Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/edac/i10nm_base.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Driver for Intel(R) 10nm server memory controller.
4
* Copyright (c) 2019, Intel Corporation.
5
*
6
*/
7
8
#include <linux/kernel.h>
9
#include <linux/io.h>
10
#include <asm/cpu_device_id.h>
11
#include <asm/intel-family.h>
12
#include <asm/mce.h>
13
#include "edac_module.h"
14
#include "skx_common.h"
15
16
#define I10NM_REVISION "v0.0.6"
17
#define EDAC_MOD_STR "i10nm_edac"
18
19
/* Debug macros */
20
#define i10nm_printk(level, fmt, arg...) \
21
edac_printk(level, "i10nm", fmt, ##arg)
22
23
#define I10NM_GET_SCK_BAR(d, reg) \
24
pci_read_config_dword((d)->uracu, 0xd0, &(reg))
25
#define I10NM_GET_IMC_BAR(d, i, reg) \
26
pci_read_config_dword((d)->uracu, \
27
(res_cfg->type == GNR ? 0xd4 : 0xd8) + (i) * 4, &(reg))
28
#define I10NM_GET_SAD(d, offset, i, reg)\
29
pci_read_config_dword((d)->sad_all, (offset) + (i) * \
30
(res_cfg->type == GNR ? 12 : 8), &(reg))
31
#define I10NM_GET_HBM_IMC_BAR(d, reg) \
32
pci_read_config_dword((d)->uracu, 0xd4, &(reg))
33
#define I10NM_GET_CAPID3_CFG(d, reg) \
34
pci_read_config_dword((d)->pcu_cr3, \
35
res_cfg->type == GNR ? 0x290 : 0x90, &(reg))
36
#define I10NM_GET_CAPID5_CFG(d, reg) \
37
pci_read_config_dword((d)->pcu_cr3, \
38
res_cfg->type == GNR ? 0x298 : 0x98, &(reg))
39
#define I10NM_GET_DIMMMTR(m, i, j) \
40
readl((m)->mbase + ((m)->hbm_mc ? 0x80c : \
41
(res_cfg->type == GNR ? 0xc0c : 0x2080c)) + \
42
(i) * (m)->chan_mmio_sz + (j) * 4)
43
#define I10NM_GET_MCDDRTCFG(m, i) \
44
readl((m)->mbase + ((m)->hbm_mc ? 0x970 : 0x20970) + \
45
(i) * (m)->chan_mmio_sz)
46
#define I10NM_GET_MCMTR(m, i) \
47
readl((m)->mbase + ((m)->hbm_mc ? 0xef8 : \
48
(res_cfg->type == GNR ? 0xaf8 : 0x20ef8)) + \
49
(i) * (m)->chan_mmio_sz)
50
#define I10NM_GET_REG32(m, i, offset) \
51
readl((m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
52
#define I10NM_GET_REG64(m, i, offset) \
53
readq((m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
54
#define I10NM_SET_REG32(m, i, offset, v) \
55
writel(v, (m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
56
57
#define I10NM_GET_SCK_MMIO_BASE(reg) (GET_BITFIELD(reg, 0, 28) << 23)
58
#define I10NM_GET_IMC_MMIO_OFFSET(reg) (GET_BITFIELD(reg, 0, 10) << 12)
59
#define I10NM_GET_IMC_MMIO_SIZE(reg) ((GET_BITFIELD(reg, 13, 23) - \
60
GET_BITFIELD(reg, 0, 10) + 1) << 12)
61
#define I10NM_GET_HBM_IMC_MMIO_OFFSET(reg) \
62
((GET_BITFIELD(reg, 0, 10) << 12) + 0x140000)
63
64
#define I10NM_GNR_IMC_MMIO_OFFSET 0x24c000
65
#define I10NM_GNR_D_IMC_MMIO_OFFSET 0x206000
66
#define I10NM_GNR_IMC_MMIO_SIZE 0x4000
67
#define I10NM_HBM_IMC_MMIO_SIZE 0x9000
68
#define I10NM_DDR_IMC_CH_CNT(reg) GET_BITFIELD(reg, 21, 24)
69
#define I10NM_IS_HBM_PRESENT(reg) GET_BITFIELD(reg, 27, 30)
70
#define I10NM_IS_HBM_IMC(reg) GET_BITFIELD(reg, 29, 29)
71
72
#define I10NM_MAX_SAD 16
73
#define I10NM_SAD_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
74
#define I10NM_SAD_NM_CACHEABLE(reg) GET_BITFIELD(reg, 5, 5)
75
76
static struct list_head *i10nm_edac_list;
77
78
static struct res_config *res_cfg;
79
static int retry_rd_err_log;
80
static int decoding_via_mca;
81
static bool mem_cfg_2lm;
82
83
static struct reg_rrl icx_reg_rrl_ddr = {
84
.set_num = 2,
85
.reg_num = 6,
86
.modes = {LRE_SCRUB, LRE_DEMAND},
87
.offsets = {
88
{0x22c60, 0x22c54, 0x22c5c, 0x22c58, 0x22c28, 0x20ed8},
89
{0x22e54, 0x22e60, 0x22e64, 0x22e58, 0x22e5c, 0x20ee0},
90
},
91
.widths = {4, 4, 4, 4, 4, 8},
92
.v_mask = BIT(0),
93
.uc_mask = BIT(1),
94
.over_mask = BIT(2),
95
.en_patspr_mask = BIT(13),
96
.noover_mask = BIT(14),
97
.en_mask = BIT(15),
98
99
.cecnt_num = 4,
100
.cecnt_offsets = {0x22c18, 0x22c1c, 0x22c20, 0x22c24},
101
.cecnt_widths = {4, 4, 4, 4},
102
};
103
104
static struct reg_rrl spr_reg_rrl_ddr = {
105
.set_num = 3,
106
.reg_num = 6,
107
.modes = {LRE_SCRUB, LRE_DEMAND, FRE_DEMAND},
108
.offsets = {
109
{0x22c60, 0x22c54, 0x22f08, 0x22c58, 0x22c28, 0x20ed8},
110
{0x22e54, 0x22e60, 0x22f10, 0x22e58, 0x22e5c, 0x20ee0},
111
{0x22c70, 0x22d80, 0x22f18, 0x22d58, 0x22c64, 0x20f10},
112
},
113
.widths = {4, 4, 8, 4, 4, 8},
114
.v_mask = BIT(0),
115
.uc_mask = BIT(1),
116
.over_mask = BIT(2),
117
.en_patspr_mask = BIT(13),
118
.noover_mask = BIT(14),
119
.en_mask = BIT(15),
120
121
.cecnt_num = 4,
122
.cecnt_offsets = {0x22c18, 0x22c1c, 0x22c20, 0x22c24},
123
.cecnt_widths = {4, 4, 4, 4},
124
};
125
126
static struct reg_rrl spr_reg_rrl_hbm_pch0 = {
127
.set_num = 2,
128
.reg_num = 6,
129
.modes = {LRE_SCRUB, LRE_DEMAND},
130
.offsets = {
131
{0x2860, 0x2854, 0x2b08, 0x2858, 0x2828, 0x0ed8},
132
{0x2a54, 0x2a60, 0x2b10, 0x2a58, 0x2a5c, 0x0ee0},
133
},
134
.widths = {4, 4, 8, 4, 4, 8},
135
.v_mask = BIT(0),
136
.uc_mask = BIT(1),
137
.over_mask = BIT(2),
138
.en_patspr_mask = BIT(13),
139
.noover_mask = BIT(14),
140
.en_mask = BIT(15),
141
142
.cecnt_num = 4,
143
.cecnt_offsets = {0x2818, 0x281c, 0x2820, 0x2824},
144
.cecnt_widths = {4, 4, 4, 4},
145
};
146
147
static struct reg_rrl spr_reg_rrl_hbm_pch1 = {
148
.set_num = 2,
149
.reg_num = 6,
150
.modes = {LRE_SCRUB, LRE_DEMAND},
151
.offsets = {
152
{0x2c60, 0x2c54, 0x2f08, 0x2c58, 0x2c28, 0x0fa8},
153
{0x2e54, 0x2e60, 0x2f10, 0x2e58, 0x2e5c, 0x0fb0},
154
},
155
.widths = {4, 4, 8, 4, 4, 8},
156
.v_mask = BIT(0),
157
.uc_mask = BIT(1),
158
.over_mask = BIT(2),
159
.en_patspr_mask = BIT(13),
160
.noover_mask = BIT(14),
161
.en_mask = BIT(15),
162
163
.cecnt_num = 4,
164
.cecnt_offsets = {0x2c18, 0x2c1c, 0x2c20, 0x2c24},
165
.cecnt_widths = {4, 4, 4, 4},
166
};
167
168
static struct reg_rrl gnr_reg_rrl_ddr = {
169
.set_num = 4,
170
.reg_num = 6,
171
.modes = {FRE_SCRUB, FRE_DEMAND, LRE_SCRUB, LRE_DEMAND},
172
.offsets = {
173
{0x2f10, 0x2f20, 0x2f30, 0x2f50, 0x2f60, 0xba0},
174
{0x2f14, 0x2f24, 0x2f38, 0x2f54, 0x2f64, 0xba8},
175
{0x2f18, 0x2f28, 0x2f40, 0x2f58, 0x2f68, 0xbb0},
176
{0x2f1c, 0x2f2c, 0x2f48, 0x2f5c, 0x2f6c, 0xbb8},
177
},
178
.widths = {4, 4, 8, 4, 4, 8},
179
.v_mask = BIT(0),
180
.uc_mask = BIT(1),
181
.over_mask = BIT(2),
182
.en_patspr_mask = BIT(14),
183
.noover_mask = BIT(15),
184
.en_mask = BIT(12),
185
186
.cecnt_num = 8,
187
.cecnt_offsets = {0x2c10, 0x2c14, 0x2c18, 0x2c1c, 0x2c20, 0x2c24, 0x2c28, 0x2c2c},
188
.cecnt_widths = {4, 4, 4, 4, 4, 4, 4, 4},
189
};
190
191
static u64 read_imc_reg(struct skx_imc *imc, int chan, u32 offset, u8 width)
192
{
193
switch (width) {
194
case 4:
195
return I10NM_GET_REG32(imc, chan, offset);
196
case 8:
197
return I10NM_GET_REG64(imc, chan, offset);
198
default:
199
i10nm_printk(KERN_ERR, "Invalid readd RRL 0x%x width %d\n", offset, width);
200
return 0;
201
}
202
}
203
204
static void write_imc_reg(struct skx_imc *imc, int chan, u32 offset, u8 width, u64 val)
205
{
206
switch (width) {
207
case 4:
208
return I10NM_SET_REG32(imc, chan, offset, (u32)val);
209
default:
210
i10nm_printk(KERN_ERR, "Invalid write RRL 0x%x width %d\n", offset, width);
211
}
212
}
213
214
static void enable_rrl(struct skx_imc *imc, int chan, struct reg_rrl *rrl,
215
int rrl_set, bool enable, u32 *rrl_ctl)
216
{
217
enum rrl_mode mode = rrl->modes[rrl_set];
218
u32 offset = rrl->offsets[rrl_set][0], v;
219
u8 width = rrl->widths[0];
220
bool first, scrub;
221
222
/* First or last read error. */
223
first = (mode == FRE_SCRUB || mode == FRE_DEMAND);
224
/* Patrol scrub or on-demand read error. */
225
scrub = (mode == FRE_SCRUB || mode == LRE_SCRUB);
226
227
v = read_imc_reg(imc, chan, offset, width);
228
229
if (enable) {
230
/* Save default configurations. */
231
*rrl_ctl = v;
232
v &= ~rrl->uc_mask;
233
234
if (first)
235
v |= rrl->noover_mask;
236
else
237
v &= ~rrl->noover_mask;
238
239
if (scrub)
240
v |= rrl->en_patspr_mask;
241
else
242
v &= ~rrl->en_patspr_mask;
243
244
v |= rrl->en_mask;
245
} else {
246
/* Restore default configurations. */
247
if (*rrl_ctl & rrl->uc_mask)
248
v |= rrl->uc_mask;
249
250
if (first) {
251
if (!(*rrl_ctl & rrl->noover_mask))
252
v &= ~rrl->noover_mask;
253
} else {
254
if (*rrl_ctl & rrl->noover_mask)
255
v |= rrl->noover_mask;
256
}
257
258
if (scrub) {
259
if (!(*rrl_ctl & rrl->en_patspr_mask))
260
v &= ~rrl->en_patspr_mask;
261
} else {
262
if (*rrl_ctl & rrl->en_patspr_mask)
263
v |= rrl->en_patspr_mask;
264
}
265
266
if (!(*rrl_ctl & rrl->en_mask))
267
v &= ~rrl->en_mask;
268
}
269
270
write_imc_reg(imc, chan, offset, width, v);
271
}
272
273
static void enable_rrls(struct skx_imc *imc, int chan, struct reg_rrl *rrl,
274
bool enable, u32 *rrl_ctl)
275
{
276
for (int i = 0; i < rrl->set_num; i++)
277
enable_rrl(imc, chan, rrl, i, enable, rrl_ctl + i);
278
}
279
280
static void enable_rrls_ddr(struct skx_imc *imc, bool enable)
281
{
282
struct reg_rrl *rrl_ddr = res_cfg->reg_rrl_ddr;
283
int i, chan_num = res_cfg->ddr_chan_num;
284
struct skx_channel *chan = imc->chan;
285
286
if (!imc->mbase)
287
return;
288
289
for (i = 0; i < chan_num; i++)
290
enable_rrls(imc, i, rrl_ddr, enable, chan[i].rrl_ctl[0]);
291
}
292
293
static void enable_rrls_hbm(struct skx_imc *imc, bool enable)
294
{
295
struct reg_rrl **rrl_hbm = res_cfg->reg_rrl_hbm;
296
int i, chan_num = res_cfg->hbm_chan_num;
297
struct skx_channel *chan = imc->chan;
298
299
if (!imc->mbase || !imc->hbm_mc || !rrl_hbm[0] || !rrl_hbm[1])
300
return;
301
302
for (i = 0; i < chan_num; i++) {
303
enable_rrls(imc, i, rrl_hbm[0], enable, chan[i].rrl_ctl[0]);
304
enable_rrls(imc, i, rrl_hbm[1], enable, chan[i].rrl_ctl[1]);
305
}
306
}
307
308
static void enable_retry_rd_err_log(bool enable)
309
{
310
struct skx_dev *d;
311
int i, imc_num;
312
313
edac_dbg(2, "\n");
314
315
list_for_each_entry(d, i10nm_edac_list, list) {
316
imc_num = res_cfg->ddr_imc_num;
317
for (i = 0; i < imc_num; i++)
318
enable_rrls_ddr(&d->imc[i], enable);
319
320
imc_num += res_cfg->hbm_imc_num;
321
for (; i < imc_num; i++)
322
enable_rrls_hbm(&d->imc[i], enable);
323
}
324
}
325
326
static void show_retry_rd_err_log(struct decoded_addr *res, char *msg,
327
int len, bool scrub_err)
328
{
329
int i, j, n, ch = res->channel, pch = res->cs & 1;
330
struct skx_imc *imc = &res->dev->imc[res->imc];
331
u64 log, corr, status_mask;
332
struct reg_rrl *rrl;
333
bool scrub;
334
u32 offset;
335
u8 width;
336
337
if (!imc->mbase)
338
return;
339
340
rrl = imc->hbm_mc ? res_cfg->reg_rrl_hbm[pch] : res_cfg->reg_rrl_ddr;
341
342
if (!rrl)
343
return;
344
345
status_mask = rrl->over_mask | rrl->uc_mask | rrl->v_mask;
346
347
n = scnprintf(msg, len, " retry_rd_err_log[");
348
for (i = 0; i < rrl->set_num; i++) {
349
scrub = (rrl->modes[i] == FRE_SCRUB || rrl->modes[i] == LRE_SCRUB);
350
if (scrub_err != scrub)
351
continue;
352
353
for (j = 0; j < rrl->reg_num && len - n > 0; j++) {
354
offset = rrl->offsets[i][j];
355
width = rrl->widths[j];
356
log = read_imc_reg(imc, ch, offset, width);
357
358
if (width == 4)
359
n += scnprintf(msg + n, len - n, "%.8llx ", log);
360
else
361
n += scnprintf(msg + n, len - n, "%.16llx ", log);
362
363
/* Clear RRL status if RRL in Linux control mode. */
364
if (retry_rd_err_log == 2 && !j && (log & status_mask))
365
write_imc_reg(imc, ch, offset, width, log & ~status_mask);
366
}
367
}
368
369
/* Move back one space. */
370
n--;
371
n += scnprintf(msg + n, len - n, "]");
372
373
if (len - n > 0) {
374
n += scnprintf(msg + n, len - n, " correrrcnt[");
375
for (i = 0; i < rrl->cecnt_num && len - n > 0; i++) {
376
offset = rrl->cecnt_offsets[i];
377
width = rrl->cecnt_widths[i];
378
corr = read_imc_reg(imc, ch, offset, width);
379
380
/* CPUs {ICX,SPR} encode two counters per 4-byte CORRERRCNT register. */
381
if (res_cfg->type <= SPR) {
382
n += scnprintf(msg + n, len - n, "%.4llx %.4llx ",
383
corr & 0xffff, corr >> 16);
384
} else {
385
/* CPUs {GNR} encode one counter per CORRERRCNT register. */
386
if (width == 4)
387
n += scnprintf(msg + n, len - n, "%.8llx ", corr);
388
else
389
n += scnprintf(msg + n, len - n, "%.16llx ", corr);
390
}
391
}
392
393
/* Move back one space. */
394
n--;
395
n += scnprintf(msg + n, len - n, "]");
396
}
397
}
398
399
static struct pci_dev *pci_get_dev_wrapper(int dom, unsigned int bus,
400
unsigned int dev, unsigned int fun)
401
{
402
struct pci_dev *pdev;
403
404
pdev = pci_get_domain_bus_and_slot(dom, bus, PCI_DEVFN(dev, fun));
405
if (!pdev) {
406
edac_dbg(2, "No device %02x:%02x.%x\n",
407
bus, dev, fun);
408
return NULL;
409
}
410
411
if (unlikely(pci_enable_device(pdev) < 0)) {
412
edac_dbg(2, "Failed to enable device %02x:%02x.%x\n",
413
bus, dev, fun);
414
pci_dev_put(pdev);
415
return NULL;
416
}
417
418
return pdev;
419
}
420
421
/**
422
* i10nm_get_imc_num() - Get the number of present DDR memory controllers.
423
*
424
* @cfg : The pointer to the structure of EDAC resource configurations.
425
*
426
* For Granite Rapids CPUs, the number of present DDR memory controllers read
427
* at runtime overwrites the value statically configured in @cfg->ddr_imc_num.
428
* For other CPUs, the number of present DDR memory controllers is statically
429
* configured in @cfg->ddr_imc_num.
430
*
431
* RETURNS : 0 on success, < 0 on failure.
432
*/
433
static int i10nm_get_imc_num(struct res_config *cfg)
434
{
435
int n, imc_num, chan_num = 0;
436
struct skx_dev *d;
437
u32 reg;
438
439
list_for_each_entry(d, i10nm_edac_list, list) {
440
d->pcu_cr3 = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->pcu_cr3_bdf.bus],
441
res_cfg->pcu_cr3_bdf.dev,
442
res_cfg->pcu_cr3_bdf.fun);
443
if (!d->pcu_cr3)
444
continue;
445
446
if (I10NM_GET_CAPID5_CFG(d, reg))
447
continue;
448
449
n = I10NM_DDR_IMC_CH_CNT(reg);
450
451
if (!chan_num) {
452
chan_num = n;
453
edac_dbg(2, "Get DDR CH number: %d\n", chan_num);
454
} else if (chan_num != n) {
455
i10nm_printk(KERN_NOTICE, "Get DDR CH numbers: %d, %d\n", chan_num, n);
456
}
457
}
458
459
switch (cfg->type) {
460
case GNR:
461
/*
462
* One channel per DDR memory controller for Granite Rapids CPUs.
463
*/
464
imc_num = chan_num;
465
466
if (!imc_num) {
467
i10nm_printk(KERN_ERR, "Invalid DDR MC number\n");
468
return -ENODEV;
469
}
470
471
if (imc_num > I10NM_NUM_DDR_IMC) {
472
i10nm_printk(KERN_ERR, "Need to make I10NM_NUM_DDR_IMC >= %d\n", imc_num);
473
return -EINVAL;
474
}
475
476
if (cfg->ddr_imc_num != imc_num) {
477
/*
478
* Store the number of present DDR memory controllers.
479
*/
480
cfg->ddr_imc_num = imc_num;
481
edac_dbg(2, "Set DDR MC number: %d", imc_num);
482
}
483
484
return 0;
485
default:
486
/*
487
* For other CPUs, the number of present DDR memory controllers
488
* is statically pre-configured in cfg->ddr_imc_num.
489
*/
490
return 0;
491
}
492
}
493
494
static bool i10nm_check_2lm(struct res_config *cfg)
495
{
496
struct skx_dev *d;
497
u32 reg;
498
int i;
499
500
list_for_each_entry(d, i10nm_edac_list, list) {
501
d->sad_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->sad_all_bdf.bus],
502
res_cfg->sad_all_bdf.dev,
503
res_cfg->sad_all_bdf.fun);
504
if (!d->sad_all)
505
continue;
506
507
for (i = 0; i < I10NM_MAX_SAD; i++) {
508
I10NM_GET_SAD(d, cfg->sad_all_offset, i, reg);
509
if (I10NM_SAD_ENABLE(reg) && I10NM_SAD_NM_CACHEABLE(reg)) {
510
edac_dbg(2, "2-level memory configuration.\n");
511
return true;
512
}
513
}
514
}
515
516
return false;
517
}
518
519
/*
520
* Check whether the error comes from DDRT by ICX/Tremont/SPR model specific error code.
521
* Refer to SDM vol3B 17.11.3/17.13.2 Intel IMC MC error codes for IA32_MCi_STATUS.
522
*/
523
static bool i10nm_mscod_is_ddrt(u32 mscod)
524
{
525
switch (res_cfg->type) {
526
case I10NM:
527
switch (mscod) {
528
case 0x0106: case 0x0107:
529
case 0x0800: case 0x0804:
530
case 0x0806 ... 0x0808:
531
case 0x080a ... 0x080e:
532
case 0x0810: case 0x0811:
533
case 0x0816: case 0x081e:
534
case 0x081f:
535
return true;
536
}
537
538
break;
539
case SPR:
540
switch (mscod) {
541
case 0x0800: case 0x0804:
542
case 0x0806 ... 0x0808:
543
case 0x080a ... 0x080e:
544
case 0x0810: case 0x0811:
545
case 0x0816: case 0x081e:
546
case 0x081f:
547
return true;
548
}
549
550
break;
551
default:
552
return false;
553
}
554
555
return false;
556
}
557
558
static bool i10nm_mc_decode_available(struct mce *mce)
559
{
560
#define ICX_IMCx_CHy 0x06666000
561
u8 bank;
562
563
if (!decoding_via_mca || mem_cfg_2lm)
564
return false;
565
566
if ((mce->status & (MCI_STATUS_MISCV | MCI_STATUS_ADDRV))
567
!= (MCI_STATUS_MISCV | MCI_STATUS_ADDRV))
568
return false;
569
570
bank = mce->bank;
571
572
switch (res_cfg->type) {
573
case I10NM:
574
/* Check whether the bank is one of {13,14,17,18,21,22,25,26} */
575
if (!(ICX_IMCx_CHy & (1 << bank)))
576
return false;
577
break;
578
case SPR:
579
if (bank < 13 || bank > 20)
580
return false;
581
break;
582
default:
583
return false;
584
}
585
586
/* DDRT errors can't be decoded from MCA bank registers */
587
if (MCI_MISC_ECC_MODE(mce->misc) == MCI_MISC_ECC_DDRT)
588
return false;
589
590
if (i10nm_mscod_is_ddrt(MCI_STATUS_MSCOD(mce->status)))
591
return false;
592
593
return true;
594
}
595
596
static bool i10nm_mc_decode(struct decoded_addr *res)
597
{
598
struct mce *m = res->mce;
599
struct skx_dev *d;
600
u8 bank;
601
602
if (!i10nm_mc_decode_available(m))
603
return false;
604
605
list_for_each_entry(d, i10nm_edac_list, list) {
606
if (d->imc[0].src_id == m->socketid) {
607
res->socket = m->socketid;
608
res->dev = d;
609
break;
610
}
611
}
612
613
switch (res_cfg->type) {
614
case I10NM:
615
bank = m->bank - 13;
616
res->imc = bank / 4;
617
res->channel = bank % 2;
618
res->column = GET_BITFIELD(m->misc, 9, 18) << 2;
619
res->row = GET_BITFIELD(m->misc, 19, 39);
620
res->bank_group = GET_BITFIELD(m->misc, 40, 41);
621
res->bank_address = GET_BITFIELD(m->misc, 42, 43);
622
res->bank_group |= GET_BITFIELD(m->misc, 44, 44) << 2;
623
res->rank = GET_BITFIELD(m->misc, 56, 58);
624
res->dimm = res->rank >> 2;
625
res->rank = res->rank % 4;
626
break;
627
case SPR:
628
bank = m->bank - 13;
629
res->imc = bank / 2;
630
res->channel = bank % 2;
631
res->column = GET_BITFIELD(m->misc, 9, 18) << 2;
632
res->row = GET_BITFIELD(m->misc, 19, 36);
633
res->bank_group = GET_BITFIELD(m->misc, 37, 38);
634
res->bank_address = GET_BITFIELD(m->misc, 39, 40);
635
res->bank_group |= GET_BITFIELD(m->misc, 41, 41) << 2;
636
res->rank = GET_BITFIELD(m->misc, 57, 57);
637
res->dimm = GET_BITFIELD(m->misc, 58, 58);
638
break;
639
default:
640
return false;
641
}
642
643
if (!res->dev) {
644
skx_printk(KERN_ERR, "No device for src_id %d imc %d\n",
645
m->socketid, res->imc);
646
return false;
647
}
648
649
return true;
650
}
651
652
/**
653
* get_gnr_mdev() - Get the PCI device of the @logical_idx-th DDR memory controller.
654
*
655
* @d : The pointer to the structure of CPU socket EDAC device.
656
* @logical_idx : The logical index of the present memory controller (0 ~ max present MC# - 1).
657
* @physical_idx : To store the corresponding physical index of @logical_idx.
658
*
659
* RETURNS : The PCI device of the @logical_idx-th DDR memory controller, NULL on failure.
660
*/
661
static struct pci_dev *get_gnr_mdev(struct skx_dev *d, int logical_idx, int *physical_idx)
662
{
663
#define GNR_MAX_IMC_PCI_CNT 28
664
665
struct pci_dev *mdev;
666
int i, logical = 0;
667
668
/*
669
* Detect present memory controllers from { PCI device: 8-5, function 7-1 }
670
*/
671
for (i = 0; i < GNR_MAX_IMC_PCI_CNT; i++) {
672
mdev = pci_get_dev_wrapper(d->seg,
673
d->bus[res_cfg->ddr_mdev_bdf.bus],
674
res_cfg->ddr_mdev_bdf.dev + i / 7,
675
res_cfg->ddr_mdev_bdf.fun + i % 7);
676
677
if (mdev) {
678
if (logical == logical_idx) {
679
*physical_idx = i;
680
return mdev;
681
}
682
683
pci_dev_put(mdev);
684
logical++;
685
}
686
}
687
688
return NULL;
689
}
690
691
static u32 get_gnr_imc_mmio_offset(void)
692
{
693
if (boot_cpu_data.x86_vfm == INTEL_GRANITERAPIDS_D)
694
return I10NM_GNR_D_IMC_MMIO_OFFSET;
695
696
return I10NM_GNR_IMC_MMIO_OFFSET;
697
}
698
699
/**
700
* get_ddr_munit() - Get the resource of the i-th DDR memory controller.
701
*
702
* @d : The pointer to the structure of CPU socket EDAC device.
703
* @i : The index of the CPU socket relative DDR memory controller.
704
* @offset : To store the MMIO offset of the i-th DDR memory controller.
705
* @size : To store the MMIO size of the i-th DDR memory controller.
706
*
707
* RETURNS : The PCI device of the i-th DDR memory controller, NULL on failure.
708
*/
709
static struct pci_dev *get_ddr_munit(struct skx_dev *d, int i, u32 *offset, unsigned long *size)
710
{
711
struct pci_dev *mdev;
712
int physical_idx;
713
u32 reg;
714
715
switch (res_cfg->type) {
716
case GNR:
717
if (I10NM_GET_IMC_BAR(d, 0, reg)) {
718
i10nm_printk(KERN_ERR, "Failed to get mc0 bar\n");
719
return NULL;
720
}
721
722
mdev = get_gnr_mdev(d, i, &physical_idx);
723
if (!mdev)
724
return NULL;
725
726
*offset = I10NM_GET_IMC_MMIO_OFFSET(reg) +
727
get_gnr_imc_mmio_offset() +
728
physical_idx * I10NM_GNR_IMC_MMIO_SIZE;
729
*size = I10NM_GNR_IMC_MMIO_SIZE;
730
731
break;
732
default:
733
if (I10NM_GET_IMC_BAR(d, i, reg)) {
734
i10nm_printk(KERN_ERR, "Failed to get mc%d bar\n", i);
735
return NULL;
736
}
737
738
mdev = pci_get_dev_wrapper(d->seg,
739
d->bus[res_cfg->ddr_mdev_bdf.bus],
740
res_cfg->ddr_mdev_bdf.dev + i,
741
res_cfg->ddr_mdev_bdf.fun);
742
if (!mdev)
743
return NULL;
744
745
*offset = I10NM_GET_IMC_MMIO_OFFSET(reg);
746
*size = I10NM_GET_IMC_MMIO_SIZE(reg);
747
}
748
749
return mdev;
750
}
751
752
/**
753
* i10nm_imc_absent() - Check whether the memory controller @imc is absent
754
*
755
* @imc : The pointer to the structure of memory controller EDAC device.
756
*
757
* RETURNS : true if the memory controller EDAC device is absent, false otherwise.
758
*/
759
static bool i10nm_imc_absent(struct skx_imc *imc)
760
{
761
u32 mcmtr;
762
int i;
763
764
switch (res_cfg->type) {
765
case SPR:
766
for (i = 0; i < res_cfg->ddr_chan_num; i++) {
767
mcmtr = I10NM_GET_MCMTR(imc, i);
768
edac_dbg(1, "ch%d mcmtr reg %x\n", i, mcmtr);
769
if (mcmtr != ~0)
770
return false;
771
}
772
773
/*
774
* Some workstations' absent memory controllers still
775
* appear as PCIe devices, misleading the EDAC driver.
776
* By observing that the MMIO registers of these absent
777
* memory controllers consistently hold the value of ~0.
778
*
779
* We identify a memory controller as absent by checking
780
* if its MMIO register "mcmtr" == ~0 in all its channels.
781
*/
782
return true;
783
default:
784
return false;
785
}
786
}
787
788
static int i10nm_get_ddr_munits(void)
789
{
790
struct pci_dev *mdev;
791
void __iomem *mbase;
792
unsigned long size;
793
struct skx_dev *d;
794
int i, lmc, j = 0;
795
u32 reg, off;
796
u64 base;
797
798
list_for_each_entry(d, i10nm_edac_list, list) {
799
d->util_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->util_all_bdf.bus],
800
res_cfg->util_all_bdf.dev,
801
res_cfg->util_all_bdf.fun);
802
if (!d->util_all)
803
return -ENODEV;
804
805
d->uracu = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->uracu_bdf.bus],
806
res_cfg->uracu_bdf.dev,
807
res_cfg->uracu_bdf.fun);
808
if (!d->uracu)
809
return -ENODEV;
810
811
if (I10NM_GET_SCK_BAR(d, reg)) {
812
i10nm_printk(KERN_ERR, "Failed to socket bar\n");
813
return -ENODEV;
814
}
815
816
base = I10NM_GET_SCK_MMIO_BASE(reg);
817
edac_dbg(2, "socket%d mmio base 0x%llx (reg 0x%x)\n",
818
j++, base, reg);
819
820
for (lmc = 0, i = 0; i < res_cfg->ddr_imc_num; i++) {
821
mdev = get_ddr_munit(d, i, &off, &size);
822
823
if (i == 0 && !mdev) {
824
i10nm_printk(KERN_ERR, "No IMC found\n");
825
return -ENODEV;
826
}
827
if (!mdev)
828
continue;
829
830
edac_dbg(2, "mc%d mmio base 0x%llx size 0x%lx (reg 0x%x)\n",
831
i, base + off, size, reg);
832
833
mbase = ioremap(base + off, size);
834
if (!mbase) {
835
i10nm_printk(KERN_ERR, "Failed to ioremap 0x%llx\n",
836
base + off);
837
return -ENODEV;
838
}
839
840
d->imc[lmc].mbase = mbase;
841
if (i10nm_imc_absent(&d->imc[lmc])) {
842
pci_dev_put(mdev);
843
iounmap(mbase);
844
d->imc[lmc].mbase = NULL;
845
edac_dbg(2, "Skip absent mc%d\n", i);
846
continue;
847
} else {
848
d->imc[lmc].mdev = mdev;
849
if (res_cfg->type == SPR)
850
skx_set_mc_mapping(d, i, lmc);
851
lmc++;
852
}
853
}
854
}
855
856
return 0;
857
}
858
859
static bool i10nm_check_hbm_imc(struct skx_dev *d)
860
{
861
u32 reg;
862
863
if (I10NM_GET_CAPID3_CFG(d, reg)) {
864
i10nm_printk(KERN_ERR, "Failed to get capid3_cfg\n");
865
return false;
866
}
867
868
return I10NM_IS_HBM_PRESENT(reg) != 0;
869
}
870
871
static int i10nm_get_hbm_munits(void)
872
{
873
struct pci_dev *mdev;
874
void __iomem *mbase;
875
u32 reg, off, mcmtr;
876
struct skx_dev *d;
877
int i, lmc;
878
u64 base;
879
880
list_for_each_entry(d, i10nm_edac_list, list) {
881
if (!d->pcu_cr3)
882
return -ENODEV;
883
884
if (!i10nm_check_hbm_imc(d)) {
885
i10nm_printk(KERN_DEBUG, "No hbm memory\n");
886
return -ENODEV;
887
}
888
889
if (I10NM_GET_SCK_BAR(d, reg)) {
890
i10nm_printk(KERN_ERR, "Failed to get socket bar\n");
891
return -ENODEV;
892
}
893
base = I10NM_GET_SCK_MMIO_BASE(reg);
894
895
if (I10NM_GET_HBM_IMC_BAR(d, reg)) {
896
i10nm_printk(KERN_ERR, "Failed to get hbm mc bar\n");
897
return -ENODEV;
898
}
899
base += I10NM_GET_HBM_IMC_MMIO_OFFSET(reg);
900
901
lmc = res_cfg->ddr_imc_num;
902
903
for (i = 0; i < res_cfg->hbm_imc_num; i++) {
904
mdev = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->hbm_mdev_bdf.bus],
905
res_cfg->hbm_mdev_bdf.dev + i / 4,
906
res_cfg->hbm_mdev_bdf.fun + i % 4);
907
908
if (i == 0 && !mdev) {
909
i10nm_printk(KERN_ERR, "No hbm mc found\n");
910
return -ENODEV;
911
}
912
if (!mdev)
913
continue;
914
915
d->imc[lmc].mdev = mdev;
916
off = i * I10NM_HBM_IMC_MMIO_SIZE;
917
918
edac_dbg(2, "hbm mc%d mmio base 0x%llx size 0x%x\n",
919
lmc, base + off, I10NM_HBM_IMC_MMIO_SIZE);
920
921
mbase = ioremap(base + off, I10NM_HBM_IMC_MMIO_SIZE);
922
if (!mbase) {
923
pci_dev_put(d->imc[lmc].mdev);
924
d->imc[lmc].mdev = NULL;
925
926
i10nm_printk(KERN_ERR, "Failed to ioremap for hbm mc 0x%llx\n",
927
base + off);
928
return -ENOMEM;
929
}
930
931
d->imc[lmc].mbase = mbase;
932
d->imc[lmc].hbm_mc = true;
933
934
mcmtr = I10NM_GET_MCMTR(&d->imc[lmc], 0);
935
if (!I10NM_IS_HBM_IMC(mcmtr)) {
936
iounmap(d->imc[lmc].mbase);
937
d->imc[lmc].mbase = NULL;
938
d->imc[lmc].hbm_mc = false;
939
pci_dev_put(d->imc[lmc].mdev);
940
d->imc[lmc].mdev = NULL;
941
942
i10nm_printk(KERN_ERR, "This isn't an hbm mc!\n");
943
return -ENODEV;
944
}
945
946
lmc++;
947
}
948
}
949
950
return 0;
951
}
952
953
static struct res_config i10nm_cfg0 = {
954
.type = I10NM,
955
.decs_did = 0x3452,
956
.busno_cfg_offset = 0xcc,
957
.ddr_imc_num = 4,
958
.ddr_chan_num = 2,
959
.ddr_dimm_num = 2,
960
.ddr_chan_mmio_sz = 0x4000,
961
.sad_all_bdf = {1, 29, 0},
962
.pcu_cr3_bdf = {1, 30, 3},
963
.util_all_bdf = {1, 29, 1},
964
.uracu_bdf = {0, 0, 1},
965
.ddr_mdev_bdf = {0, 12, 0},
966
.hbm_mdev_bdf = {0, 12, 1},
967
.sad_all_offset = 0x108,
968
.reg_rrl_ddr = &icx_reg_rrl_ddr,
969
};
970
971
static struct res_config i10nm_cfg1 = {
972
.type = I10NM,
973
.decs_did = 0x3452,
974
.busno_cfg_offset = 0xd0,
975
.ddr_imc_num = 4,
976
.ddr_chan_num = 2,
977
.ddr_dimm_num = 2,
978
.ddr_chan_mmio_sz = 0x4000,
979
.sad_all_bdf = {1, 29, 0},
980
.pcu_cr3_bdf = {1, 30, 3},
981
.util_all_bdf = {1, 29, 1},
982
.uracu_bdf = {0, 0, 1},
983
.ddr_mdev_bdf = {0, 12, 0},
984
.hbm_mdev_bdf = {0, 12, 1},
985
.sad_all_offset = 0x108,
986
.reg_rrl_ddr = &icx_reg_rrl_ddr,
987
};
988
989
static struct res_config spr_cfg = {
990
.type = SPR,
991
.decs_did = 0x3252,
992
.busno_cfg_offset = 0xd0,
993
.ddr_imc_num = 4,
994
.ddr_chan_num = 2,
995
.ddr_dimm_num = 2,
996
.hbm_imc_num = 16,
997
.hbm_chan_num = 2,
998
.hbm_dimm_num = 1,
999
.ddr_chan_mmio_sz = 0x8000,
1000
.hbm_chan_mmio_sz = 0x4000,
1001
.support_ddr5 = true,
1002
.sad_all_bdf = {1, 10, 0},
1003
.pcu_cr3_bdf = {1, 30, 3},
1004
.util_all_bdf = {1, 29, 1},
1005
.uracu_bdf = {0, 0, 1},
1006
.ddr_mdev_bdf = {0, 12, 0},
1007
.hbm_mdev_bdf = {0, 12, 1},
1008
.sad_all_offset = 0x300,
1009
.reg_rrl_ddr = &spr_reg_rrl_ddr,
1010
.reg_rrl_hbm[0] = &spr_reg_rrl_hbm_pch0,
1011
.reg_rrl_hbm[1] = &spr_reg_rrl_hbm_pch1,
1012
};
1013
1014
static struct res_config gnr_cfg = {
1015
.type = GNR,
1016
.decs_did = 0x3252,
1017
.busno_cfg_offset = 0xd0,
1018
.ddr_imc_num = 12,
1019
.ddr_chan_num = 1,
1020
.ddr_dimm_num = 2,
1021
.ddr_chan_mmio_sz = 0x4000,
1022
.support_ddr5 = true,
1023
.sad_all_bdf = {0, 13, 0},
1024
.pcu_cr3_bdf = {0, 5, 0},
1025
.util_all_bdf = {0, 13, 1},
1026
.uracu_bdf = {0, 0, 1},
1027
.ddr_mdev_bdf = {0, 5, 1},
1028
.sad_all_offset = 0x300,
1029
.reg_rrl_ddr = &gnr_reg_rrl_ddr,
1030
};
1031
1032
static const struct x86_cpu_id i10nm_cpuids[] = {
1033
X86_MATCH_VFM_STEPS(INTEL_ATOM_TREMONT_D, X86_STEP_MIN, 0x3, &i10nm_cfg0),
1034
X86_MATCH_VFM_STEPS(INTEL_ATOM_TREMONT_D, 0x4, X86_STEP_MAX, &i10nm_cfg1),
1035
X86_MATCH_VFM_STEPS(INTEL_ICELAKE_X, X86_STEP_MIN, 0x3, &i10nm_cfg0),
1036
X86_MATCH_VFM_STEPS(INTEL_ICELAKE_X, 0x4, X86_STEP_MAX, &i10nm_cfg1),
1037
X86_MATCH_VFM( INTEL_ICELAKE_D, &i10nm_cfg1),
1038
1039
X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &spr_cfg),
1040
X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &spr_cfg),
1041
X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, &gnr_cfg),
1042
X86_MATCH_VFM(INTEL_GRANITERAPIDS_D, &gnr_cfg),
1043
X86_MATCH_VFM(INTEL_ATOM_CRESTMONT_X, &gnr_cfg),
1044
X86_MATCH_VFM(INTEL_ATOM_CRESTMONT, &gnr_cfg),
1045
X86_MATCH_VFM(INTEL_ATOM_DARKMONT_X, &gnr_cfg),
1046
{}
1047
};
1048
MODULE_DEVICE_TABLE(x86cpu, i10nm_cpuids);
1049
1050
static bool i10nm_check_ecc(struct skx_imc *imc, int chan)
1051
{
1052
u32 mcmtr;
1053
1054
mcmtr = I10NM_GET_MCMTR(imc, chan);
1055
edac_dbg(1, "ch%d mcmtr reg %x\n", chan, mcmtr);
1056
1057
return !!GET_BITFIELD(mcmtr, 2, 2);
1058
}
1059
1060
static int i10nm_get_dimm_config(struct mem_ctl_info *mci,
1061
struct res_config *cfg)
1062
{
1063
struct skx_pvt *pvt = mci->pvt_info;
1064
struct skx_imc *imc = pvt->imc;
1065
u32 mtr, mcddrtcfg = 0;
1066
struct dimm_info *dimm;
1067
int i, j, ndimms;
1068
1069
for (i = 0; i < imc->num_channels; i++) {
1070
if (!imc->mbase)
1071
continue;
1072
1073
ndimms = 0;
1074
1075
if (res_cfg->type != GNR)
1076
mcddrtcfg = I10NM_GET_MCDDRTCFG(imc, i);
1077
1078
for (j = 0; j < imc->num_dimms; j++) {
1079
dimm = edac_get_dimm(mci, i, j, 0);
1080
mtr = I10NM_GET_DIMMMTR(imc, i, j);
1081
edac_dbg(1, "dimmmtr 0x%x mcddrtcfg 0x%x (mc%d ch%d dimm%d)\n",
1082
mtr, mcddrtcfg, imc->mc, i, j);
1083
1084
if (IS_DIMM_PRESENT(mtr))
1085
ndimms += skx_get_dimm_info(mtr, 0, 0, dimm,
1086
imc, i, j, cfg);
1087
else if (IS_NVDIMM_PRESENT(mcddrtcfg, j))
1088
ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
1089
EDAC_MOD_STR);
1090
}
1091
if (ndimms && !i10nm_check_ecc(imc, i)) {
1092
i10nm_printk(KERN_ERR, "ECC is disabled on imc %d channel %d\n",
1093
imc->mc, i);
1094
return -ENODEV;
1095
}
1096
}
1097
1098
return 0;
1099
}
1100
1101
static struct notifier_block i10nm_mce_dec = {
1102
.notifier_call = skx_mce_check_error,
1103
.priority = MCE_PRIO_EDAC,
1104
};
1105
1106
static int __init i10nm_init(void)
1107
{
1108
u8 mc = 0, src_id = 0;
1109
const struct x86_cpu_id *id;
1110
struct res_config *cfg;
1111
const char *owner;
1112
struct skx_dev *d;
1113
int rc, i, off[3] = {0xd0, 0xc8, 0xcc};
1114
u64 tolm, tohm;
1115
int imc_num;
1116
1117
edac_dbg(2, "\n");
1118
1119
if (ghes_get_devices())
1120
return -EBUSY;
1121
1122
owner = edac_get_owner();
1123
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1124
return -EBUSY;
1125
1126
if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
1127
return -ENODEV;
1128
1129
id = x86_match_cpu(i10nm_cpuids);
1130
if (!id)
1131
return -ENODEV;
1132
1133
cfg = (struct res_config *)id->driver_data;
1134
skx_set_res_cfg(cfg);
1135
res_cfg = cfg;
1136
1137
rc = skx_get_hi_lo(0x09a2, off, &tolm, &tohm);
1138
if (rc)
1139
return rc;
1140
1141
rc = skx_get_all_bus_mappings(cfg, &i10nm_edac_list);
1142
if (rc < 0)
1143
goto fail;
1144
if (rc == 0) {
1145
i10nm_printk(KERN_ERR, "No memory controllers found\n");
1146
return -ENODEV;
1147
}
1148
1149
rc = i10nm_get_imc_num(cfg);
1150
if (rc < 0)
1151
goto fail;
1152
1153
mem_cfg_2lm = i10nm_check_2lm(cfg);
1154
skx_set_mem_cfg(mem_cfg_2lm);
1155
1156
rc = i10nm_get_ddr_munits();
1157
1158
if (i10nm_get_hbm_munits() && rc)
1159
goto fail;
1160
1161
imc_num = res_cfg->ddr_imc_num + res_cfg->hbm_imc_num;
1162
1163
list_for_each_entry(d, i10nm_edac_list, list) {
1164
rc = skx_get_src_id(d, 0xf8, &src_id);
1165
if (rc < 0)
1166
goto fail;
1167
1168
edac_dbg(2, "src_id = %d\n", src_id);
1169
for (i = 0; i < imc_num; i++) {
1170
if (!d->imc[i].mdev)
1171
continue;
1172
1173
d->imc[i].mc = mc++;
1174
d->imc[i].lmc = i;
1175
d->imc[i].src_id = src_id;
1176
if (d->imc[i].hbm_mc) {
1177
d->imc[i].chan_mmio_sz = cfg->hbm_chan_mmio_sz;
1178
d->imc[i].num_channels = cfg->hbm_chan_num;
1179
d->imc[i].num_dimms = cfg->hbm_dimm_num;
1180
} else {
1181
d->imc[i].chan_mmio_sz = cfg->ddr_chan_mmio_sz;
1182
d->imc[i].num_channels = cfg->ddr_chan_num;
1183
d->imc[i].num_dimms = cfg->ddr_dimm_num;
1184
}
1185
1186
rc = skx_register_mci(&d->imc[i], d->imc[i].mdev,
1187
"Intel_10nm Socket", EDAC_MOD_STR,
1188
i10nm_get_dimm_config, cfg);
1189
if (rc < 0)
1190
goto fail;
1191
}
1192
}
1193
1194
rc = skx_adxl_get();
1195
if (rc)
1196
goto fail;
1197
1198
opstate_init();
1199
mce_register_decode_chain(&i10nm_mce_dec);
1200
skx_setup_debug("i10nm_test");
1201
1202
if (retry_rd_err_log && res_cfg->reg_rrl_ddr) {
1203
skx_set_decode(i10nm_mc_decode, show_retry_rd_err_log);
1204
if (retry_rd_err_log == 2)
1205
enable_retry_rd_err_log(true);
1206
} else {
1207
skx_set_decode(i10nm_mc_decode, NULL);
1208
}
1209
1210
i10nm_printk(KERN_INFO, "%s\n", I10NM_REVISION);
1211
1212
return 0;
1213
fail:
1214
skx_remove();
1215
return rc;
1216
}
1217
1218
static void __exit i10nm_exit(void)
1219
{
1220
edac_dbg(2, "\n");
1221
1222
if (retry_rd_err_log && res_cfg->reg_rrl_ddr) {
1223
skx_set_decode(NULL, NULL);
1224
if (retry_rd_err_log == 2)
1225
enable_retry_rd_err_log(false);
1226
}
1227
1228
skx_teardown_debug();
1229
mce_unregister_decode_chain(&i10nm_mce_dec);
1230
skx_adxl_put();
1231
skx_remove();
1232
}
1233
1234
module_init(i10nm_init);
1235
module_exit(i10nm_exit);
1236
1237
static int set_decoding_via_mca(const char *buf, const struct kernel_param *kp)
1238
{
1239
unsigned long val;
1240
int ret;
1241
1242
ret = kstrtoul(buf, 0, &val);
1243
1244
if (ret || val > 1)
1245
return -EINVAL;
1246
1247
if (val && mem_cfg_2lm) {
1248
i10nm_printk(KERN_NOTICE, "Decoding errors via MCA banks for 2LM isn't supported yet\n");
1249
return -EIO;
1250
}
1251
1252
ret = param_set_int(buf, kp);
1253
1254
return ret;
1255
}
1256
1257
static const struct kernel_param_ops decoding_via_mca_param_ops = {
1258
.set = set_decoding_via_mca,
1259
.get = param_get_int,
1260
};
1261
1262
module_param_cb(decoding_via_mca, &decoding_via_mca_param_ops, &decoding_via_mca, 0644);
1263
MODULE_PARM_DESC(decoding_via_mca, "decoding_via_mca: 0=off(default), 1=enable");
1264
1265
module_param(retry_rd_err_log, int, 0444);
1266
MODULE_PARM_DESC(retry_rd_err_log, "retry_rd_err_log: 0=off(default), 1=bios(Linux doesn't reset any control bits, but just reports values.), 2=linux(Linux tries to take control and resets mode bits, clear valid/UC bits after reading.)");
1267
1268
MODULE_LICENSE("GPL v2");
1269
MODULE_DESCRIPTION("MC Driver for Intel 10nm server processors");
1270
1271