Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/edac/edac_mc.c
26278 views
1
/*
2
* edac_mc kernel module
3
* (C) 2005, 2006 Linux Networx (http://lnxi.com)
4
* This file may be distributed under the terms of the
5
* GNU General Public License.
6
*
7
* Written by Thayne Harbaugh
8
* Based on work by Dan Hollis <goemon at anime dot net> and others.
9
* http://www.anime.net/~goemon/linux-ecc/
10
*
11
* Modified by Dave Peterson and Doug Thompson
12
*
13
*/
14
15
#include <linux/module.h>
16
#include <linux/proc_fs.h>
17
#include <linux/kernel.h>
18
#include <linux/types.h>
19
#include <linux/smp.h>
20
#include <linux/init.h>
21
#include <linux/sysctl.h>
22
#include <linux/highmem.h>
23
#include <linux/timer.h>
24
#include <linux/slab.h>
25
#include <linux/jiffies.h>
26
#include <linux/spinlock.h>
27
#include <linux/list.h>
28
#include <linux/ctype.h>
29
#include <linux/edac.h>
30
#include <linux/bitops.h>
31
#include <linux/uaccess.h>
32
#include <asm/page.h>
33
#include "edac_mc.h"
34
#include "edac_module.h"
35
#include <ras/ras_event.h>
36
37
#ifdef CONFIG_EDAC_ATOMIC_SCRUB
38
#include <asm/edac.h>
39
#else
40
#define edac_atomic_scrub(va, size) do { } while (0)
41
#endif
42
43
int edac_op_state = EDAC_OPSTATE_INVAL;
44
EXPORT_SYMBOL_GPL(edac_op_state);
45
46
/* lock to memory controller's control array */
47
static DEFINE_MUTEX(mem_ctls_mutex);
48
static LIST_HEAD(mc_devices);
49
50
/*
51
* Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52
* apei/ghes and i7core_edac to be used at the same time.
53
*/
54
static const char *edac_mc_owner;
55
56
static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57
{
58
return container_of(e, struct mem_ctl_info, error_desc);
59
}
60
61
unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62
unsigned int len)
63
{
64
struct mem_ctl_info *mci = dimm->mci;
65
int i, n, count = 0;
66
char *p = buf;
67
68
for (i = 0; i < mci->n_layers; i++) {
69
n = scnprintf(p, len, "%s %d ",
70
edac_layer_name[mci->layers[i].type],
71
dimm->location[i]);
72
p += n;
73
len -= n;
74
count += n;
75
}
76
77
return count;
78
}
79
80
#ifdef CONFIG_EDAC_DEBUG
81
82
static void edac_mc_dump_channel(struct rank_info *chan)
83
{
84
edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
85
edac_dbg(4, " channel = %p\n", chan);
86
edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
87
edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
88
}
89
90
static void edac_mc_dump_dimm(struct dimm_info *dimm)
91
{
92
char location[80];
93
94
if (!dimm->nr_pages)
95
return;
96
97
edac_dimm_info_location(dimm, location, sizeof(location));
98
99
edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
100
dimm->mci->csbased ? "rank" : "dimm",
101
dimm->idx, location, dimm->csrow, dimm->cschannel);
102
edac_dbg(4, " dimm = %p\n", dimm);
103
edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
104
edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
105
edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
106
}
107
108
static void edac_mc_dump_csrow(struct csrow_info *csrow)
109
{
110
edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
111
edac_dbg(4, " csrow = %p\n", csrow);
112
edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
113
edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
114
edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
115
edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
116
edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
117
edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
118
}
119
120
static void edac_mc_dump_mci(struct mem_ctl_info *mci)
121
{
122
edac_dbg(3, "\tmci = %p\n", mci);
123
edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
124
edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
125
edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
126
edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
127
edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
128
mci->nr_csrows, mci->csrows);
129
edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
130
mci->tot_dimms, mci->dimms);
131
edac_dbg(3, "\tdev = %p\n", mci->pdev);
132
edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
133
mci->mod_name, mci->ctl_name);
134
edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
135
}
136
137
#endif /* CONFIG_EDAC_DEBUG */
138
139
const char * const edac_mem_types[] = {
140
[MEM_EMPTY] = "Empty",
141
[MEM_RESERVED] = "Reserved",
142
[MEM_UNKNOWN] = "Unknown",
143
[MEM_FPM] = "FPM",
144
[MEM_EDO] = "EDO",
145
[MEM_BEDO] = "BEDO",
146
[MEM_SDR] = "Unbuffered-SDR",
147
[MEM_RDR] = "Registered-SDR",
148
[MEM_DDR] = "Unbuffered-DDR",
149
[MEM_RDDR] = "Registered-DDR",
150
[MEM_RMBS] = "RMBS",
151
[MEM_DDR2] = "Unbuffered-DDR2",
152
[MEM_FB_DDR2] = "FullyBuffered-DDR2",
153
[MEM_RDDR2] = "Registered-DDR2",
154
[MEM_XDR] = "XDR",
155
[MEM_DDR3] = "Unbuffered-DDR3",
156
[MEM_RDDR3] = "Registered-DDR3",
157
[MEM_LRDDR3] = "Load-Reduced-DDR3-RAM",
158
[MEM_LPDDR3] = "Low-Power-DDR3-RAM",
159
[MEM_DDR4] = "Unbuffered-DDR4",
160
[MEM_RDDR4] = "Registered-DDR4",
161
[MEM_LPDDR4] = "Low-Power-DDR4-RAM",
162
[MEM_LRDDR4] = "Load-Reduced-DDR4-RAM",
163
[MEM_DDR5] = "Unbuffered-DDR5",
164
[MEM_RDDR5] = "Registered-DDR5",
165
[MEM_LRDDR5] = "Load-Reduced-DDR5-RAM",
166
[MEM_NVDIMM] = "Non-volatile-RAM",
167
[MEM_WIO2] = "Wide-IO-2",
168
[MEM_HBM2] = "High-bandwidth-memory-Gen2",
169
[MEM_HBM3] = "High-bandwidth-memory-Gen3",
170
};
171
EXPORT_SYMBOL_GPL(edac_mem_types);
172
173
static void _edac_mc_free(struct mem_ctl_info *mci)
174
{
175
put_device(&mci->dev);
176
}
177
178
static void mci_release(struct device *dev)
179
{
180
struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
181
struct csrow_info *csr;
182
int i, chn, row;
183
184
if (mci->dimms) {
185
for (i = 0; i < mci->tot_dimms; i++)
186
kfree(mci->dimms[i]);
187
kfree(mci->dimms);
188
}
189
190
if (mci->csrows) {
191
for (row = 0; row < mci->nr_csrows; row++) {
192
csr = mci->csrows[row];
193
if (!csr)
194
continue;
195
196
if (csr->channels) {
197
for (chn = 0; chn < mci->num_cschannel; chn++)
198
kfree(csr->channels[chn]);
199
kfree(csr->channels);
200
}
201
kfree(csr);
202
}
203
kfree(mci->csrows);
204
}
205
kfree(mci->pvt_info);
206
kfree(mci->layers);
207
kfree(mci);
208
}
209
210
static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
211
{
212
unsigned int tot_channels = mci->num_cschannel;
213
unsigned int tot_csrows = mci->nr_csrows;
214
unsigned int row, chn;
215
216
/*
217
* Allocate and fill the csrow/channels structs
218
*/
219
mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
220
if (!mci->csrows)
221
return -ENOMEM;
222
223
for (row = 0; row < tot_csrows; row++) {
224
struct csrow_info *csr;
225
226
csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
227
if (!csr)
228
return -ENOMEM;
229
230
mci->csrows[row] = csr;
231
csr->csrow_idx = row;
232
csr->mci = mci;
233
csr->nr_channels = tot_channels;
234
csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
235
GFP_KERNEL);
236
if (!csr->channels)
237
return -ENOMEM;
238
239
for (chn = 0; chn < tot_channels; chn++) {
240
struct rank_info *chan;
241
242
chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
243
if (!chan)
244
return -ENOMEM;
245
246
csr->channels[chn] = chan;
247
chan->chan_idx = chn;
248
chan->csrow = csr;
249
}
250
}
251
252
return 0;
253
}
254
255
static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
256
{
257
unsigned int pos[EDAC_MAX_LAYERS];
258
unsigned int row, chn, idx;
259
int layer;
260
void *p;
261
262
/*
263
* Allocate and fill the dimm structs
264
*/
265
mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
266
if (!mci->dimms)
267
return -ENOMEM;
268
269
memset(&pos, 0, sizeof(pos));
270
row = 0;
271
chn = 0;
272
for (idx = 0; idx < mci->tot_dimms; idx++) {
273
struct dimm_info *dimm;
274
struct rank_info *chan;
275
int n, len;
276
277
chan = mci->csrows[row]->channels[chn];
278
279
dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
280
if (!dimm)
281
return -ENOMEM;
282
mci->dimms[idx] = dimm;
283
dimm->mci = mci;
284
dimm->idx = idx;
285
286
/*
287
* Copy DIMM location and initialize it.
288
*/
289
len = sizeof(dimm->label);
290
p = dimm->label;
291
n = scnprintf(p, len, "mc#%u", mci->mc_idx);
292
p += n;
293
len -= n;
294
for (layer = 0; layer < mci->n_layers; layer++) {
295
n = scnprintf(p, len, "%s#%u",
296
edac_layer_name[mci->layers[layer].type],
297
pos[layer]);
298
p += n;
299
len -= n;
300
dimm->location[layer] = pos[layer];
301
}
302
303
/* Link it to the csrows old API data */
304
chan->dimm = dimm;
305
dimm->csrow = row;
306
dimm->cschannel = chn;
307
308
/* Increment csrow location */
309
if (mci->layers[0].is_virt_csrow) {
310
chn++;
311
if (chn == mci->num_cschannel) {
312
chn = 0;
313
row++;
314
}
315
} else {
316
row++;
317
if (row == mci->nr_csrows) {
318
row = 0;
319
chn++;
320
}
321
}
322
323
/* Increment dimm location */
324
for (layer = mci->n_layers - 1; layer >= 0; layer--) {
325
pos[layer]++;
326
if (pos[layer] < mci->layers[layer].size)
327
break;
328
pos[layer] = 0;
329
}
330
}
331
332
return 0;
333
}
334
335
struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
336
unsigned int n_layers,
337
struct edac_mc_layer *layers,
338
unsigned int sz_pvt)
339
{
340
struct mem_ctl_info *mci;
341
struct edac_mc_layer *layer;
342
unsigned int idx, tot_dimms = 1;
343
unsigned int tot_csrows = 1, tot_channels = 1;
344
bool per_rank = false;
345
346
if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
347
return NULL;
348
349
/*
350
* Calculate the total amount of dimms and csrows/cschannels while
351
* in the old API emulation mode
352
*/
353
for (idx = 0; idx < n_layers; idx++) {
354
tot_dimms *= layers[idx].size;
355
356
if (layers[idx].is_virt_csrow)
357
tot_csrows *= layers[idx].size;
358
else
359
tot_channels *= layers[idx].size;
360
361
if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
362
per_rank = true;
363
}
364
365
mci = kzalloc(sizeof(struct mem_ctl_info), GFP_KERNEL);
366
if (!mci)
367
return NULL;
368
369
mci->layers = kcalloc(n_layers, sizeof(struct edac_mc_layer), GFP_KERNEL);
370
if (!mci->layers)
371
goto error;
372
373
mci->pvt_info = kzalloc(sz_pvt, GFP_KERNEL);
374
if (!mci->pvt_info)
375
goto error;
376
377
mci->dev.release = mci_release;
378
device_initialize(&mci->dev);
379
380
/* setup index and various internal pointers */
381
mci->mc_idx = mc_num;
382
mci->tot_dimms = tot_dimms;
383
mci->n_layers = n_layers;
384
memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
385
mci->nr_csrows = tot_csrows;
386
mci->num_cschannel = tot_channels;
387
mci->csbased = per_rank;
388
389
if (edac_mc_alloc_csrows(mci))
390
goto error;
391
392
if (edac_mc_alloc_dimms(mci))
393
goto error;
394
395
mci->op_state = OP_ALLOC;
396
397
return mci;
398
399
error:
400
_edac_mc_free(mci);
401
402
return NULL;
403
}
404
EXPORT_SYMBOL_GPL(edac_mc_alloc);
405
406
void edac_mc_free(struct mem_ctl_info *mci)
407
{
408
edac_dbg(1, "\n");
409
410
_edac_mc_free(mci);
411
}
412
EXPORT_SYMBOL_GPL(edac_mc_free);
413
414
bool edac_has_mcs(void)
415
{
416
bool ret;
417
418
mutex_lock(&mem_ctls_mutex);
419
420
ret = list_empty(&mc_devices);
421
422
mutex_unlock(&mem_ctls_mutex);
423
424
return !ret;
425
}
426
EXPORT_SYMBOL_GPL(edac_has_mcs);
427
428
/* Caller must hold mem_ctls_mutex */
429
static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
430
{
431
struct mem_ctl_info *mci;
432
struct list_head *item;
433
434
edac_dbg(3, "\n");
435
436
list_for_each(item, &mc_devices) {
437
mci = list_entry(item, struct mem_ctl_info, link);
438
439
if (mci->pdev == dev)
440
return mci;
441
}
442
443
return NULL;
444
}
445
446
/**
447
* find_mci_by_dev
448
*
449
* scan list of controllers looking for the one that manages
450
* the 'dev' device
451
* @dev: pointer to a struct device related with the MCI
452
*/
453
struct mem_ctl_info *find_mci_by_dev(struct device *dev)
454
{
455
struct mem_ctl_info *ret;
456
457
mutex_lock(&mem_ctls_mutex);
458
ret = __find_mci_by_dev(dev);
459
mutex_unlock(&mem_ctls_mutex);
460
461
return ret;
462
}
463
EXPORT_SYMBOL_GPL(find_mci_by_dev);
464
465
/*
466
* edac_mc_workq_function
467
* performs the operation scheduled by a workq request
468
*/
469
static void edac_mc_workq_function(struct work_struct *work_req)
470
{
471
struct delayed_work *d_work = to_delayed_work(work_req);
472
struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
473
474
mutex_lock(&mem_ctls_mutex);
475
476
if (mci->op_state != OP_RUNNING_POLL) {
477
mutex_unlock(&mem_ctls_mutex);
478
return;
479
}
480
481
if (edac_op_state == EDAC_OPSTATE_POLL)
482
mci->edac_check(mci);
483
484
mutex_unlock(&mem_ctls_mutex);
485
486
/* Queue ourselves again. */
487
edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
488
}
489
490
/*
491
* edac_mc_reset_delay_period(unsigned long value)
492
*
493
* user space has updated our poll period value, need to
494
* reset our workq delays
495
*/
496
void edac_mc_reset_delay_period(unsigned long value)
497
{
498
struct mem_ctl_info *mci;
499
struct list_head *item;
500
501
mutex_lock(&mem_ctls_mutex);
502
503
list_for_each(item, &mc_devices) {
504
mci = list_entry(item, struct mem_ctl_info, link);
505
506
if (mci->op_state == OP_RUNNING_POLL)
507
edac_mod_work(&mci->work, value);
508
}
509
mutex_unlock(&mem_ctls_mutex);
510
}
511
512
513
514
/* Return 0 on success, 1 on failure.
515
* Before calling this function, caller must
516
* assign a unique value to mci->mc_idx.
517
*
518
* locking model:
519
*
520
* called with the mem_ctls_mutex lock held
521
*/
522
static int add_mc_to_global_list(struct mem_ctl_info *mci)
523
{
524
struct list_head *item, *insert_before;
525
struct mem_ctl_info *p;
526
527
insert_before = &mc_devices;
528
529
p = __find_mci_by_dev(mci->pdev);
530
if (unlikely(p != NULL))
531
goto fail0;
532
533
list_for_each(item, &mc_devices) {
534
p = list_entry(item, struct mem_ctl_info, link);
535
536
if (p->mc_idx >= mci->mc_idx) {
537
if (unlikely(p->mc_idx == mci->mc_idx))
538
goto fail1;
539
540
insert_before = item;
541
break;
542
}
543
}
544
545
list_add_tail_rcu(&mci->link, insert_before);
546
return 0;
547
548
fail0:
549
edac_printk(KERN_WARNING, EDAC_MC,
550
"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
551
edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
552
return 1;
553
554
fail1:
555
edac_printk(KERN_WARNING, EDAC_MC,
556
"bug in low-level driver: attempt to assign\n"
557
" duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
558
return 1;
559
}
560
561
static int del_mc_from_global_list(struct mem_ctl_info *mci)
562
{
563
list_del_rcu(&mci->link);
564
565
/* these are for safe removal of devices from global list while
566
* NMI handlers may be traversing list
567
*/
568
synchronize_rcu();
569
INIT_LIST_HEAD(&mci->link);
570
571
return list_empty(&mc_devices);
572
}
573
574
struct mem_ctl_info *edac_mc_find(int idx)
575
{
576
struct mem_ctl_info *mci;
577
struct list_head *item;
578
579
mutex_lock(&mem_ctls_mutex);
580
581
list_for_each(item, &mc_devices) {
582
mci = list_entry(item, struct mem_ctl_info, link);
583
if (mci->mc_idx == idx)
584
goto unlock;
585
}
586
587
mci = NULL;
588
unlock:
589
mutex_unlock(&mem_ctls_mutex);
590
return mci;
591
}
592
EXPORT_SYMBOL(edac_mc_find);
593
594
const char *edac_get_owner(void)
595
{
596
return edac_mc_owner;
597
}
598
EXPORT_SYMBOL_GPL(edac_get_owner);
599
600
/* FIXME - should a warning be printed if no error detection? correction? */
601
int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
602
const struct attribute_group **groups)
603
{
604
int ret = -EINVAL;
605
edac_dbg(0, "\n");
606
607
#ifdef CONFIG_EDAC_DEBUG
608
if (edac_debug_level >= 3)
609
edac_mc_dump_mci(mci);
610
611
if (edac_debug_level >= 4) {
612
struct dimm_info *dimm;
613
int i;
614
615
for (i = 0; i < mci->nr_csrows; i++) {
616
struct csrow_info *csrow = mci->csrows[i];
617
u32 nr_pages = 0;
618
int j;
619
620
for (j = 0; j < csrow->nr_channels; j++)
621
nr_pages += csrow->channels[j]->dimm->nr_pages;
622
if (!nr_pages)
623
continue;
624
edac_mc_dump_csrow(csrow);
625
for (j = 0; j < csrow->nr_channels; j++)
626
if (csrow->channels[j]->dimm->nr_pages)
627
edac_mc_dump_channel(csrow->channels[j]);
628
}
629
630
mci_for_each_dimm(mci, dimm)
631
edac_mc_dump_dimm(dimm);
632
}
633
#endif
634
mutex_lock(&mem_ctls_mutex);
635
636
if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
637
ret = -EPERM;
638
goto fail0;
639
}
640
641
if (add_mc_to_global_list(mci))
642
goto fail0;
643
644
/* set load time so that error rate can be tracked */
645
mci->start_time = jiffies;
646
647
mci->bus = edac_get_sysfs_subsys();
648
649
if (edac_create_sysfs_mci_device(mci, groups)) {
650
edac_mc_printk(mci, KERN_WARNING,
651
"failed to create sysfs device\n");
652
goto fail1;
653
}
654
655
if (mci->edac_check) {
656
mci->op_state = OP_RUNNING_POLL;
657
658
INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
659
edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
660
661
} else {
662
mci->op_state = OP_RUNNING_INTERRUPT;
663
}
664
665
/* Report action taken */
666
edac_mc_printk(mci, KERN_INFO,
667
"Giving out device to module %s controller %s: DEV %s (%s)\n",
668
mci->mod_name, mci->ctl_name, mci->dev_name,
669
edac_op_state_to_string(mci->op_state));
670
671
edac_mc_owner = mci->mod_name;
672
673
mutex_unlock(&mem_ctls_mutex);
674
return 0;
675
676
fail1:
677
del_mc_from_global_list(mci);
678
679
fail0:
680
mutex_unlock(&mem_ctls_mutex);
681
return ret;
682
}
683
EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
684
685
struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
686
{
687
struct mem_ctl_info *mci;
688
689
edac_dbg(0, "\n");
690
691
mutex_lock(&mem_ctls_mutex);
692
693
/* find the requested mci struct in the global list */
694
mci = __find_mci_by_dev(dev);
695
if (mci == NULL) {
696
mutex_unlock(&mem_ctls_mutex);
697
return NULL;
698
}
699
700
/* mark MCI offline: */
701
mci->op_state = OP_OFFLINE;
702
703
if (del_mc_from_global_list(mci))
704
edac_mc_owner = NULL;
705
706
mutex_unlock(&mem_ctls_mutex);
707
708
if (mci->edac_check)
709
edac_stop_work(&mci->work);
710
711
/* remove from sysfs */
712
edac_remove_sysfs_mci_device(mci);
713
714
edac_printk(KERN_INFO, EDAC_MC,
715
"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
716
mci->mod_name, mci->ctl_name, edac_dev_name(mci));
717
718
return mci;
719
}
720
EXPORT_SYMBOL_GPL(edac_mc_del_mc);
721
722
static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
723
u32 size)
724
{
725
struct page *pg;
726
void *virt_addr;
727
unsigned long flags = 0;
728
729
edac_dbg(3, "\n");
730
731
/* ECC error page was not in our memory. Ignore it. */
732
if (!pfn_valid(page))
733
return;
734
735
/* Find the actual page structure then map it and fix */
736
pg = pfn_to_page(page);
737
738
if (PageHighMem(pg))
739
local_irq_save(flags);
740
741
virt_addr = kmap_atomic(pg);
742
743
/* Perform architecture specific atomic scrub operation */
744
edac_atomic_scrub(virt_addr + offset, size);
745
746
/* Unmap and complete */
747
kunmap_atomic(virt_addr);
748
749
if (PageHighMem(pg))
750
local_irq_restore(flags);
751
}
752
753
/* FIXME - should return -1 */
754
int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
755
{
756
struct csrow_info **csrows = mci->csrows;
757
int row, i, j, n;
758
759
edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
760
row = -1;
761
762
for (i = 0; i < mci->nr_csrows; i++) {
763
struct csrow_info *csrow = csrows[i];
764
n = 0;
765
for (j = 0; j < csrow->nr_channels; j++) {
766
struct dimm_info *dimm = csrow->channels[j]->dimm;
767
n += dimm->nr_pages;
768
}
769
if (n == 0)
770
continue;
771
772
edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
773
mci->mc_idx,
774
csrow->first_page, page, csrow->last_page,
775
csrow->page_mask);
776
777
if ((page >= csrow->first_page) &&
778
(page <= csrow->last_page) &&
779
((page & csrow->page_mask) ==
780
(csrow->first_page & csrow->page_mask))) {
781
row = i;
782
break;
783
}
784
}
785
786
if (row == -1)
787
edac_mc_printk(mci, KERN_ERR,
788
"could not look up page error address %lx\n",
789
(unsigned long)page);
790
791
return row;
792
}
793
EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
794
795
const char *edac_layer_name[] = {
796
[EDAC_MC_LAYER_BRANCH] = "branch",
797
[EDAC_MC_LAYER_CHANNEL] = "channel",
798
[EDAC_MC_LAYER_SLOT] = "slot",
799
[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
800
[EDAC_MC_LAYER_ALL_MEM] = "memory",
801
};
802
EXPORT_SYMBOL_GPL(edac_layer_name);
803
804
static void edac_inc_ce_error(struct edac_raw_error_desc *e)
805
{
806
int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
807
struct mem_ctl_info *mci = error_desc_to_mci(e);
808
struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
809
810
mci->ce_mc += e->error_count;
811
812
if (dimm)
813
dimm->ce_count += e->error_count;
814
else
815
mci->ce_noinfo_count += e->error_count;
816
}
817
818
static void edac_inc_ue_error(struct edac_raw_error_desc *e)
819
{
820
int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
821
struct mem_ctl_info *mci = error_desc_to_mci(e);
822
struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
823
824
mci->ue_mc += e->error_count;
825
826
if (dimm)
827
dimm->ue_count += e->error_count;
828
else
829
mci->ue_noinfo_count += e->error_count;
830
}
831
832
static void edac_ce_error(struct edac_raw_error_desc *e)
833
{
834
struct mem_ctl_info *mci = error_desc_to_mci(e);
835
unsigned long remapped_page;
836
837
if (edac_mc_get_log_ce()) {
838
edac_mc_printk(mci, KERN_WARNING,
839
"%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
840
e->error_count, e->msg,
841
*e->msg ? " " : "",
842
e->label, e->location, e->page_frame_number, e->offset_in_page,
843
e->grain, e->syndrome,
844
*e->other_detail ? " - " : "",
845
e->other_detail);
846
}
847
848
edac_inc_ce_error(e);
849
850
if (mci->scrub_mode == SCRUB_SW_SRC) {
851
/*
852
* Some memory controllers (called MCs below) can remap
853
* memory so that it is still available at a different
854
* address when PCI devices map into memory.
855
* MC's that can't do this, lose the memory where PCI
856
* devices are mapped. This mapping is MC-dependent
857
* and so we call back into the MC driver for it to
858
* map the MC page to a physical (CPU) page which can
859
* then be mapped to a virtual page - which can then
860
* be scrubbed.
861
*/
862
remapped_page = mci->ctl_page_to_phys ?
863
mci->ctl_page_to_phys(mci, e->page_frame_number) :
864
e->page_frame_number;
865
866
edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
867
}
868
}
869
870
static void edac_ue_error(struct edac_raw_error_desc *e)
871
{
872
struct mem_ctl_info *mci = error_desc_to_mci(e);
873
874
if (edac_mc_get_log_ue()) {
875
edac_mc_printk(mci, KERN_WARNING,
876
"%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
877
e->error_count, e->msg,
878
*e->msg ? " " : "",
879
e->label, e->location, e->page_frame_number, e->offset_in_page,
880
e->grain,
881
*e->other_detail ? " - " : "",
882
e->other_detail);
883
}
884
885
edac_inc_ue_error(e);
886
887
if (edac_mc_get_panic_on_ue()) {
888
panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
889
e->msg,
890
*e->msg ? " " : "",
891
e->label, e->location, e->page_frame_number, e->offset_in_page,
892
e->grain,
893
*e->other_detail ? " - " : "",
894
e->other_detail);
895
}
896
}
897
898
static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
899
{
900
struct mem_ctl_info *mci = error_desc_to_mci(e);
901
enum hw_event_mc_err_type type = e->type;
902
u16 count = e->error_count;
903
904
if (row < 0)
905
return;
906
907
edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
908
909
if (type == HW_EVENT_ERR_CORRECTED) {
910
mci->csrows[row]->ce_count += count;
911
if (chan >= 0)
912
mci->csrows[row]->channels[chan]->ce_count += count;
913
} else {
914
mci->csrows[row]->ue_count += count;
915
}
916
}
917
918
void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
919
{
920
struct mem_ctl_info *mci = error_desc_to_mci(e);
921
u8 grain_bits;
922
923
/* Sanity-check driver-supplied grain value. */
924
if (WARN_ON_ONCE(!e->grain))
925
e->grain = 1;
926
927
grain_bits = fls_long(e->grain - 1);
928
929
/* Report the error via the trace interface */
930
if (IS_ENABLED(CONFIG_RAS))
931
trace_mc_event(e->type, e->msg, e->label, e->error_count,
932
mci->mc_idx, e->top_layer, e->mid_layer,
933
e->low_layer,
934
(e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
935
grain_bits, e->syndrome, e->other_detail);
936
937
if (e->type == HW_EVENT_ERR_CORRECTED)
938
edac_ce_error(e);
939
else
940
edac_ue_error(e);
941
}
942
EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
943
944
void edac_mc_handle_error(const enum hw_event_mc_err_type type,
945
struct mem_ctl_info *mci,
946
const u16 error_count,
947
const unsigned long page_frame_number,
948
const unsigned long offset_in_page,
949
const unsigned long syndrome,
950
const int top_layer,
951
const int mid_layer,
952
const int low_layer,
953
const char *msg,
954
const char *other_detail)
955
{
956
struct dimm_info *dimm;
957
char *p, *end;
958
int row = -1, chan = -1;
959
int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
960
int i, n_labels = 0;
961
struct edac_raw_error_desc *e = &mci->error_desc;
962
bool any_memory = true;
963
const char *prefix;
964
965
edac_dbg(3, "MC%d\n", mci->mc_idx);
966
967
/* Fills the error report buffer */
968
memset(e, 0, sizeof (*e));
969
e->error_count = error_count;
970
e->type = type;
971
e->top_layer = top_layer;
972
e->mid_layer = mid_layer;
973
e->low_layer = low_layer;
974
e->page_frame_number = page_frame_number;
975
e->offset_in_page = offset_in_page;
976
e->syndrome = syndrome;
977
/* need valid strings here for both: */
978
e->msg = msg ?: "";
979
e->other_detail = other_detail ?: "";
980
981
/*
982
* Check if the event report is consistent and if the memory location is
983
* known. If it is, the DIMM(s) label info will be filled and the DIMM's
984
* error counters will be incremented.
985
*/
986
for (i = 0; i < mci->n_layers; i++) {
987
if (pos[i] >= (int)mci->layers[i].size) {
988
989
edac_mc_printk(mci, KERN_ERR,
990
"INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
991
edac_layer_name[mci->layers[i].type],
992
pos[i], mci->layers[i].size);
993
/*
994
* Instead of just returning it, let's use what's
995
* known about the error. The increment routines and
996
* the DIMM filter logic will do the right thing by
997
* pointing the likely damaged DIMMs.
998
*/
999
pos[i] = -1;
1000
}
1001
if (pos[i] >= 0)
1002
any_memory = false;
1003
}
1004
1005
/*
1006
* Get the dimm label/grain that applies to the match criteria.
1007
* As the error algorithm may not be able to point to just one memory
1008
* stick, the logic here will get all possible labels that could
1009
* pottentially be affected by the error.
1010
* On FB-DIMM memory controllers, for uncorrected errors, it is common
1011
* to have only the MC channel and the MC dimm (also called "branch")
1012
* but the channel is not known, as the memory is arranged in pairs,
1013
* where each memory belongs to a separate channel within the same
1014
* branch.
1015
*/
1016
p = e->label;
1017
*p = '\0';
1018
end = p + sizeof(e->label);
1019
prefix = "";
1020
1021
mci_for_each_dimm(mci, dimm) {
1022
if (top_layer >= 0 && top_layer != dimm->location[0])
1023
continue;
1024
if (mid_layer >= 0 && mid_layer != dimm->location[1])
1025
continue;
1026
if (low_layer >= 0 && low_layer != dimm->location[2])
1027
continue;
1028
1029
/* get the max grain, over the error match range */
1030
if (dimm->grain > e->grain)
1031
e->grain = dimm->grain;
1032
1033
/*
1034
* If the error is memory-controller wide, there's no need to
1035
* seek for the affected DIMMs because the whole channel/memory
1036
* controller/... may be affected. Also, don't show errors for
1037
* empty DIMM slots.
1038
*/
1039
if (!dimm->nr_pages)
1040
continue;
1041
1042
n_labels++;
1043
if (n_labels > EDAC_MAX_LABELS) {
1044
p = e->label;
1045
*p = '\0';
1046
} else {
1047
p += scnprintf(p, end - p, "%s%s", prefix, dimm->label);
1048
prefix = OTHER_LABEL;
1049
}
1050
1051
/*
1052
* get csrow/channel of the DIMM, in order to allow
1053
* incrementing the compat API counters
1054
*/
1055
edac_dbg(4, "%s csrows map: (%d,%d)\n",
1056
mci->csbased ? "rank" : "dimm",
1057
dimm->csrow, dimm->cschannel);
1058
if (row == -1)
1059
row = dimm->csrow;
1060
else if (row >= 0 && row != dimm->csrow)
1061
row = -2;
1062
1063
if (chan == -1)
1064
chan = dimm->cschannel;
1065
else if (chan >= 0 && chan != dimm->cschannel)
1066
chan = -2;
1067
}
1068
1069
if (any_memory)
1070
strscpy(e->label, "any memory", sizeof(e->label));
1071
else if (!*e->label)
1072
strscpy(e->label, "unknown memory", sizeof(e->label));
1073
1074
edac_inc_csrow(e, row, chan);
1075
1076
/* Fill the RAM location data */
1077
p = e->location;
1078
end = p + sizeof(e->location);
1079
prefix = "";
1080
1081
for (i = 0; i < mci->n_layers; i++) {
1082
if (pos[i] < 0)
1083
continue;
1084
1085
p += scnprintf(p, end - p, "%s%s:%d", prefix,
1086
edac_layer_name[mci->layers[i].type], pos[i]);
1087
prefix = " ";
1088
}
1089
1090
edac_raw_mc_handle_error(e);
1091
}
1092
EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1093
1094