if (!sm_base) {
263
edac_printk(KERN_ERR, EDAC_MC,
264
"Unable to ioremap device\n");
265
266
ret = -ENOMEM;
267
goto release;
268
}
269
270
iowrite32(mask, sm_base);
271
272
iounmap(sm_base);
273
274
release:
275
release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
276
277
return ret;
278
}
279
280
static int altr_sdram_probe(struct platform_device *pdev)
281
{
282
struct edac_mc_layer layers[2];
283
struct mem_ctl_info *mci;
284
struct altr_sdram_mc_data *drvdata;
285
const struct altr_sdram_prv_data *priv;
286
struct regmap *mc_vbase;
287
struct dimm_info *dimm;
288
u32 read_reg;
289
int irq, irq2, res = 0;
290
unsigned long mem_size, irqflags = 0;
291
292
/* Grab the register range from the sdr controller in device tree */
293
mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
294
"altr,sdr-syscon");
295
if (IS_ERR(mc_vbase)) {
296
edac_printk(KERN_ERR, EDAC_MC,
297
"regmap for altr,sdr-syscon lookup failed.\n");
298
return -ENODEV;
299
}
300
301
/* Check specific dependencies for the module */
302
priv = device_get_match_data(&pdev->dev);
303
304
/* Validate the SDRAM controller has ECC enabled */
305
if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
306
((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
307
edac_printk(KERN_ERR, EDAC_MC,
308
"No ECC/ECC disabled [0x%08X]\n", read_reg);
309
return -ENODEV;
310
}
311
312
/* Grab memory size from device tree. */
313
mem_size = get_total_mem();
314
if (!mem_size) {
315
edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
316
return -ENODEV;
317
}
318
319
/* Ensure the SDRAM Interrupt is disabled */
320
if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
321
priv->ecc_irq_en_mask, 0)) {
322
edac_printk(KERN_ERR, EDAC_MC,
323
"Error disabling SDRAM ECC IRQ\n");
324
return -ENODEV;
325
}
326
327
/* Toggle to clear the SDRAM Error count */
328
if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
329
priv->ecc_cnt_rst_mask,
330
priv->ecc_cnt_rst_mask)) {
331
edac_printk(KERN_ERR, EDAC_MC,
332
"Error clearing SDRAM ECC count\n");
333
return -ENODEV;
334
}
335
336
if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
337
priv->ecc_cnt_rst_mask, 0)) {
338
edac_printk(KERN_ERR, EDAC_MC,
339
"Error clearing SDRAM ECC count\n");
340
return -ENODEV;
341
}
342
343
irq = platform_get_irq(pdev, 0);
344
if (irq < 0) {
345
edac_printk(KERN_ERR, EDAC_MC,
346
"No irq %d in DT\n", irq);
347
return irq;
348
}
349
350
/* Arria10 has a 2nd IRQ */
351
irq2 = platform_get_irq(pdev, 1);
352
353
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
354
layers[0].size = 1;
355
layers[0].is_virt_csrow = true;
356
layers[1].type = EDAC_MC_LAYER_CHANNEL;
357
layers[1].size = 1;
358
layers[1].is_virt_csrow = false;
359
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
360
sizeof(struct altr_sdram_mc_data));
361
if (!mci)
362
return -ENOMEM;
363
364
mci->pdev = &pdev->dev;
365
drvdata = mci->pvt_info;
366
drvdata->mc_vbase = mc_vbase;
367
drvdata->data = priv;
368
platform_set_drvdata(pdev, mci);
369
370
if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
371
edac_printk(KERN_ERR, EDAC_MC,
372
"Unable to get managed device resource\n");
373
res = -ENOMEM;
374
goto free;
375
}
376
377
mci->mtype_cap = MEM_FLAG_DDR3;
378
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
379
mci->edac_cap = EDAC_FLAG_SECDED;
380
mci->mod_name = EDAC_MOD_STR;
381
mci->ctl_name = dev_name(&pdev->dev);
382
mci->scrub_mode = SCRUB_SW_SRC;
383
mci->dev_name = dev_name(&pdev->dev);
384
385
dimm = *mci->dimms;
386
dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
387
dimm->grain = 8;
388
dimm->dtype = DEV_X8;
389
dimm->mtype = MEM_DDR3;
390
dimm->edac_mode = EDAC_SECDED;
391
392
res = edac_mc_add_mc(mci);
393
if (res < 0)
394
goto err;
395
396
/* Only the Arria10 has separate IRQs */
397
if (of_machine_is_compatible("altr,socfpga-arria10")) {
398
/* Arria10 specific initialization */
399
res = a10_init(mc_vbase);
400
if (res < 0)
401
goto err2;
402
403
res = devm_request_irq(&pdev->dev, irq2,
404
altr_sdram_mc_err_handler,
405
IRQF_SHARED, dev_name(&pdev->dev), mci);
406
if (res < 0) {
407
edac_mc_printk(mci, KERN_ERR,
408
"Unable to request irq %d\n", irq2);
409
res = -ENODEV;
410
goto err2;
411
}
412
413
res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
414
if (res < 0)
415
goto err2;
416
417
irqflags = IRQF_SHARED;
418
}
419
420
res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
421
irqflags, dev_name(&pdev->dev), mci);
422
if (res < 0) {
423
edac_mc_printk(mci, KERN_ERR,
424
"Unable to request irq %d\n", irq);
425
res = -ENODEV;
426
goto err2;
427
}
428
429
/* Infrastructure ready - enable the IRQ */
430
if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
431
priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
432
edac_mc_printk(mci, KERN_ERR,
433
"Error enabling SDRAM ECC IRQ\n");
434
res = -ENODEV;
435
goto err2;
436
}
437
438
altr_sdr_mc_create_debugfs_nodes(mci);
439
440
devres_close_group(&pdev->dev, NULL);
441
442
return 0;
443
444
err2:
445
edac_mc_del_mc(&pdev->dev);
446
err:
447
devres_release_group(&pdev->dev, NULL);
448
free:
449
edac_mc_free(mci);
450
edac_printk(KERN_ERR, EDAC_MC,
451
"EDAC Probe Failed; Error %d\n", res);
452
453
return res;
454
}
455
456
static void altr_sdram_remove(struct platform_device *pdev)
457
{
458
struct mem_ctl_info *mci = platform_get_drvdata(pdev);
459
460
edac_mc_del_mc(&pdev->dev);
461
edac_mc_free(mci);
462
platform_set_drvdata(pdev, NULL);
463
}
464
465
/*
466
* If you want to suspend, need to disable EDAC by removing it
467
* from the device tree or defconfig.
468
*/
469
#ifdef CONFIG_PM
470
static int altr_sdram_prepare(struct device *dev)
471
{
472
pr_err("Suspend not allowed when EDAC is enabled.\n");
473
474
return -EPERM;
475
}
476
477
static const struct dev_pm_ops altr_sdram_pm_ops = {
478
.prepare = altr_sdram_prepare,
479
};
480
#endif
481
482
static struct platform_driver altr_sdram_edac_driver = {
483
.probe = altr_sdram_probe,
484
.remove = altr_sdram_remove,
485
.driver = {
486
.name = "altr_sdram_edac",
487
#ifdef CONFIG_PM
488
.pm = &altr_sdram_pm_ops,
489
#endif
490
.of_match_table = altr_sdram_ctrl_of_match,
491
},
492
};
493
494
module_platform_driver(altr_sdram_edac_driver);
495
496
#endif /* CONFIG_EDAC_ALTERA_SDRAM */
497
498
/************************* EDAC Parent Probe *************************/
499
500
static const struct of_device_id altr_edac_device_of_match[];
501
502
static const struct of_device_id altr_edac_of_match[] = {
503
{ .compatible = "altr,socfpga-ecc-manager" },
504
{},
505
};
506
MODULE_DEVICE_TABLE(of, altr_edac_of_match);
507
508
static int altr_edac_probe(struct platform_device *pdev)
509
{
510
of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
511
NULL, &pdev->dev);
512
return 0;
513
}
514
515
static struct platform_driver altr_edac_driver = {
516
.probe = altr_edac_probe,
517
.driver = {
518
.name = "socfpga_ecc_manager",
519
.of_match_table = altr_edac_of_match,
520
},
521
};
522
module_platform_driver(altr_edac_driver);
523
524
/************************* EDAC Device Functions *************************/
525
526
/*
527
* EDAC Device Functions (shared between various IPs).
528
* The discrete memories use the EDAC Device framework. The probe
529
* and error handling functions are very similar between memories
530
* so they are shared. The memory allocation and freeing for EDAC
531
* trigger testing are different for each memory.
532
*/
533
534
#ifdef CONFIG_EDAC_ALTERA_OCRAM
535
static const struct edac_device_prv_data ocramecc_data;
536
#endif
537
#ifdef CONFIG_EDAC_ALTERA_L2C
538
static const struct edac_device_prv_data l2ecc_data;
539
#endif
540
#ifdef CONFIG_EDAC_ALTERA_OCRAM
541
static const struct edac_device_prv_data a10_ocramecc_data;
542
#endif
543
#ifdef CONFIG_EDAC_ALTERA_L2C
544
static const struct edac_device_prv_data a10_l2ecc_data;
545
#endif
546
547
static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
548
{
549
irqreturn_t ret_value = IRQ_NONE;
550
struct edac_device_ctl_info *dci = dev_id;
551
struct altr_edac_device_dev *drvdata = dci->pvt_info;
552
const struct edac_device_prv_data *priv = drvdata->data;
553
554
if (irq == drvdata->sb_irq) {
555
if (priv->ce_clear_mask)
556
writel(priv->ce_clear_mask, drvdata->base);
557
edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
558
ret_value = IRQ_HANDLED;
559
} else if (irq == drvdata->db_irq) {
560
if (priv->ue_clear_mask)
561
writel(priv->ue_clear_mask, drvdata->base);
562
edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
563
panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
564
ret_value = IRQ_HANDLED;
565
} else {
566
WARN_ON(1);
567
}
568
569
return ret_value;
570
}
571
572
static ssize_t __maybe_unused
573
altr_edac_device_trig(struct file *file, const char __user *user_buf,
574
size_t count, loff_t *ppos)
575
576
{
577
u32 *ptemp, i, error_mask;
578
int result = 0;
579
u8 trig_type;
580
unsigned long flags;
581
struct edac_device_ctl_info *edac_dci = file->private_data;
582
struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
583
const struct edac_device_prv_data *priv = drvdata->data;
584
void *generic_ptr = edac_dci->dev;
585
586
if (!user_buf || get_user(trig_type, user_buf))
587
return -EFAULT;
588
589
if (!priv->alloc_mem)
590
return -ENOMEM;
591
592
/*
593
* Note that generic_ptr is initialized to the device * but in
594
* some alloc_functions, this is overridden and returns data.
595
*/
596
ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
597
if (!ptemp) {
598
edac_printk(KERN_ERR, EDAC_DEVICE,
599
"Inject: Buffer Allocation error\n");
600
return -ENOMEM;
601
}
602
603
if (trig_type == ALTR_UE_TRIGGER_CHAR)
604
error_mask = priv->ue_set_mask;
605
else
606
error_mask = priv->ce_set_mask;
607
608
edac_printk(KERN_ALERT, EDAC_DEVICE,
609
"Trigger Error Mask (0x%X)\n", error_mask);
610
611
local_irq_save(flags);
612
/* write ECC corrupted data out. */
613
for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
614
/* Read data so we're in the correct state */
615
rmb();
616
if (READ_ONCE(ptemp[i]))
617
result = -1;
618
/* Toggle Error bit (it is latched), leave ECC enabled */
619
writel(error_mask, (drvdata->base + priv->set_err_ofst));
620
writel(priv->ecc_enable_mask, (drvdata->base +
621
priv->set_err_ofst));
622
ptemp[i] = i;
623
}
624
/* Ensure it has been written out */
625
wmb();
626
local_irq_restore(flags);
627
628
if (result)
629
edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
630
631
/* Read out written data. ECC error caused here */
632
for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
633
if (READ_ONCE(ptemp[i]) != i)
634
edac_printk(KERN_ERR, EDAC_DEVICE,
635
"Read doesn't match written data\n");
636
637
if (priv->free_mem)
638
priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
639
640
return count;
641
}
642
643
static const struct file_operations altr_edac_device_inject_fops __maybe_unused = {
644
.open = simple_open,
645
.write = altr_edac_device_trig,
646
.llseek = generic_file_llseek,
647
};
648
649
static ssize_t __maybe_unused
650
altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
651
size_t count, loff_t *ppos);
652
653
static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = {
654
.open = simple_open,
655
.write = altr_edac_a10_device_trig,
656
.llseek = generic_file_llseek,
657
};
658
659
static ssize_t __maybe_unused
660
altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
661
size_t count, loff_t *ppos);
662
663
static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = {
664
.open = simple_open,
665
.write = altr_edac_a10_device_trig2,
666
.llseek = generic_file_llseek,
667
};
668
669
static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
670
const struct edac_device_prv_data *priv)
671
{
672
struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
673
674
if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
675
return;
676
677
drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
678
if (!drvdata->debugfs_dir)
679
return;
680
681
if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
682
drvdata->debugfs_dir, edac_dci,
683
priv->inject_fops))
684
debugfs_remove_recursive(drvdata->debugfs_dir);
685
}
686
687
static const struct of_device_id altr_edac_device_of_match[] = {
688
#ifdef CONFIG_EDAC_ALTERA_L2C
689
{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
690
#endif
691
#ifdef CONFIG_EDAC_ALTERA_OCRAM
692
{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
693
#endif
694
{},
695
};
696
MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
697
698
/*
699
* altr_edac_device_probe()
700
* This is a generic EDAC device driver that will support
701
* various Altera memory devices such as the L2 cache ECC and
702
* OCRAM ECC as well as the memories for other peripherals.
703
* Module specific initialization is done by passing the
704
* function index in the device tree.
705
*/
706
static int altr_edac_device_probe(struct platform_device *pdev)
707
{
708
struct edac_device_ctl_info *dci;
709
struct altr_edac_device_dev *drvdata;
710
struct resource *r;
711
int res = 0;
712
struct device_node *np = pdev->dev.of_node;
713
char *ecc_name = (char *)np->name;
714
static int dev_instance;
715
716
if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
717
edac_printk(KERN_ERR, EDAC_DEVICE,
718
"Unable to open devm\n");
719
return -ENOMEM;
720
}
721
722
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
723
if (!r) {
724
edac_printk(KERN_ERR, EDAC_DEVICE,
725
"Unable to get mem resource\n");
726
res = -ENODEV;
727
goto fail;
728
}
729
730
if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
731
dev_name(&pdev->dev))) {
732
edac_printk(KERN_ERR, EDAC_DEVICE,
733
"%s:Error requesting mem region\n", ecc_name);
734
res = -EBUSY;
735
goto fail;
736
}
737
738
dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
739
1, ecc_name, 1, 0, dev_instance++);
740
741
if (!dci) {
742
edac_printk(KERN_ERR, EDAC_DEVICE,
743
"%s: Unable to allocate EDAC device\n", ecc_name);
744
res = -ENOMEM;
745
goto fail;
746
}
747
748
drvdata = dci->pvt_info;
749
dci->dev = &pdev->dev;
750
platform_set_drvdata(pdev, dci);
751
drvdata->edac_dev_name = ecc_name;
752
753
drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
754
if (!drvdata->base) {
755
res = -ENOMEM;
756
goto fail1;
757
}
758
759
/* Get driver specific data for this EDAC device */
760
drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
761
762
/* Check specific dependencies for the module */
763
if (drvdata->data->setup) {
764
res = drvdata->data->setup(drvdata);
765
if (res)
766
goto fail1;
767
}
768
769
drvdata->sb_irq = platform_get_irq(pdev, 0);
770
res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
771
altr_edac_device_handler,
772
0, dev_name(&pdev->dev), dci);
773
if (res)
774
goto fail1;
775
776
drvdata->db_irq = platform_get_irq(pdev, 1);
777
res = devm_request_irq(&pdev->dev, drvdata->db_irq,
778
altr_edac_device_handler,
779
0, dev_name(&pdev->dev), dci);
780
if (res)
781
goto fail1;
782
783
dci->mod_name = "Altera ECC Manager";
784
dci->dev_name = drvdata->edac_dev_name;
785
786
res = edac_device_add_device(dci);
787
if (res)
788
goto fail1;
789
790
altr_create_edacdev_dbgfs(dci, drvdata->data);
791
792
devres_close_group(&pdev->dev, NULL);
793
794
return 0;
795
796
fail1:
797
edac_device_free_ctl_info(dci);
798
fail:
799
devres_release_group(&pdev->dev, NULL);
800
edac_printk(KERN_ERR, EDAC_DEVICE,
801
"%s:Error setting up EDAC device: %d\n", ecc_name, res);
802
803
return res;
804
}
805
806
static void altr_edac_device_remove(struct platform_device *pdev)
807
{
808
struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
809
struct altr_edac_device_dev *drvdata = dci->pvt_info;
810
811
debugfs_remove_recursive(drvdata->debugfs_dir);
812
edac_device_del_device(&pdev->dev);
813
edac_device_free_ctl_info(dci);
814
}
815
816
static struct platform_driver altr_edac_device_driver = {
817
.probe = altr_edac_device_probe,
818
.remove = altr_edac_device_remove,
819
.driver = {
820
.name = "altr_edac_device",
821
.of_match_table = altr_edac_device_of_match,
822
},
823
};
824
module_platform_driver(altr_edac_device_driver);
825
826
/******************* Arria10 Device ECC Shared Functions *****************/
827
828
/*
829
* Test for memory's ECC dependencies upon entry because platform specific
830
* startup should have initialized the memory and enabled the ECC.
831
* Can't turn on ECC here because accessing un-initialized memory will
832
* cause CE/UE errors possibly causing an ABORT.
833
*/
834
static int __maybe_unused
835
altr_check_ecc_deps(struct altr_edac_device_dev *device)
836
{
837
void __iomem *base = device->base;
838
const struct edac_device_prv_data *prv = device->data;
839
840
if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
841
return 0;
842
843
edac_printk(KERN_ERR, EDAC_DEVICE,
844
"%s: No ECC present or ECC disabled.\n",
845
device->edac_dev_name);
846
return -ENODEV;
847
}
848
849
static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
850
{
851
struct altr_edac_device_dev *dci = dev_id;
852
void __iomem *base = dci->base;
853
854
if (irq == dci->sb_irq) {
855
writel(ALTR_A10_ECC_SERRPENA,
856
base + ALTR_A10_ECC_INTSTAT_OFST);
857
edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
858
859
return IRQ_HANDLED;
860
} else if (irq == dci->db_irq) {
861
writel(ALTR_A10_ECC_DERRPENA,
862
base + ALTR_A10_ECC_INTSTAT_OFST);
863
edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
864
if (dci->data->panic)
865
panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
866
867
return IRQ_HANDLED;
868
}
869
870
WARN_ON(1);
871
872
return IRQ_NONE;
873
}
874
875
/******************* Arria10 Memory Buffer Functions *********************/
876
877
static inline int a10_get_irq_mask(struct device_node *np)
878
{
879
int irq;
880
const u32 *handle = of_get_property(np, "interrupts", NULL);
881
882
if (!handle)
883
return -ENODEV;
884
irq = be32_to_cpup(handle);
885
return irq;
886
}
887
888
static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
889
{
890
u32 value = readl(ioaddr);
891
892
value |= bit_mask;
893
writel(value, ioaddr);
894
}
895
896
static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
897
{
898
u32 value = readl(ioaddr);
899
900
value &= ~bit_mask;
901
writel(value, ioaddr);
902
}
903
904
static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
905
{
906
u32 value = readl(ioaddr);
907
908
return (value & bit_mask) ? 1 : 0;
909
}
910
911
/*
912
* This function uses the memory initialization block in the Arria10 ECC
913
* controller to initialize/clear the entire memory data and ECC data.
914
*/
915
static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
916
{
917
int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
918
u32 init_mask, stat_mask, clear_mask;
919
int ret = 0;
920
921
if (port) {
922
init_mask = ALTR_A10_ECC_INITB;
923
stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
924
clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
925
} else {
926
init_mask = ALTR_A10_ECC_INITA;
927
stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
928
clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
929
}
930
931
ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
932
while (limit--) {
933
if (ecc_test_bits(stat_mask,
934
(ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
935
break;
936
udelay(1);
937
}
938
if (limit < 0)
939
ret = -EBUSY;
940
941
/* Clear any pending ECC interrupts */
942
writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
943
944
return ret;
945
}
946
947
static __init int __maybe_unused
948
altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
949
u32 ecc_ctrl_en_mask, bool dual_port)
950
{
951
int ret = 0;
952
void __iomem *ecc_block_base;
953
struct regmap *ecc_mgr_map;
954
char *ecc_name;
955
struct device_node *np_eccmgr;
956
957
ecc_name = (char *)np->name;
958
959
/* Get the ECC Manager - parent of the device EDACs */
960
np_eccmgr = of_get_parent(np);
961
962
ecc_mgr_map =
963
altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr,
964
"altr,sysmgr-syscon");
965
966
of_node_put(np_eccmgr);
967
if (IS_ERR(ecc_mgr_map)) {
968
edac_printk(KERN_ERR, EDAC_DEVICE,
969
"Unable to get syscon altr,sysmgr-syscon\n");
970
return -ENODEV;
971
}
972
973
/* Map the ECC Block */
974
ecc_block_base = of_iomap(np, 0);
975
if (!ecc_block_base) {
976
edac_printk(KERN_ERR, EDAC_DEVICE,
977
"Unable to map %s ECC block\n", ecc_name);
978
return -ENODEV;
979
}
980
981
/* Disable ECC */
982
regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
983
writel(ALTR_A10_ECC_SERRINTEN,
984
(ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
985
ecc_clear_bits(ecc_ctrl_en_mask,
986
(ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
987
/* Ensure all writes complete */
988
wmb();
989
/* Use HW initialization block to initialize memory for ECC */
990
ret = altr_init_memory_port(ecc_block_base, 0);
991
if (ret) {
992
edac_printk(KERN_ERR, EDAC_DEVICE,
993
"ECC: cannot init %s PORTA memory\n", ecc_name);
994
goto out;
995
}
996
997
if (dual_port) {
998
ret = altr_init_memory_port(ecc_block_base, 1);
999
if (ret) {
1000
edac_printk(KERN_ERR, EDAC_DEVICE,
1001
"ECC: cannot init %s PORTB memory\n",
1002
ecc_name);
1003
goto out;
1004
}
1005
}
1006
1007
/* Enable ECC */
1008
ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1009
ALTR_A10_ECC_CTRL_OFST));
1010
writel(ALTR_A10_ECC_SERRINTEN,
1011
(ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1012
regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1013
/* Ensure all writes complete */
1014
wmb();
1015
out:
1016
iounmap(ecc_block_base);
1017
return ret;
1018
}
1019
1020
static int validate_parent_available(struct device_node *np);
1021
static const struct of_device_id altr_edac_a10_device_of_match[];
1022
static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1023
{
1024
int irq;
1025
struct device_node *child, *np;
1026
1027
np = of_find_compatible_node(NULL, NULL,
1028
"altr,socfpga-a10-ecc-manager");
1029
if (!np) {
1030
edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1031
return -ENODEV;
1032
}
1033
1034
for_each_child_of_node(np, child) {
1035
const struct of_device_id *pdev_id;
1036
const struct edac_device_prv_data *prv;
1037
1038
if (!of_device_is_available(child))
1039
continue;
1040
if (!of_device_is_compatible(child, compat))
1041
continue;
1042
1043
if (validate_parent_available(child))
1044
continue;
1045
1046
irq = a10_get_irq_mask(child);
1047
if (irq < 0)
1048
continue;
1049
1050
/* Get matching node and check for valid result */
1051
pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1052
if (IS_ERR_OR_NULL(pdev_id))
1053
continue;
1054
1055
/* Validate private data pointer before dereferencing */
1056
prv = pdev_id->data;
1057
if (!prv)
1058
continue;
1059
1060
altr_init_a10_ecc_block(child, BIT(irq),
1061
prv->ecc_enable_mask, 0);
1062
}
1063
1064
of_node_put(np);
1065
return 0;
1066
}
1067
1068
/*********************** SDRAM EDAC Device Functions *********************/
1069
1070
#ifdef CONFIG_EDAC_ALTERA_SDRAM
1071
1072
/*
1073
* A legacy U-Boot bug only enabled memory mapped access to the ECC Enable
1074
* register if ECC is enabled. Linux checks the ECC Enable register to
1075
* determine ECC status.
1076
* Use an SMC call (which always works) to determine ECC enablement.
1077
*/
1078
static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device)
1079
{
1080
const struct edac_device_prv_data *prv = device->data;
1081
unsigned long sdram_ecc_addr;
1082
struct arm_smccc_res result;
1083
struct device_node *np;
1084
phys_addr_t sdram_addr;
1085
u32 read_reg;
1086
int ret;
1087
1088
np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl");
1089
if (!np)
1090
goto sdram_err;
1091
1092
sdram_addr = of_translate_address(np, of_get_address(np, 0,
1093
NULL, NULL));
1094
of_node_put(np);
1095
sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst;
1096
arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr,
1097
0, 0, 0, 0, 0, 0, &result);
1098
read_reg = (unsigned int)result.a1;
1099
ret = (int)result.a0;
1100
if (!ret && (read_reg & prv->ecc_enable_mask))
1101
return 0;
1102
1103
sdram_err:
1104
edac_printk(KERN_ERR, EDAC_DEVICE,
1105
"%s: No ECC present or ECC disabled.\n",
1106
device->edac_dev_name);
1107
return -ENODEV;
1108
}
1109
1110
static const struct edac_device_prv_data s10_sdramecc_data = {
1111
.setup = altr_s10_sdram_check_ecc_deps,
1112
.ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1113
.ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1114
.ecc_enable_mask = ALTR_S10_ECC_EN,
1115
.ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1116
.ce_set_mask = ALTR_S10_ECC_TSERRA,
1117
.ue_set_mask = ALTR_S10_ECC_TDERRA,
1118
.set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1119
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1120
.inject_fops = &altr_edac_a10_device_inject_fops,
1121
};
1122
#endif /* CONFIG_EDAC_ALTERA_SDRAM */
1123
1124
/*********************** OCRAM EDAC Device Functions *********************/
1125
1126
#ifdef CONFIG_EDAC_ALTERA_OCRAM
1127
1128
static void *ocram_alloc_mem(size_t size, void **other)
1129
{
1130
struct device_node *np;
1131
struct gen_pool *gp;
1132
void *sram_addr;
1133
1134
np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1135
if (!np)
1136
return NULL;
1137
1138
gp = of_gen_pool_get(np, "iram", 0);
1139
of_node_put(np);
1140
if (!gp)
1141
return NULL;
1142
1143
sram_addr = (void *)gen_pool_alloc(gp, size);
1144
if (!sram_addr)
1145
return NULL;
1146
1147
memset(sram_addr, 0, size);
1148
/* Ensure data is written out */
1149
wmb();
1150
1151
/* Remember this handle for freeing later */
1152
*other = gp;
1153
1154
return sram_addr;
1155
}
1156
1157
static void ocram_free_mem(void *p, size_t size, void *other)
1158
{
1159
gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1160
}
1161
1162
static const struct edac_device_prv_data ocramecc_data = {
1163
.setup = altr_check_ecc_deps,
1164
.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1165
.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1166
.alloc_mem = ocram_alloc_mem,
1167
.free_mem = ocram_free_mem,
1168
.ecc_enable_mask = ALTR_OCR_ECC_EN,
1169
.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1170
.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1171
.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1172
.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1173
.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1174
.inject_fops = &altr_edac_device_inject_fops,
1175
};
1176
1177
static int __maybe_unused
1178
altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1179
{
1180
void __iomem *base = device->base;
1181
int ret;
1182
1183
ret = altr_check_ecc_deps(device);
1184
if (ret)
1185
return ret;
1186
1187
/*
1188
* Verify that OCRAM has been initialized.
1189
* During a warm reset, OCRAM contents are retained, but the control
1190
* and status registers are reset to their default values. Therefore,
1191
* ECC must be explicitly re-enabled in the control register.
1192
* Error condition: if INITCOMPLETEA is clear and ECC_EN is already set.
1193
*/
1194
if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1195
(base + ALTR_A10_ECC_INITSTAT_OFST))) {
1196
if (!ecc_test_bits(ALTR_A10_ECC_EN,
1197
(base + ALTR_A10_ECC_CTRL_OFST)))
1198
ecc_set_bits(ALTR_A10_ECC_EN,
1199
(base + ALTR_A10_ECC_CTRL_OFST));
1200
else
1201
return -ENODEV;
1202
}
1203
1204
/* Enable IRQ on Single Bit Error */
1205
writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1206
/* Ensure all writes complete */
1207
wmb();
1208
1209
return 0;
1210
}
1211
1212
static const struct edac_device_prv_data a10_ocramecc_data = {
1213
.setup = altr_check_ocram_deps_init,
1214
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1215
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1216
.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1217
.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1218
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1219
.ce_set_mask = ALTR_A10_ECC_TSERRA,
1220
.ue_set_mask = ALTR_A10_ECC_TDERRA,
1221
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1222
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1223
.inject_fops = &altr_edac_a10_device_inject2_fops,
1224
/*
1225
* OCRAM panic on uncorrectable error because sleep/resume
1226
* functions and FPGA contents are stored in OCRAM. Prefer
1227
* a kernel panic over executing/loading corrupted data.
1228
*/
1229
.panic = true,
1230
};
1231
1232
#endif /* CONFIG_EDAC_ALTERA_OCRAM */
1233
1234
/********************* L2 Cache EDAC Device Functions ********************/
1235
1236
#ifdef CONFIG_EDAC_ALTERA_L2C
1237
1238
static void *l2_alloc_mem(size_t size, void **other)
1239
{
1240
struct device *dev = *other;
1241
void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1242
1243
if (!ptemp)
1244
return NULL;
1245
1246
/* Make sure everything is written out */
1247
wmb();
1248
1249
/*
1250
* Clean all cache levels up to LoC (includes L2)
1251
* This ensures the corrupted data is written into
1252
* L2 cache for readback test (which causes ECC error).
1253
*/
1254
flush_cache_all();
1255
1256
return ptemp;
1257
}
1258
1259
static void l2_free_mem(void *p, size_t size, void *other)
1260
{
1261
struct device *dev = other;
1262
1263
if (dev && p)
1264
devm_kfree(dev, p);
1265
}
1266
1267
/*
1268
* altr_l2_check_deps()
1269
* Test for L2 cache ECC dependencies upon entry because
1270
* platform specific startup should have initialized the L2
1271
* memory and enabled the ECC.
1272
* Bail if ECC is not enabled.
1273
* Note that L2 Cache Enable is forced at build time.
1274
*/
1275
static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1276
{
1277
void __iomem *base = device->base;
1278
const struct edac_device_prv_data *prv = device->data;
1279
1280
if ((readl(base) & prv->ecc_enable_mask) ==
1281
prv->ecc_enable_mask)
1282
return 0;
1283
1284
edac_printk(KERN_ERR, EDAC_DEVICE,
1285
"L2: No ECC present, or ECC disabled\n");
1286
return -ENODEV;
1287
}
1288
1289
static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1290
{
1291
struct altr_edac_device_dev *dci = dev_id;
1292
1293
if (irq == dci->sb_irq) {
1294
regmap_write(dci->edac->ecc_mgr_map,
1295
A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1296
A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1297
edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1298
1299
return IRQ_HANDLED;
1300
} else if (irq == dci->db_irq) {
1301
regmap_write(dci->edac->ecc_mgr_map,
1302
A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1303
A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1304
edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1305
panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1306
1307
return IRQ_HANDLED;
1308
}
1309
1310
WARN_ON(1);
1311
1312
return IRQ_NONE;
1313
}
1314
1315
static const struct edac_device_prv_data l2ecc_data = {
1316
.setup = altr_l2_check_deps,
1317
.ce_clear_mask = 0,
1318
.ue_clear_mask = 0,
1319
.alloc_mem = l2_alloc_mem,
1320
.free_mem = l2_free_mem,
1321
.ecc_enable_mask = ALTR_L2_ECC_EN,
1322
.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1323
.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1324
.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1325
.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1326
.inject_fops = &altr_edac_device_inject_fops,
1327
};
1328
1329
static const struct edac_device_prv_data a10_l2ecc_data = {
1330
.setup = altr_l2_check_deps,
1331
.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1332
.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1333
.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1334
.alloc_mem = l2_alloc_mem,
1335
.free_mem = l2_free_mem,
1336
.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1337
.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1338
.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1339
.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1340
.ecc_irq_handler = altr_edac_a10_l2_irq,
1341
.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1342
.inject_fops = &altr_edac_device_inject_fops,
1343
};
1344
1345
#endif /* CONFIG_EDAC_ALTERA_L2C */
1346
1347
/********************* Ethernet Device Functions ********************/
1348
1349
#ifdef CONFIG_EDAC_ALTERA_ETHERNET
1350
1351
static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1352
{
1353
int ret;
1354
1355
ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1356
if (ret)
1357
return ret;
1358
1359
return altr_check_ecc_deps(dev);
1360
}
1361
1362
static const struct edac_device_prv_data a10_enetecc_data = {
1363
.setup = socfpga_init_ethernet_ecc,
1364
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1365
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1366
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1367
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1368
.ce_set_mask = ALTR_A10_ECC_TSERRA,
1369
.ue_set_mask = ALTR_A10_ECC_TDERRA,
1370
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1371
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1372
.inject_fops = &altr_edac_a10_device_inject_fops,
1373
};
1374
1375
#endif /* CONFIG_EDAC_ALTERA_ETHERNET */
1376
1377
/********************** NAND Device Functions **********************/
1378
1379
#ifdef CONFIG_EDAC_ALTERA_NAND
1380
1381
static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1382
{
1383
int ret;
1384
1385
ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1386
if (ret)
1387
return ret;
1388
1389
return altr_check_ecc_deps(device);
1390
}
1391
1392
static const struct edac_device_prv_data a10_nandecc_data = {
1393
.setup = socfpga_init_nand_ecc,
1394
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1395
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1396
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1397
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1398
.ce_set_mask = ALTR_A10_ECC_TSERRA,
1399
.ue_set_mask = ALTR_A10_ECC_TDERRA,
1400
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1401
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1402
.inject_fops = &altr_edac_a10_device_inject_fops,
1403
};
1404
1405
#endif /* CONFIG_EDAC_ALTERA_NAND */
1406
1407
/********************** DMA Device Functions **********************/
1408
1409
#ifdef CONFIG_EDAC_ALTERA_DMA
1410
1411
static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1412
{
1413
int ret;
1414
1415
ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1416
if (ret)
1417
return ret;
1418
1419
return altr_check_ecc_deps(device);
1420
}
1421
1422
static const struct edac_device_prv_data a10_dmaecc_data = {
1423
.setup = socfpga_init_dma_ecc,
1424
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1425
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1426
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1427
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1428
.ce_set_mask = ALTR_A10_ECC_TSERRA,
1429
.ue_set_mask = ALTR_A10_ECC_TDERRA,
1430
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1431
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1432
.inject_fops = &altr_edac_a10_device_inject_fops,
1433
};
1434
1435
#endif /* CONFIG_EDAC_ALTERA_DMA */
1436
1437
/********************** USB Device Functions **********************/
1438
1439
#ifdef CONFIG_EDAC_ALTERA_USB
1440
1441
static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1442
{
1443
int ret;
1444
1445
ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1446
if (ret)
1447
return ret;
1448
1449
return altr_check_ecc_deps(device);
1450
}
1451
1452
static const struct edac_device_prv_data a10_usbecc_data = {
1453
.setup = socfpga_init_usb_ecc,
1454
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1455
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1456
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1457
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1458
.ce_set_mask = ALTR_A10_ECC_TSERRA,
1459
.ue_set_mask = ALTR_A10_ECC_TDERRA,
1460
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1461
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1462
.inject_fops = &altr_edac_a10_device_inject_fops,
1463
};
1464
1465
#endif /* CONFIG_EDAC_ALTERA_USB */
1466
1467
/********************** QSPI Device Functions **********************/
1468
1469
#ifdef CONFIG_EDAC_ALTERA_QSPI
1470
1471
static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1472
{
1473
int ret;
1474
1475
ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1476
if (ret)
1477
return ret;
1478
1479
return altr_check_ecc_deps(device);
1480
}
1481
1482
static const struct edac_device_prv_data a10_qspiecc_data = {
1483
.setup = socfpga_init_qspi_ecc,
1484
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1485
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1486
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1487
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1488
.ce_set_mask = ALTR_A10_ECC_TSERRA,
1489
.ue_set_mask = ALTR_A10_ECC_TDERRA,
1490
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1491
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1492
.inject_fops = &altr_edac_a10_device_inject_fops,
1493
};
1494
1495
#endif /* CONFIG_EDAC_ALTERA_QSPI */
1496
1497
/********************* SDMMC Device Functions **********************/
1498
1499
#ifdef CONFIG_EDAC_ALTERA_SDMMC
1500
1501
static const struct edac_device_prv_data a10_sdmmceccb_data;
1502
static int altr_portb_setup(struct altr_edac_device_dev *device)
1503
{
1504
struct edac_device_ctl_info *dci;
1505
struct altr_edac_device_dev *altdev;
1506
char *ecc_name = "sdmmcb-ecc";
1507
int edac_idx, rc;
1508
struct device_node *np;
1509
const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1510
1511
rc = altr_check_ecc_deps(device);
1512
if (rc)
1513
return rc;
1514
1515
np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1516
if (!np) {
1517
edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1518
return -ENODEV;
1519
}
1520
1521
/* Create the PortB EDAC device */
1522
edac_idx = edac_device_alloc_index();
1523
dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1524
ecc_name, 1, 0, edac_idx);
1525
if (!dci) {
1526
edac_printk(KERN_ERR, EDAC_DEVICE,
1527
"%s: Unable to allocate PortB EDAC device\n",
1528
ecc_name);
1529
return -ENOMEM;
1530
}
1531
1532
/* Initialize the PortB EDAC device structure from PortA structure */
1533
altdev = dci->pvt_info;
1534
*altdev = *device;
1535
1536
if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1537
return -ENOMEM;
1538
1539
/* Update PortB specific values */
1540
altdev->edac_dev_name = ecc_name;
1541
altdev->edac_idx = edac_idx;
1542
altdev->edac_dev = dci;
1543
altdev->data = prv;
1544
dci->dev = &altdev->ddev;
1545
dci->ctl_name = "Altera ECC Manager";
1546
dci->mod_name = ecc_name;
1547
dci->dev_name = ecc_name;
1548
1549
/*
1550
* Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly
1551
*
1552
* FIXME: Instead of ifdefs with different architectures the driver
1553
* should properly use compatibles.
1554
*/
1555
#ifdef CONFIG_64BIT
1556
altdev->sb_irq = irq_of_parse_and_map(np, 1);
1557
#else
1558
altdev->sb_irq = irq_of_parse_and_map(np, 2);
1559
#endif
1560
if (!altdev->sb_irq) {
1561
edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1562
rc = -ENODEV;
1563
goto err_release_group_1;
1564
}
1565
rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1566
prv->ecc_irq_handler,
1567
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1568
ecc_name, altdev);
1569
if (rc) {
1570
edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1571
goto err_release_group_1;
1572
}
1573
1574
#ifdef CONFIG_64BIT
1575
/* Use IRQ to determine SError origin instead of assigning IRQ */
1576
rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1577
if (rc) {
1578
edac_printk(KERN_ERR, EDAC_DEVICE,
1579
"Error PortB DBIRQ alloc\n");
1580
goto err_release_group_1;
1581
}
1582
#else
1583
altdev->db_irq = irq_of_parse_and_map(np, 3);
1584
if (!altdev->db_irq) {
1585
edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1586
rc = -ENODEV;
1587
goto err_release_group_1;
1588
}
1589
rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1590
prv->ecc_irq_handler,
1591
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1592
ecc_name, altdev);
1593
if (rc) {
1594
edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1595
goto err_release_group_1;
1596
}
1597
#endif
1598
1599
rc = edac_device_add_device(dci);
1600
if (rc) {
1601
edac_printk(KERN_ERR, EDAC_DEVICE,
1602
"edac_device_add_device portB failed\n");
1603
rc = -ENOMEM;
1604
goto err_release_group_1;
1605
}
1606
altr_create_edacdev_dbgfs(dci, prv);
1607
1608
list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1609
1610
devres_remove_group(&altdev->ddev, altr_portb_setup);
1611
1612
return 0;
1613
1614
err_release_group_1:
1615
edac_device_free_ctl_info(dci);
1616
devres_release_group(&altdev->ddev, altr_portb_setup);
1617
edac_printk(KERN_ERR, EDAC_DEVICE,
1618
"%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1619
return rc;
1620
}
1621
1622
static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1623
{
1624
int rc = -ENODEV;
1625
struct device_node *child;
1626
1627
child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1628
if (!child)
1629
return -ENODEV;
1630
1631
if (!of_device_is_available(child))
1632
goto exit;
1633
1634
if (validate_parent_available(child))
1635
goto exit;
1636
1637
/* Init portB */
1638
rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1639
a10_sdmmceccb_data.ecc_enable_mask, 1);
1640
if (rc)
1641
goto exit;
1642
1643
/* Setup portB */
1644
return altr_portb_setup(device);
1645
1646
exit:
1647
of_node_put(child);
1648
return rc;
1649
}
1650
1651
static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1652
{
1653
struct altr_edac_device_dev *ad = dev_id;
1654
void __iomem *base = ad->base;
1655
const struct edac_device_prv_data *priv = ad->data;
1656
1657
if (irq == ad->sb_irq) {
1658
writel(priv->ce_clear_mask,
1659
base + ALTR_A10_ECC_INTSTAT_OFST);
1660
edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1661
return IRQ_HANDLED;
1662
} else if (irq == ad->db_irq) {
1663
writel(priv->ue_clear_mask,
1664
base + ALTR_A10_ECC_INTSTAT_OFST);
1665
edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1666
return IRQ_HANDLED;
1667
}
1668
1669
WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1670
1671
return IRQ_NONE;
1672
}
1673
1674
static const struct edac_device_prv_data a10_sdmmcecca_data = {
1675
.setup = socfpga_init_sdmmc_ecc,
1676
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1677
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1678
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1679
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1680
.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1681
.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1682
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1683
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1684
.inject_fops = &altr_edac_a10_device_inject_fops,
1685
};
1686
1687
static const struct edac_device_prv_data a10_sdmmceccb_data = {
1688
.setup = socfpga_init_sdmmc_ecc,
1689
.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1690
.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1691
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1692
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1693
.ce_set_mask = ALTR_A10_ECC_TSERRB,
1694
.ue_set_mask = ALTR_A10_ECC_TDERRB,
1695
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1696
.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1697
.inject_fops = &altr_edac_a10_device_inject_fops,
1698
};
1699
1700
#endif /* CONFIG_EDAC_ALTERA_SDMMC */
1701
1702
/********************* Arria10 EDAC Device Functions *************************/
1703
static const struct of_device_id altr_edac_a10_device_of_match[] = {
1704
#ifdef CONFIG_EDAC_ALTERA_L2C
1705
{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1706
#endif
1707
#ifdef CONFIG_EDAC_ALTERA_OCRAM
1708
{ .compatible = "altr,socfpga-a10-ocram-ecc",
1709
.data = &a10_ocramecc_data },
1710
#endif
1711
#ifdef CONFIG_EDAC_ALTERA_ETHERNET
1712
{ .compatible = "altr,socfpga-eth-mac-ecc",
1713
.data = &a10_enetecc_data },
1714
#endif
1715
#ifdef CONFIG_EDAC_ALTERA_NAND
1716
{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1717
#endif
1718
#ifdef CONFIG_EDAC_ALTERA_DMA
1719
{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1720
#endif
1721
#ifdef CONFIG_EDAC_ALTERA_USB
1722
{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1723
#endif
1724
#ifdef CONFIG_EDAC_ALTERA_QSPI
1725
{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1726
#endif
1727
#ifdef CONFIG_EDAC_ALTERA_SDMMC
1728
{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1729
#endif
1730
#ifdef CONFIG_EDAC_ALTERA_SDRAM
1731
{ .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1732
#endif
1733
{},
1734
};
1735
MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1736
1737
/*
1738
* The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1739
* because 2 IRQs are shared among the all ECC peripherals. The ECC
1740
* manager manages the IRQs and the children.
1741
* Based on xgene_edac.c peripheral code.
1742
*/
1743
1744
static ssize_t __maybe_unused
1745
altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
1746
size_t count, loff_t *ppos)
1747
{
1748
struct edac_device_ctl_info *edac_dci = file->private_data;
1749
struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1750
const struct edac_device_prv_data *priv = drvdata->data;
1751
void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1752
unsigned long flags;
1753
u8 trig_type;
1754
1755
if (!user_buf || get_user(trig_type, user_buf))
1756
return -EFAULT;
1757
1758
local_irq_save(flags);
1759
if (trig_type == ALTR_UE_TRIGGER_CHAR)
1760
writew(priv->ue_set_mask, set_addr);
1761
else
1762
writew(priv->ce_set_mask, set_addr);
1763
1764
/* Ensure the interrupt test bits are set */
1765
wmb();
1766
local_irq_restore(flags);
1767
1768
return count;
1769
}
1770
1771
/*
1772
* The Stratix10 EDAC Error Injection Functions differ from Arria10
1773
* slightly. A few Arria10 peripherals can use this injection function.
1774
* Inject the error into the memory and then readback to trigger the IRQ.
1775
*/
1776
static ssize_t __maybe_unused
1777
altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
1778
size_t count, loff_t *ppos)
1779
{
1780
struct edac_device_ctl_info *edac_dci = file->private_data;
1781
struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1782
const struct edac_device_prv_data *priv = drvdata->data;
1783
void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1784
unsigned long flags;
1785
u8 trig_type;
1786
1787
if (!user_buf || get_user(trig_type, user_buf))
1788
return -EFAULT;
1789
1790
local_irq_save(flags);
1791
if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1792
writew(priv->ue_set_mask, set_addr);
1793
} else {
1794
/* Setup read/write of 4 bytes */
1795
writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1796
/* Setup Address to 0 */
1797
writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1798
/* Setup accctrl to read & ecc & data override */
1799
writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1800
/* Kick it. */
1801
writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1802
/* Setup write for single bit change */
1803
writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1804
drvdata->base + ECC_BLK_WDATA0_OFST);
1805
writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1806
drvdata->base + ECC_BLK_WDATA1_OFST);
1807
writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1808
drvdata->base + ECC_BLK_WDATA2_OFST);
1809
writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1810
drvdata->base + ECC_BLK_WDATA3_OFST);
1811
1812
/* Copy Read ECC to Write ECC */
1813
writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1814
drvdata->base + ECC_BLK_WECC0_OFST);
1815
writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1816
drvdata->base + ECC_BLK_WECC1_OFST);
1817
/* Setup accctrl to write & ecc override & data override */
1818
writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1819
/* Kick it. */
1820
writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1821
/* Setup accctrl to read & ecc overwrite & data overwrite */
1822
writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1823
/* Kick it. */
1824
writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1825
}
1826
1827
/* Ensure the interrupt test bits are set */
1828
wmb();
1829
local_irq_restore(flags);
1830
1831
return count;
1832
}
1833
1834
static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1835
{
1836
int dberr, bit, sm_offset, irq_status;
1837
struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1838
struct irq_chip *chip = irq_desc_get_chip(desc);
1839
int irq = irq_desc_get_irq(desc);
1840
unsigned long bits;
1841
1842
dberr = (irq == edac->db_irq) ? 1 : 0;
1843
sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1844
A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1845
1846
chained_irq_enter(chip, desc);
1847
1848
regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1849
1850
bits = irq_status;
1851
for_each_set_bit(bit, &bits, 32)
1852
generic_handle_domain_irq(edac->domain, dberr * 32 + bit);
1853
1854
chained_irq_exit(chip, desc);
1855
}
1856
1857
static int validate_parent_available(struct device_node *np)
1858
{
1859
struct device_node *parent;
1860
int ret = 0;
1861
1862
/* SDRAM must be present for Linux (implied parent) */
1863
if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1864
return 0;
1865
1866
/* Ensure parent device is enabled if parent node exists */
1867
parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1868
if (parent && !of_device_is_available(parent))
1869
ret = -ENODEV;
1870
1871
of_node_put(parent);
1872
return ret;
1873
}
1874
1875
static int get_s10_sdram_edac_resource(struct device_node *np,
1876
struct resource *res)
1877
{
1878
struct device_node *parent;
1879
int ret;
1880
1881
parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1882
if (!parent)
1883
return -ENODEV;
1884
1885
ret = of_address_to_resource(parent, 0, res);
1886
of_node_put(parent);
1887
1888
return ret;
1889
}
1890
1891
static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1892
struct device_node *np)
1893
{
1894
struct edac_device_ctl_info *dci;
1895
struct altr_edac_device_dev *altdev;
1896
char *ecc_name = (char *)np->name;
1897
struct resource res;
1898
int edac_idx;
1899
int rc = 0;
1900
const struct edac_device_prv_data *prv;
1901
/* Get matching node and check for valid result */
1902
const struct of_device_id *pdev_id =
1903
of_match_node(altr_edac_a10_device_of_match, np);
1904
if (IS_ERR_OR_NULL(pdev_id))
1905
return -ENODEV;
1906
1907
/* Get driver specific data for this EDAC device */
1908
prv = pdev_id->data;
1909
if (IS_ERR_OR_NULL(prv))
1910
return -ENODEV;
1911
1912
if (validate_parent_available(np))
1913
return -ENODEV;
1914
1915
if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1916
return -ENOMEM;
1917
1918
if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1919
rc = get_s10_sdram_edac_resource(np, &res);
1920
else
1921
rc = of_address_to_resource(np, 0, &res);
1922
1923
if (rc < 0) {
1924
edac_printk(KERN_ERR, EDAC_DEVICE,
1925
"%s: no resource address\n", ecc_name);
1926
goto err_release_group;
1927
}
1928
1929
edac_idx = edac_device_alloc_index();
1930
dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1931
1, ecc_name, 1, 0, edac_idx);
1932
1933
if (!dci) {
1934
edac_printk(KERN_ERR, EDAC_DEVICE,
1935
"%s: Unable to allocate EDAC device\n", ecc_name);
1936
rc = -ENOMEM;
1937
goto err_release_group;
1938
}
1939
1940
altdev = dci->pvt_info;
1941
dci->dev = edac->dev;
1942
altdev->edac_dev_name = ecc_name;
1943
altdev->edac_idx = edac_idx;
1944
altdev->edac = edac;
1945
altdev->edac_dev = dci;
1946
altdev->data = prv;
1947
altdev->ddev = *edac->dev;
1948
dci->dev = &altdev->ddev;
1949
dci->ctl_name = "Altera ECC Manager";
1950
dci->mod_name = ecc_name;
1951
dci->dev_name = ecc_name;
1952
1953
altdev->base = devm_ioremap_resource(edac->dev, &res);
1954
if (IS_ERR(altdev->base)) {
1955
rc = PTR_ERR(altdev->base);
1956
goto err_release_group1;
1957
}
1958
1959
/* Check specific dependencies for the module */
1960
if (altdev->data->setup) {
1961
rc = altdev->data->setup(altdev);
1962
if (rc)
1963
goto err_release_group1;
1964
}
1965
1966
altdev->sb_irq = irq_of_parse_and_map(np, 0);
1967
if (!altdev->sb_irq) {
1968
edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1969
rc = -ENODEV;
1970
goto err_release_group1;
1971
}
1972
rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1973
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1974
ecc_name, altdev);
1975
if (rc) {
1976
edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1977
goto err_release_group1;
1978
}
1979
1980
#ifdef CONFIG_64BIT
1981
/* Use IRQ to determine SError origin instead of assigning IRQ */
1982
rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1983
if (rc) {
1984
edac_printk(KERN_ERR, EDAC_DEVICE,
1985
"Unable to parse DB IRQ index\n");
1986
goto err_release_group1;
1987
}
1988
#else
1989
altdev->db_irq = irq_of_parse_and_map(np, 1);
1990
if (!altdev->db_irq) {
1991
edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1992
rc = -ENODEV;
1993
goto err_release_group1;
1994
}
1995
rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1996
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1997
ecc_name, altdev);
1998
if (rc) {
1999
edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
2000
goto err_release_group1;
2001
}
2002
#endif
2003
2004
rc = edac_device_add_device(dci);
2005
if (rc) {
2006
dev_err(edac->dev, "edac_device_add_device failed\n");
2007
rc = -ENOMEM;
2008
goto err_release_group1;
2009
}
2010
2011
altr_create_edacdev_dbgfs(dci, prv);
2012
2013
list_add(&altdev->next, &edac->a10_ecc_devices);
2014
2015
devres_remove_group(edac->dev, altr_edac_a10_device_add);
2016
2017
return 0;
2018
2019
err_release_group1:
2020
edac_device_free_ctl_info(dci);
2021
err_release_group:
2022
devres_release_group(edac->dev, NULL);
2023
edac_printk(KERN_ERR, EDAC_DEVICE,
2024
"%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2025
2026
return rc;
2027
}
2028
2029
static void a10_eccmgr_irq_mask(struct irq_data *d)
2030
{
2031
struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2032
2033
regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
2034
BIT(d->hwirq));
2035
}
2036
2037
static void a10_eccmgr_irq_unmask(struct irq_data *d)
2038
{
2039
struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2040
2041
regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2042
BIT(d->hwirq));
2043
}
2044
2045
static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2046
irq_hw_number_t hwirq)
2047
{
2048
struct altr_arria10_edac *edac = d->host_data;
2049
2050
irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2051
irq_set_chip_data(irq, edac);
2052
irq_set_noprobe(irq);
2053
2054
return 0;
2055
}
2056
2057
static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2058
.map = a10_eccmgr_irqdomain_map,
2059
.xlate = irq_domain_xlate_twocell,
2060
};
2061
2062
/************** Stratix 10 EDAC Double Bit Error Handler ************/
2063
#define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2064
2065
#ifdef CONFIG_64BIT
2066
/* panic routine issues reboot on non-zero panic_timeout */
2067
extern int panic_timeout;
2068
2069
/*
2070
* The double bit error is handled through SError which is fatal. This is
2071
* called as a panic notifier to printout ECC error info as part of the panic.
2072
*/
2073
static int s10_edac_dberr_handler(struct notifier_block *this,
2074
unsigned long event, void *ptr)
2075
{
2076
struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2077
int err_addr, dberror;
2078
2079
regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2080
&dberror);
2081
regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2082
if (dberror & S10_DBE_IRQ_MASK) {
2083
struct list_head *position;
2084
struct altr_edac_device_dev *ed;
2085
struct arm_smccc_res result;
2086
2087
/* Find the matching DBE in the list of devices */
2088
list_for_each(position, &edac->a10_ecc_devices) {
2089
ed = list_entry(position, struct altr_edac_device_dev,
2090
next);
2091
if (!(BIT(ed->db_irq) & dberror))
2092
continue;
2093
2094
writel(ALTR_A10_ECC_DERRPENA,
2095
ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2096
err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2097
regmap_write(edac->ecc_mgr_map,
2098
S10_SYSMGR_UE_ADDR_OFST, err_addr);
2099
edac_printk(KERN_ERR, EDAC_DEVICE,
2100
"EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2101
ed->edac_dev_name, err_addr);
2102
break;
2103
}
2104
/* Notify the System through SMC. Reboot delay = 1 second */
2105
panic_timeout = 1;
2106
arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2107
0, 0, &result);
2108
}
2109
2110
return NOTIFY_DONE;
2111
}
2112
#endif
2113
2114
/****************** Arria 10 EDAC Probe Function *********************/
2115
static int altr_edac_a10_probe(struct platform_device *pdev)
2116
{
2117
struct altr_arria10_edac *edac;
2118
struct device_node *child;
2119
2120
edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2121
if (!edac)
2122
return -ENOMEM;
2123
2124
edac->dev = &pdev->dev;
2125
platform_set_drvdata(pdev, edac);
2126
INIT_LIST_HEAD(&edac->a10_ecc_devices);
2127
2128
edac->ecc_mgr_map =
2129
altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node,
2130
"altr,sysmgr-syscon");
2131
2132
if (IS_ERR(edac->ecc_mgr_map)) {
2133
edac_printk(KERN_ERR, EDAC_DEVICE,
2134
"Unable to get syscon altr,sysmgr-syscon\n");
2135
return PTR_ERR(edac->ecc_mgr_map);
2136
}
2137
2138
/* Set irq mask for DDR SBE to avoid any pending irq before registration */
2139
regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
2140
(A10_SYSMGR_ECC_INTMASK_SDMMCB | A10_SYSMGR_ECC_INTMASK_DDR0));
2141
2142
edac->irq_chip.name = pdev->dev.of_node->name;
2143
edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2144
edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2145
edac->domain = irq_domain_create_linear(dev_fwnode(&pdev->dev), 64, &a10_eccmgr_ic_ops,
2146
edac);
2147
if (!edac->domain) {
2148
dev_err(&pdev->dev, "Error adding IRQ domain\n");
2149
return -ENOMEM;
2150
}
2151
2152
edac->sb_irq = platform_get_irq(pdev, 0);
2153
if (edac->sb_irq < 0)
2154
return edac->sb_irq;
2155
2156
irq_set_chained_handler_and_data(edac->sb_irq,
2157
altr_edac_a10_irq_handler,
2158
edac);
2159
2160
#ifdef CONFIG_64BIT
2161
{
2162
int dberror, err_addr;
2163
2164
edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2165
atomic_notifier_chain_register(&panic_notifier_list,
2166
&edac->panic_notifier);
2167
2168
/* Printout a message if uncorrectable error previously. */
2169
regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2170
&dberror);
2171
if (dberror) {
2172
regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2173
&err_addr);
2174
edac_printk(KERN_ERR, EDAC_DEVICE,
2175
"Previous Boot UE detected[0x%X] @ 0x%X\n",
2176
dberror, err_addr);
2177
/* Reset the sticky registers */
2178
regmap_write(edac->ecc_mgr_map,
2179
S10_SYSMGR_UE_VAL_OFST, 0);
2180
regmap_write(edac->ecc_mgr_map,
2181
S10_SYSMGR_UE_ADDR_OFST, 0);
2182
}
2183
}
2184
#else
2185
edac->db_irq = platform_get_irq(pdev, 1);
2186
if (edac->db_irq < 0)
2187
return edac->db_irq;
2188
2189
irq_set_chained_handler_and_data(edac->db_irq,
2190
altr_edac_a10_irq_handler, edac);
2191
#endif
2192
2193
for_each_child_of_node(pdev->dev.of_node, child) {
2194
if (!of_device_is_available(child))
2195
continue;
2196
2197
if (of_match_node(altr_edac_a10_device_of_match, child))
2198
altr_edac_a10_device_add(edac, child);
2199
2200
#ifdef CONFIG_EDAC_ALTERA_SDRAM
2201
else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2202
of_platform_populate(pdev->dev.of_node,
2203
altr_sdram_ctrl_of_match,
2204
NULL, &pdev->dev);
2205
#endif
2206
}
2207
2208
return 0;
2209
}
2210
2211
static const struct of_device_id altr_edac_a10_of_match[] = {
2212
{ .compatible = "altr,socfpga-a10-ecc-manager" },
2213
{ .compatible = "altr,socfpga-s10-ecc-manager" },
2214
{},
2215
};
2216
MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2217
2218
static struct platform_driver altr_edac_a10_driver = {
2219
.probe = altr_edac_a10_probe,
2220
.driver = {
2221
.name = "socfpga_a10_ecc_manager",
2222
.of_match_table = altr_edac_a10_of_match,
2223
},
2224
};
2225
module_platform_driver(altr_edac_a10_driver);
2226
2227
MODULE_AUTHOR("Thor Thayer");
2228
MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2229
2230