Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/edac/i5000_edac.c
26278 views
1
/*
2
* Intel 5000(P/V/X) class Memory Controllers kernel module
3
*
4
* This file may be distributed under the terms of the
5
* GNU General Public License.
6
*
7
* Written by Douglas Thompson Linux Networx (http://lnxi.com)
8
* [email protected]
9
*
10
* This module is based on the following document:
11
*
12
* Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13
* http://developer.intel.com/design/chipsets/datashts/313070.htm
14
*
15
*/
16
17
#include <linux/module.h>
18
#include <linux/init.h>
19
#include <linux/pci.h>
20
#include <linux/pci_ids.h>
21
#include <linux/slab.h>
22
#include <linux/edac.h>
23
#include <asm/mmzone.h>
24
25
#include "edac_module.h"
26
27
/*
28
* Alter this version for the I5000 module when modifications are made
29
*/
30
#define I5000_REVISION " Ver: 2.0.12"
31
#define EDAC_MOD_STR "i5000_edac"
32
33
#define i5000_printk(level, fmt, arg...) \
34
edac_printk(level, "i5000", fmt, ##arg)
35
36
#define i5000_mc_printk(mci, level, fmt, arg...) \
37
edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
38
39
#ifndef PCI_DEVICE_ID_INTEL_FBD_0
40
#define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5
41
#endif
42
#ifndef PCI_DEVICE_ID_INTEL_FBD_1
43
#define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6
44
#endif
45
46
/* Device 16,
47
* Function 0: System Address
48
* Function 1: Memory Branch Map, Control, Errors Register
49
* Function 2: FSB Error Registers
50
*
51
* All 3 functions of Device 16 (0,1,2) share the SAME DID
52
*/
53
#define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
54
55
/* OFFSETS for Function 0 */
56
57
/* OFFSETS for Function 1 */
58
#define AMBASE 0x48
59
#define MAXCH 0x56
60
#define MAXDIMMPERCH 0x57
61
#define TOLM 0x6C
62
#define REDMEMB 0x7C
63
#define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF)
64
#define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
65
#define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00)
66
#define MIR0 0x80
67
#define MIR1 0x84
68
#define MIR2 0x88
69
#define AMIR0 0x8C
70
#define AMIR1 0x90
71
#define AMIR2 0x94
72
73
#define FERR_FAT_FBD 0x98
74
#define NERR_FAT_FBD 0x9C
75
#define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
76
#define FERR_FAT_FBDCHAN 0x30000000
77
#define FERR_FAT_M3ERR 0x00000004
78
#define FERR_FAT_M2ERR 0x00000002
79
#define FERR_FAT_M1ERR 0x00000001
80
#define FERR_FAT_MASK (FERR_FAT_M1ERR | \
81
FERR_FAT_M2ERR | \
82
FERR_FAT_M3ERR)
83
84
#define FERR_NF_FBD 0xA0
85
86
/* Thermal and SPD or BFD errors */
87
#define FERR_NF_M28ERR 0x01000000
88
#define FERR_NF_M27ERR 0x00800000
89
#define FERR_NF_M26ERR 0x00400000
90
#define FERR_NF_M25ERR 0x00200000
91
#define FERR_NF_M24ERR 0x00100000
92
#define FERR_NF_M23ERR 0x00080000
93
#define FERR_NF_M22ERR 0x00040000
94
#define FERR_NF_M21ERR 0x00020000
95
96
/* Correctable errors */
97
#define FERR_NF_M20ERR 0x00010000
98
#define FERR_NF_M19ERR 0x00008000
99
#define FERR_NF_M18ERR 0x00004000
100
#define FERR_NF_M17ERR 0x00002000
101
102
/* Non-Retry or redundant Retry errors */
103
#define FERR_NF_M16ERR 0x00001000
104
#define FERR_NF_M15ERR 0x00000800
105
#define FERR_NF_M14ERR 0x00000400
106
#define FERR_NF_M13ERR 0x00000200
107
108
/* Uncorrectable errors */
109
#define FERR_NF_M12ERR 0x00000100
110
#define FERR_NF_M11ERR 0x00000080
111
#define FERR_NF_M10ERR 0x00000040
112
#define FERR_NF_M9ERR 0x00000020
113
#define FERR_NF_M8ERR 0x00000010
114
#define FERR_NF_M7ERR 0x00000008
115
#define FERR_NF_M6ERR 0x00000004
116
#define FERR_NF_M5ERR 0x00000002
117
#define FERR_NF_M4ERR 0x00000001
118
119
#define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \
120
FERR_NF_M11ERR | \
121
FERR_NF_M10ERR | \
122
FERR_NF_M9ERR | \
123
FERR_NF_M8ERR | \
124
FERR_NF_M7ERR | \
125
FERR_NF_M6ERR | \
126
FERR_NF_M5ERR | \
127
FERR_NF_M4ERR)
128
#define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \
129
FERR_NF_M19ERR | \
130
FERR_NF_M18ERR | \
131
FERR_NF_M17ERR)
132
#define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \
133
FERR_NF_M28ERR)
134
#define FERR_NF_THERMAL (FERR_NF_M26ERR | \
135
FERR_NF_M25ERR | \
136
FERR_NF_M24ERR | \
137
FERR_NF_M23ERR)
138
#define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR)
139
#define FERR_NF_NORTH_CRC (FERR_NF_M21ERR)
140
#define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \
141
FERR_NF_M14ERR | \
142
FERR_NF_M15ERR)
143
144
#define NERR_NF_FBD 0xA4
145
#define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \
146
FERR_NF_CORRECTABLE | \
147
FERR_NF_DIMM_SPARE | \
148
FERR_NF_THERMAL | \
149
FERR_NF_SPD_PROTOCOL | \
150
FERR_NF_NORTH_CRC | \
151
FERR_NF_NON_RETRY)
152
153
#define EMASK_FBD 0xA8
154
#define EMASK_FBD_M28ERR 0x08000000
155
#define EMASK_FBD_M27ERR 0x04000000
156
#define EMASK_FBD_M26ERR 0x02000000
157
#define EMASK_FBD_M25ERR 0x01000000
158
#define EMASK_FBD_M24ERR 0x00800000
159
#define EMASK_FBD_M23ERR 0x00400000
160
#define EMASK_FBD_M22ERR 0x00200000
161
#define EMASK_FBD_M21ERR 0x00100000
162
#define EMASK_FBD_M20ERR 0x00080000
163
#define EMASK_FBD_M19ERR 0x00040000
164
#define EMASK_FBD_M18ERR 0x00020000
165
#define EMASK_FBD_M17ERR 0x00010000
166
167
#define EMASK_FBD_M15ERR 0x00004000
168
#define EMASK_FBD_M14ERR 0x00002000
169
#define EMASK_FBD_M13ERR 0x00001000
170
#define EMASK_FBD_M12ERR 0x00000800
171
#define EMASK_FBD_M11ERR 0x00000400
172
#define EMASK_FBD_M10ERR 0x00000200
173
#define EMASK_FBD_M9ERR 0x00000100
174
#define EMASK_FBD_M8ERR 0x00000080
175
#define EMASK_FBD_M7ERR 0x00000040
176
#define EMASK_FBD_M6ERR 0x00000020
177
#define EMASK_FBD_M5ERR 0x00000010
178
#define EMASK_FBD_M4ERR 0x00000008
179
#define EMASK_FBD_M3ERR 0x00000004
180
#define EMASK_FBD_M2ERR 0x00000002
181
#define EMASK_FBD_M1ERR 0x00000001
182
183
#define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \
184
EMASK_FBD_M2ERR | \
185
EMASK_FBD_M3ERR)
186
187
#define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \
188
EMASK_FBD_M5ERR | \
189
EMASK_FBD_M6ERR | \
190
EMASK_FBD_M7ERR | \
191
EMASK_FBD_M8ERR | \
192
EMASK_FBD_M9ERR | \
193
EMASK_FBD_M10ERR | \
194
EMASK_FBD_M11ERR | \
195
EMASK_FBD_M12ERR)
196
#define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \
197
EMASK_FBD_M18ERR | \
198
EMASK_FBD_M19ERR | \
199
EMASK_FBD_M20ERR)
200
#define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \
201
EMASK_FBD_M28ERR)
202
#define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \
203
EMASK_FBD_M25ERR | \
204
EMASK_FBD_M24ERR | \
205
EMASK_FBD_M23ERR)
206
#define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR)
207
#define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR)
208
#define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \
209
EMASK_FBD_M14ERR | \
210
EMASK_FBD_M13ERR)
211
212
#define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \
213
ENABLE_EMASK_FBD_NORTH_CRC | \
214
ENABLE_EMASK_FBD_SPD_PROTOCOL | \
215
ENABLE_EMASK_FBD_THERMALS | \
216
ENABLE_EMASK_FBD_DIMM_SPARE | \
217
ENABLE_EMASK_FBD_FATAL_ERRORS | \
218
ENABLE_EMASK_FBD_CORRECTABLE | \
219
ENABLE_EMASK_FBD_UNCORRECTABLE)
220
221
#define ERR0_FBD 0xAC
222
#define ERR1_FBD 0xB0
223
#define ERR2_FBD 0xB4
224
#define MCERR_FBD 0xB8
225
#define NRECMEMA 0xBE
226
#define NREC_BANK(x) (((x)>>12) & 0x7)
227
#define NREC_RDWR(x) (((x)>>11) & 1)
228
#define NREC_RANK(x) (((x)>>8) & 0x7)
229
#define NRECMEMB 0xC0
230
#define NREC_CAS(x) (((x)>>16) & 0xFFF)
231
#define NREC_RAS(x) ((x) & 0x7FFF)
232
#define NRECFGLOG 0xC4
233
#define NREEECFBDA 0xC8
234
#define NREEECFBDB 0xCC
235
#define NREEECFBDC 0xD0
236
#define NREEECFBDD 0xD4
237
#define NREEECFBDE 0xD8
238
#define REDMEMA 0xDC
239
#define RECMEMA 0xE2
240
#define REC_BANK(x) (((x)>>12) & 0x7)
241
#define REC_RDWR(x) (((x)>>11) & 1)
242
#define REC_RANK(x) (((x)>>8) & 0x7)
243
#define RECMEMB 0xE4
244
#define REC_CAS(x) (((x)>>16) & 0xFFFFFF)
245
#define REC_RAS(x) ((x) & 0x7FFF)
246
#define RECFGLOG 0xE8
247
#define RECFBDA 0xEC
248
#define RECFBDB 0xF0
249
#define RECFBDC 0xF4
250
#define RECFBDD 0xF8
251
#define RECFBDE 0xFC
252
253
/* OFFSETS for Function 2 */
254
255
/*
256
* Device 21,
257
* Function 0: Memory Map Branch 0
258
*
259
* Device 22,
260
* Function 0: Memory Map Branch 1
261
*/
262
#define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5
263
#define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6
264
265
#define AMB_PRESENT_0 0x64
266
#define AMB_PRESENT_1 0x66
267
#define MTR0 0x80
268
#define MTR1 0x84
269
#define MTR2 0x88
270
#define MTR3 0x8C
271
272
#define NUM_MTRS 4
273
#define CHANNELS_PER_BRANCH 2
274
#define MAX_BRANCHES 2
275
276
/* Defines to extract the various fields from the
277
* MTRx - Memory Technology Registers
278
*/
279
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8))
280
#define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4)
281
#define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4)
282
#define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
283
#define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1)
284
#define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
285
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
286
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
287
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
288
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
289
290
/* enables the report of miscellaneous messages as CE errors - default off */
291
static int misc_messages;
292
293
/* Enumeration of supported devices */
294
enum i5000_chips {
295
I5000P = 0,
296
I5000V = 1, /* future */
297
I5000X = 2 /* future */
298
};
299
300
/* Device name and register DID (Device ID) */
301
struct i5000_dev_info {
302
const char *ctl_name; /* name for this device */
303
u16 fsb_mapping_errors; /* DID for the branchmap,control */
304
};
305
306
/* Table of devices attributes supported by this driver */
307
static const struct i5000_dev_info i5000_devs[] = {
308
[I5000P] = {
309
.ctl_name = "I5000",
310
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
311
},
312
};
313
314
struct i5000_dimm_info {
315
int megabytes; /* size, 0 means not present */
316
int dual_rank;
317
};
318
319
#define MAX_CHANNELS 6 /* max possible channels */
320
#define MAX_CSROWS (8*2) /* max possible csrows per channel */
321
322
/* driver private data structure */
323
struct i5000_pvt {
324
struct pci_dev *system_address; /* 16.0 */
325
struct pci_dev *branchmap_werrors; /* 16.1 */
326
struct pci_dev *fsb_error_regs; /* 16.2 */
327
struct pci_dev *branch_0; /* 21.0 */
328
struct pci_dev *branch_1; /* 22.0 */
329
330
u16 tolm; /* top of low memory */
331
union {
332
u64 ambase; /* AMB BAR */
333
struct {
334
u32 ambase_bottom;
335
u32 ambase_top;
336
} u __packed;
337
};
338
339
u16 mir0, mir1, mir2;
340
341
u16 b0_mtr[NUM_MTRS]; /* Memory Technology Reg */
342
u16 b0_ambpresent0; /* Branch 0, Channel 0 */
343
u16 b0_ambpresent1; /* Branch 0, Channel 1 */
344
345
u16 b1_mtr[NUM_MTRS]; /* Memory Technology Reg */
346
u16 b1_ambpresent0; /* Branch 1, Channel 8 */
347
u16 b1_ambpresent1; /* Branch 1, Channel 1 */
348
349
/* DIMM information matrix, allocating architecture maximums */
350
struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
351
352
/* Actual values for this controller */
353
int maxch; /* Max channels */
354
int maxdimmperch; /* Max DIMMs per channel */
355
};
356
357
/* I5000 MCH error information retrieved from Hardware */
358
struct i5000_error_info {
359
360
/* These registers are always read from the MC */
361
u32 ferr_fat_fbd; /* First Errors Fatal */
362
u32 nerr_fat_fbd; /* Next Errors Fatal */
363
u32 ferr_nf_fbd; /* First Errors Non-Fatal */
364
u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
365
366
/* These registers are input ONLY if there was a Recoverable Error */
367
u32 redmemb; /* Recoverable Mem Data Error log B */
368
u16 recmema; /* Recoverable Mem Error log A */
369
u32 recmemb; /* Recoverable Mem Error log B */
370
371
/* These registers are input ONLY if there was a
372
* Non-Recoverable Error */
373
u16 nrecmema; /* Non-Recoverable Mem log A */
374
u32 nrecmemb; /* Non-Recoverable Mem log B */
375
376
};
377
378
static struct edac_pci_ctl_info *i5000_pci;
379
380
/*
381
* i5000_get_error_info Retrieve the hardware error information from
382
* the hardware and cache it in the 'info'
383
* structure
384
*/
385
static void i5000_get_error_info(struct mem_ctl_info *mci,
386
struct i5000_error_info *info)
387
{
388
struct i5000_pvt *pvt;
389
u32 value;
390
391
pvt = mci->pvt_info;
392
393
/* read in the 1st FATAL error register */
394
pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
395
396
/* Mask only the bits that the doc says are valid
397
*/
398
value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
399
400
/* If there is an error, then read in the */
401
/* NEXT FATAL error register and the Memory Error Log Register A */
402
if (value & FERR_FAT_MASK) {
403
info->ferr_fat_fbd = value;
404
405
/* harvest the various error data we need */
406
pci_read_config_dword(pvt->branchmap_werrors,
407
NERR_FAT_FBD, &info->nerr_fat_fbd);
408
pci_read_config_word(pvt->branchmap_werrors,
409
NRECMEMA, &info->nrecmema);
410
pci_read_config_dword(pvt->branchmap_werrors,
411
NRECMEMB, &info->nrecmemb);
412
413
/* Clear the error bits, by writing them back */
414
pci_write_config_dword(pvt->branchmap_werrors,
415
FERR_FAT_FBD, value);
416
} else {
417
info->ferr_fat_fbd = 0;
418
info->nerr_fat_fbd = 0;
419
info->nrecmema = 0;
420
info->nrecmemb = 0;
421
}
422
423
/* read in the 1st NON-FATAL error register */
424
pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
425
426
/* If there is an error, then read in the 1st NON-FATAL error
427
* register as well */
428
if (value & FERR_NF_MASK) {
429
info->ferr_nf_fbd = value;
430
431
/* harvest the various error data we need */
432
pci_read_config_dword(pvt->branchmap_werrors,
433
NERR_NF_FBD, &info->nerr_nf_fbd);
434
pci_read_config_word(pvt->branchmap_werrors,
435
RECMEMA, &info->recmema);
436
pci_read_config_dword(pvt->branchmap_werrors,
437
RECMEMB, &info->recmemb);
438
pci_read_config_dword(pvt->branchmap_werrors,
439
REDMEMB, &info->redmemb);
440
441
/* Clear the error bits, by writing them back */
442
pci_write_config_dword(pvt->branchmap_werrors,
443
FERR_NF_FBD, value);
444
} else {
445
info->ferr_nf_fbd = 0;
446
info->nerr_nf_fbd = 0;
447
info->recmema = 0;
448
info->recmemb = 0;
449
info->redmemb = 0;
450
}
451
}
452
453
/*
454
* i5000_process_fatal_error_info(struct mem_ctl_info *mci,
455
* struct i5000_error_info *info,
456
* int handle_errors);
457
*
458
* handle the Intel FATAL errors, if any
459
*/
460
static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
461
struct i5000_error_info *info,
462
int handle_errors)
463
{
464
char msg[EDAC_MC_LABEL_LEN + 1 + 160];
465
char *specific = NULL;
466
u32 allErrors;
467
int channel;
468
int bank;
469
int rank;
470
int rdwr;
471
int ras, cas;
472
473
/* mask off the Error bits that are possible */
474
allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
475
if (!allErrors)
476
return; /* if no error, return now */
477
478
channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
479
480
/* Use the NON-Recoverable macros to extract data */
481
bank = NREC_BANK(info->nrecmema);
482
rank = NREC_RANK(info->nrecmema);
483
rdwr = NREC_RDWR(info->nrecmema);
484
ras = NREC_RAS(info->nrecmemb);
485
cas = NREC_CAS(info->nrecmemb);
486
487
edac_dbg(0, "\t\tCSROW= %d Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
488
rank, channel, bank,
489
rdwr ? "Write" : "Read", ras, cas);
490
491
/* Only 1 bit will be on */
492
switch (allErrors) {
493
case FERR_FAT_M1ERR:
494
specific = "Alert on non-redundant retry or fast "
495
"reset timeout";
496
break;
497
case FERR_FAT_M2ERR:
498
specific = "Northbound CRC error on non-redundant "
499
"retry";
500
break;
501
case FERR_FAT_M3ERR:
502
{
503
static int done;
504
505
/*
506
* This error is generated to inform that the intelligent
507
* throttling is disabled and the temperature passed the
508
* specified middle point. Since this is something the BIOS
509
* should take care of, we'll warn only once to avoid
510
* worthlessly flooding the log.
511
*/
512
if (done)
513
return;
514
done++;
515
516
specific = ">Tmid Thermal event with intelligent "
517
"throttling disabled";
518
}
519
break;
520
}
521
522
/* Form out message */
523
snprintf(msg, sizeof(msg),
524
"Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
525
bank, ras, cas, allErrors, specific);
526
527
/* Call the helper to output message */
528
edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
529
channel >> 1, channel & 1, rank,
530
rdwr ? "Write error" : "Read error",
531
msg);
532
}
533
534
/*
535
* i5000_process_fatal_error_info(struct mem_ctl_info *mci,
536
* struct i5000_error_info *info,
537
* int handle_errors);
538
*
539
* handle the Intel NON-FATAL errors, if any
540
*/
541
static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
542
struct i5000_error_info *info,
543
int handle_errors)
544
{
545
char msg[EDAC_MC_LABEL_LEN + 1 + 170];
546
char *specific = NULL;
547
u32 allErrors;
548
u32 ue_errors;
549
u32 ce_errors;
550
u32 misc_errors;
551
int branch;
552
int channel;
553
int bank;
554
int rank;
555
int rdwr;
556
int ras, cas;
557
558
/* mask off the Error bits that are possible */
559
allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
560
if (!allErrors)
561
return; /* if no error, return now */
562
563
/* ONLY ONE of the possible error bits will be set, as per the docs */
564
ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
565
if (ue_errors) {
566
edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
567
568
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
569
570
/*
571
* According with i5000 datasheet, bit 28 has no significance
572
* for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
573
*/
574
channel = branch & 2;
575
576
bank = NREC_BANK(info->nrecmema);
577
rank = NREC_RANK(info->nrecmema);
578
rdwr = NREC_RDWR(info->nrecmema);
579
ras = NREC_RAS(info->nrecmemb);
580
cas = NREC_CAS(info->nrecmemb);
581
582
edac_dbg(0, "\t\tCSROW= %d Channels= %d,%d (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
583
rank, channel, channel + 1, branch >> 1, bank,
584
rdwr ? "Write" : "Read", ras, cas);
585
586
switch (ue_errors) {
587
case FERR_NF_M12ERR:
588
specific = "Non-Aliased Uncorrectable Patrol Data ECC";
589
break;
590
case FERR_NF_M11ERR:
591
specific = "Non-Aliased Uncorrectable Spare-Copy "
592
"Data ECC";
593
break;
594
case FERR_NF_M10ERR:
595
specific = "Non-Aliased Uncorrectable Mirrored Demand "
596
"Data ECC";
597
break;
598
case FERR_NF_M9ERR:
599
specific = "Non-Aliased Uncorrectable Non-Mirrored "
600
"Demand Data ECC";
601
break;
602
case FERR_NF_M8ERR:
603
specific = "Aliased Uncorrectable Patrol Data ECC";
604
break;
605
case FERR_NF_M7ERR:
606
specific = "Aliased Uncorrectable Spare-Copy Data ECC";
607
break;
608
case FERR_NF_M6ERR:
609
specific = "Aliased Uncorrectable Mirrored Demand "
610
"Data ECC";
611
break;
612
case FERR_NF_M5ERR:
613
specific = "Aliased Uncorrectable Non-Mirrored Demand "
614
"Data ECC";
615
break;
616
case FERR_NF_M4ERR:
617
specific = "Uncorrectable Data ECC on Replay";
618
break;
619
}
620
621
/* Form out message */
622
snprintf(msg, sizeof(msg),
623
"Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
624
rank, bank, ras, cas, ue_errors, specific);
625
626
/* Call the helper to output message */
627
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
628
channel >> 1, -1, rank,
629
rdwr ? "Write error" : "Read error",
630
msg);
631
}
632
633
/* Check correctable errors */
634
ce_errors = allErrors & FERR_NF_CORRECTABLE;
635
if (ce_errors) {
636
edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
637
638
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
639
640
channel = 0;
641
if (REC_ECC_LOCATOR_ODD(info->redmemb))
642
channel = 1;
643
644
/* Convert channel to be based from zero, instead of
645
* from branch base of 0 */
646
channel += branch;
647
648
bank = REC_BANK(info->recmema);
649
rank = REC_RANK(info->recmema);
650
rdwr = REC_RDWR(info->recmema);
651
ras = REC_RAS(info->recmemb);
652
cas = REC_CAS(info->recmemb);
653
654
edac_dbg(0, "\t\tCSROW= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
655
rank, channel, branch >> 1, bank,
656
rdwr ? "Write" : "Read", ras, cas);
657
658
switch (ce_errors) {
659
case FERR_NF_M17ERR:
660
specific = "Correctable Non-Mirrored Demand Data ECC";
661
break;
662
case FERR_NF_M18ERR:
663
specific = "Correctable Mirrored Demand Data ECC";
664
break;
665
case FERR_NF_M19ERR:
666
specific = "Correctable Spare-Copy Data ECC";
667
break;
668
case FERR_NF_M20ERR:
669
specific = "Correctable Patrol Data ECC";
670
break;
671
}
672
673
/* Form out message */
674
snprintf(msg, sizeof(msg),
675
"Rank=%d Bank=%d RDWR=%s RAS=%d "
676
"CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
677
rdwr ? "Write" : "Read", ras, cas, ce_errors,
678
specific);
679
680
/* Call the helper to output message */
681
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
682
channel >> 1, channel % 2, rank,
683
rdwr ? "Write error" : "Read error",
684
msg);
685
}
686
687
if (!misc_messages)
688
return;
689
690
misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
691
FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
692
if (misc_errors) {
693
switch (misc_errors) {
694
case FERR_NF_M13ERR:
695
specific = "Non-Retry or Redundant Retry FBD Memory "
696
"Alert or Redundant Fast Reset Timeout";
697
break;
698
case FERR_NF_M14ERR:
699
specific = "Non-Retry or Redundant Retry FBD "
700
"Configuration Alert";
701
break;
702
case FERR_NF_M15ERR:
703
specific = "Non-Retry or Redundant Retry FBD "
704
"Northbound CRC error on read data";
705
break;
706
case FERR_NF_M21ERR:
707
specific = "FBD Northbound CRC error on "
708
"FBD Sync Status";
709
break;
710
case FERR_NF_M22ERR:
711
specific = "SPD protocol error";
712
break;
713
case FERR_NF_M27ERR:
714
specific = "DIMM-spare copy started";
715
break;
716
case FERR_NF_M28ERR:
717
specific = "DIMM-spare copy completed";
718
break;
719
}
720
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
721
722
/* Form out message */
723
snprintf(msg, sizeof(msg),
724
"Err=%#x (%s)", misc_errors, specific);
725
726
/* Call the helper to output message */
727
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
728
branch >> 1, -1, -1,
729
"Misc error", msg);
730
}
731
}
732
733
/*
734
* i5000_process_error_info Process the error info that is
735
* in the 'info' structure, previously retrieved from hardware
736
*/
737
static void i5000_process_error_info(struct mem_ctl_info *mci,
738
struct i5000_error_info *info,
739
int handle_errors)
740
{
741
/* First handle any fatal errors that occurred */
742
i5000_process_fatal_error_info(mci, info, handle_errors);
743
744
/* now handle any non-fatal errors that occurred */
745
i5000_process_nonfatal_error_info(mci, info, handle_errors);
746
}
747
748
/*
749
* i5000_clear_error Retrieve any error from the hardware
750
* but do NOT process that error.
751
* Used for 'clearing' out of previous errors
752
* Called by the Core module.
753
*/
754
static void i5000_clear_error(struct mem_ctl_info *mci)
755
{
756
struct i5000_error_info info;
757
758
i5000_get_error_info(mci, &info);
759
}
760
761
/*
762
* i5000_check_error Retrieve and process errors reported by the
763
* hardware. Called by the Core module.
764
*/
765
static void i5000_check_error(struct mem_ctl_info *mci)
766
{
767
struct i5000_error_info info;
768
769
i5000_get_error_info(mci, &info);
770
i5000_process_error_info(mci, &info, 1);
771
}
772
773
/*
774
* i5000_get_devices Find and perform 'get' operation on the MCH's
775
* device/functions we want to reference for this driver
776
*
777
* Need to 'get' device 16 func 1 and func 2
778
*/
779
static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
780
{
781
//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
782
struct i5000_pvt *pvt;
783
struct pci_dev *pdev;
784
785
pvt = mci->pvt_info;
786
787
/* Attempt to 'get' the MCH register we want */
788
pdev = NULL;
789
while (1) {
790
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
791
PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
792
793
/* End of list, leave */
794
if (pdev == NULL) {
795
i5000_printk(KERN_ERR,
796
"'system address,Process Bus' "
797
"device not found:"
798
"vendor 0x%x device 0x%x FUNC 1 "
799
"(broken BIOS?)\n",
800
PCI_VENDOR_ID_INTEL,
801
PCI_DEVICE_ID_INTEL_I5000_DEV16);
802
803
return 1;
804
}
805
806
/* Scan for device 16 func 1 */
807
if (PCI_FUNC(pdev->devfn) == 1)
808
break;
809
}
810
811
pvt->branchmap_werrors = pdev;
812
813
/* Attempt to 'get' the MCH register we want */
814
pdev = NULL;
815
while (1) {
816
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
817
PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
818
819
if (pdev == NULL) {
820
i5000_printk(KERN_ERR,
821
"MC: 'branchmap,control,errors' "
822
"device not found:"
823
"vendor 0x%x device 0x%x Func 2 "
824
"(broken BIOS?)\n",
825
PCI_VENDOR_ID_INTEL,
826
PCI_DEVICE_ID_INTEL_I5000_DEV16);
827
828
pci_dev_put(pvt->branchmap_werrors);
829
return 1;
830
}
831
832
/* Scan for device 16 func 1 */
833
if (PCI_FUNC(pdev->devfn) == 2)
834
break;
835
}
836
837
pvt->fsb_error_regs = pdev;
838
839
edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
840
pci_name(pvt->system_address),
841
pvt->system_address->vendor, pvt->system_address->device);
842
edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
843
pci_name(pvt->branchmap_werrors),
844
pvt->branchmap_werrors->vendor,
845
pvt->branchmap_werrors->device);
846
edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
847
pci_name(pvt->fsb_error_regs),
848
pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
849
850
pdev = NULL;
851
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
852
PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
853
854
if (pdev == NULL) {
855
i5000_printk(KERN_ERR,
856
"MC: 'BRANCH 0' device not found:"
857
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
858
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
859
860
pci_dev_put(pvt->branchmap_werrors);
861
pci_dev_put(pvt->fsb_error_regs);
862
return 1;
863
}
864
865
pvt->branch_0 = pdev;
866
867
/* If this device claims to have more than 2 channels then
868
* fetch Branch 1's information
869
*/
870
if (pvt->maxch >= CHANNELS_PER_BRANCH) {
871
pdev = NULL;
872
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
873
PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
874
875
if (pdev == NULL) {
876
i5000_printk(KERN_ERR,
877
"MC: 'BRANCH 1' device not found:"
878
"vendor 0x%x device 0x%x Func 0 "
879
"(broken BIOS?)\n",
880
PCI_VENDOR_ID_INTEL,
881
PCI_DEVICE_ID_I5000_BRANCH_1);
882
883
pci_dev_put(pvt->branchmap_werrors);
884
pci_dev_put(pvt->fsb_error_regs);
885
pci_dev_put(pvt->branch_0);
886
return 1;
887
}
888
889
pvt->branch_1 = pdev;
890
}
891
892
return 0;
893
}
894
895
/*
896
* i5000_put_devices 'put' all the devices that we have
897
* reserved via 'get'
898
*/
899
static void i5000_put_devices(struct mem_ctl_info *mci)
900
{
901
struct i5000_pvt *pvt;
902
903
pvt = mci->pvt_info;
904
905
pci_dev_put(pvt->branchmap_werrors); /* FUNC 1 */
906
pci_dev_put(pvt->fsb_error_regs); /* FUNC 2 */
907
pci_dev_put(pvt->branch_0); /* DEV 21 */
908
909
/* Only if more than 2 channels do we release the second branch */
910
if (pvt->maxch >= CHANNELS_PER_BRANCH)
911
pci_dev_put(pvt->branch_1); /* DEV 22 */
912
}
913
914
/*
915
* determine_amb_resent
916
*
917
* the information is contained in NUM_MTRS different registers
918
* determineing which of the NUM_MTRS requires knowing
919
* which channel is in question
920
*
921
* 2 branches, each with 2 channels
922
* b0_ambpresent0 for channel '0'
923
* b0_ambpresent1 for channel '1'
924
* b1_ambpresent0 for channel '2'
925
* b1_ambpresent1 for channel '3'
926
*/
927
static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
928
{
929
int amb_present;
930
931
if (channel < CHANNELS_PER_BRANCH) {
932
if (channel & 0x1)
933
amb_present = pvt->b0_ambpresent1;
934
else
935
amb_present = pvt->b0_ambpresent0;
936
} else {
937
if (channel & 0x1)
938
amb_present = pvt->b1_ambpresent1;
939
else
940
amb_present = pvt->b1_ambpresent0;
941
}
942
943
return amb_present;
944
}
945
946
/*
947
* determine_mtr(pvt, csrow, channel)
948
*
949
* return the proper MTR register as determine by the csrow and channel desired
950
*/
951
static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
952
{
953
int mtr;
954
955
if (channel < CHANNELS_PER_BRANCH)
956
mtr = pvt->b0_mtr[slot];
957
else
958
mtr = pvt->b1_mtr[slot];
959
960
return mtr;
961
}
962
963
/*
964
*/
965
static void decode_mtr(int slot_row, u16 mtr)
966
{
967
int ans;
968
969
ans = MTR_DIMMS_PRESENT(mtr);
970
971
edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n",
972
slot_row, mtr, ans ? "" : "NOT ");
973
if (!ans)
974
return;
975
976
edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
977
edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
978
edac_dbg(2, "\t\tNUMRANK: %s\n",
979
MTR_DIMM_RANK(mtr) ? "double" : "single");
980
edac_dbg(2, "\t\tNUMROW: %s\n",
981
MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
982
MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
983
MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
984
"reserved");
985
edac_dbg(2, "\t\tNUMCOL: %s\n",
986
MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
987
MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
988
MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
989
"reserved");
990
}
991
992
static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
993
struct i5000_dimm_info *dinfo)
994
{
995
int mtr;
996
int amb_present_reg;
997
int addrBits;
998
999
mtr = determine_mtr(pvt, slot, channel);
1000
if (MTR_DIMMS_PRESENT(mtr)) {
1001
amb_present_reg = determine_amb_present_reg(pvt, channel);
1002
1003
/* Determine if there is a DIMM present in this DIMM slot */
1004
if (amb_present_reg) {
1005
dinfo->dual_rank = MTR_DIMM_RANK(mtr);
1006
1007
/* Start with the number of bits for a Bank
1008
* on the DRAM */
1009
addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1010
/* Add the number of ROW bits */
1011
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1012
/* add the number of COLUMN bits */
1013
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1014
1015
/* Dual-rank memories have twice the size */
1016
if (dinfo->dual_rank)
1017
addrBits++;
1018
1019
addrBits += 6; /* add 64 bits per DIMM */
1020
addrBits -= 20; /* divide by 2^^20 */
1021
addrBits -= 3; /* 8 bits per bytes */
1022
1023
dinfo->megabytes = 1 << addrBits;
1024
}
1025
}
1026
}
1027
1028
/*
1029
* calculate_dimm_size
1030
*
1031
* also will output a DIMM matrix map, if debug is enabled, for viewing
1032
* how the DIMMs are populated
1033
*/
1034
static void calculate_dimm_size(struct i5000_pvt *pvt)
1035
{
1036
struct i5000_dimm_info *dinfo;
1037
int slot, channel, branch;
1038
char *p, *mem_buffer;
1039
int space, n;
1040
1041
/* ================= Generate some debug output ================= */
1042
space = PAGE_SIZE;
1043
mem_buffer = p = kmalloc(space, GFP_KERNEL);
1044
if (p == NULL) {
1045
i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1046
__FILE__, __func__);
1047
return;
1048
}
1049
1050
/* Scan all the actual slots
1051
* and calculate the information for each DIMM
1052
* Start with the highest slot first, to display it first
1053
* and work toward the 0th slot
1054
*/
1055
for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
1056
1057
/* on an odd slot, first output a 'boundary' marker,
1058
* then reset the message buffer */
1059
if (slot & 0x1) {
1060
n = snprintf(p, space, "--------------------------"
1061
"--------------------------------");
1062
p += n;
1063
space -= n;
1064
edac_dbg(2, "%s\n", mem_buffer);
1065
p = mem_buffer;
1066
space = PAGE_SIZE;
1067
}
1068
n = snprintf(p, space, "slot %2d ", slot);
1069
p += n;
1070
space -= n;
1071
1072
for (channel = 0; channel < pvt->maxch; channel++) {
1073
dinfo = &pvt->dimm_info[slot][channel];
1074
handle_channel(pvt, slot, channel, dinfo);
1075
if (dinfo->megabytes)
1076
n = snprintf(p, space, "%4d MB %dR| ",
1077
dinfo->megabytes, dinfo->dual_rank + 1);
1078
else
1079
n = snprintf(p, space, "%4d MB | ", 0);
1080
p += n;
1081
space -= n;
1082
}
1083
p += n;
1084
space -= n;
1085
edac_dbg(2, "%s\n", mem_buffer);
1086
p = mem_buffer;
1087
space = PAGE_SIZE;
1088
}
1089
1090
/* Output the last bottom 'boundary' marker */
1091
n = snprintf(p, space, "--------------------------"
1092
"--------------------------------");
1093
p += n;
1094
space -= n;
1095
edac_dbg(2, "%s\n", mem_buffer);
1096
p = mem_buffer;
1097
space = PAGE_SIZE;
1098
1099
/* now output the 'channel' labels */
1100
n = snprintf(p, space, " ");
1101
p += n;
1102
space -= n;
1103
for (channel = 0; channel < pvt->maxch; channel++) {
1104
n = snprintf(p, space, "channel %d | ", channel);
1105
p += n;
1106
space -= n;
1107
}
1108
edac_dbg(2, "%s\n", mem_buffer);
1109
p = mem_buffer;
1110
space = PAGE_SIZE;
1111
1112
n = snprintf(p, space, " ");
1113
p += n;
1114
for (branch = 0; branch < MAX_BRANCHES; branch++) {
1115
n = snprintf(p, space, " branch %d | ", branch);
1116
p += n;
1117
space -= n;
1118
}
1119
1120
/* output the last message and free buffer */
1121
edac_dbg(2, "%s\n", mem_buffer);
1122
kfree(mem_buffer);
1123
}
1124
1125
/*
1126
* i5000_get_mc_regs read in the necessary registers and
1127
* cache locally
1128
*
1129
* Fills in the private data members
1130
*/
1131
static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1132
{
1133
struct i5000_pvt *pvt;
1134
u32 actual_tolm;
1135
u16 limit;
1136
int slot_row;
1137
int way0, way1;
1138
1139
pvt = mci->pvt_info;
1140
1141
pci_read_config_dword(pvt->system_address, AMBASE,
1142
&pvt->u.ambase_bottom);
1143
pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1144
&pvt->u.ambase_top);
1145
1146
edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1147
(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1148
1149
/* Get the Branch Map regs */
1150
pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1151
pvt->tolm >>= 12;
1152
edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
1153
pvt->tolm, pvt->tolm);
1154
1155
actual_tolm = pvt->tolm << 28;
1156
edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
1157
actual_tolm, actual_tolm);
1158
1159
pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1160
pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1161
pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1162
1163
/* Get the MIR[0-2] regs */
1164
limit = (pvt->mir0 >> 4) & 0x0FFF;
1165
way0 = pvt->mir0 & 0x1;
1166
way1 = pvt->mir0 & 0x2;
1167
edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n",
1168
limit, way1, way0);
1169
limit = (pvt->mir1 >> 4) & 0x0FFF;
1170
way0 = pvt->mir1 & 0x1;
1171
way1 = pvt->mir1 & 0x2;
1172
edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n",
1173
limit, way1, way0);
1174
limit = (pvt->mir2 >> 4) & 0x0FFF;
1175
way0 = pvt->mir2 & 0x1;
1176
way1 = pvt->mir2 & 0x2;
1177
edac_dbg(2, "MIR2: limit= 0x%x WAY1= %u WAY0= %x\n",
1178
limit, way1, way0);
1179
1180
/* Get the MTR[0-3] regs */
1181
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1182
int where = MTR0 + (slot_row * sizeof(u32));
1183
1184
pci_read_config_word(pvt->branch_0, where,
1185
&pvt->b0_mtr[slot_row]);
1186
1187
edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1188
slot_row, where, pvt->b0_mtr[slot_row]);
1189
1190
if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1191
pci_read_config_word(pvt->branch_1, where,
1192
&pvt->b1_mtr[slot_row]);
1193
edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1194
slot_row, where, pvt->b1_mtr[slot_row]);
1195
} else {
1196
pvt->b1_mtr[slot_row] = 0;
1197
}
1198
}
1199
1200
/* Read and dump branch 0's MTRs */
1201
edac_dbg(2, "Memory Technology Registers:\n");
1202
edac_dbg(2, " Branch 0:\n");
1203
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1204
decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1205
}
1206
pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1207
&pvt->b0_ambpresent0);
1208
edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1209
pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1210
&pvt->b0_ambpresent1);
1211
edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1212
1213
/* Only if we have 2 branches (4 channels) */
1214
if (pvt->maxch < CHANNELS_PER_BRANCH) {
1215
pvt->b1_ambpresent0 = 0;
1216
pvt->b1_ambpresent1 = 0;
1217
} else {
1218
/* Read and dump branch 1's MTRs */
1219
edac_dbg(2, " Branch 1:\n");
1220
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1221
decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1222
}
1223
pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1224
&pvt->b1_ambpresent0);
1225
edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1226
pvt->b1_ambpresent0);
1227
pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1228
&pvt->b1_ambpresent1);
1229
edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1230
pvt->b1_ambpresent1);
1231
}
1232
1233
/* Go and determine the size of each DIMM and place in an
1234
* orderly matrix */
1235
calculate_dimm_size(pvt);
1236
}
1237
1238
/*
1239
* i5000_init_csrows Initialize the 'csrows' table within
1240
* the mci control structure with the
1241
* addressing of memory.
1242
*
1243
* return:
1244
* 0 success
1245
* 1 no actual memory found on this MC
1246
*/
1247
static int i5000_init_csrows(struct mem_ctl_info *mci)
1248
{
1249
struct i5000_pvt *pvt;
1250
struct dimm_info *dimm;
1251
int empty;
1252
int max_csrows;
1253
int mtr;
1254
int csrow_megs;
1255
int channel;
1256
int slot;
1257
1258
pvt = mci->pvt_info;
1259
max_csrows = pvt->maxdimmperch * 2;
1260
1261
empty = 1; /* Assume NO memory */
1262
1263
/*
1264
* FIXME: The memory layout used to map slot/channel into the
1265
* real memory architecture is weird: branch+slot are "csrows"
1266
* and channel is channel. That required an extra array (dimm_info)
1267
* to map the dimms. A good cleanup would be to remove this array,
1268
* and do a loop here with branch, channel, slot
1269
*/
1270
for (slot = 0; slot < max_csrows; slot++) {
1271
for (channel = 0; channel < pvt->maxch; channel++) {
1272
1273
mtr = determine_mtr(pvt, slot, channel);
1274
1275
if (!MTR_DIMMS_PRESENT(mtr))
1276
continue;
1277
1278
dimm = edac_get_dimm(mci, channel / MAX_BRANCHES,
1279
channel % MAX_BRANCHES, slot);
1280
1281
csrow_megs = pvt->dimm_info[slot][channel].megabytes;
1282
dimm->grain = 8;
1283
1284
/* Assume DDR2 for now */
1285
dimm->mtype = MEM_FB_DDR2;
1286
1287
/* ask what device type on this row */
1288
if (MTR_DRAM_WIDTH(mtr) == 8)
1289
dimm->dtype = DEV_X8;
1290
else
1291
dimm->dtype = DEV_X4;
1292
1293
dimm->edac_mode = EDAC_S8ECD8ED;
1294
dimm->nr_pages = csrow_megs << 8;
1295
}
1296
1297
empty = 0;
1298
}
1299
1300
return empty;
1301
}
1302
1303
/*
1304
* i5000_enable_error_reporting
1305
* Turn on the memory reporting features of the hardware
1306
*/
1307
static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1308
{
1309
struct i5000_pvt *pvt;
1310
u32 fbd_error_mask;
1311
1312
pvt = mci->pvt_info;
1313
1314
/* Read the FBD Error Mask Register */
1315
pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1316
&fbd_error_mask);
1317
1318
/* Enable with a '0' */
1319
fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1320
1321
pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1322
fbd_error_mask);
1323
}
1324
1325
/*
1326
* i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1327
*
1328
* ask the device how many channels are present and how many CSROWS
1329
* as well
1330
*/
1331
static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1332
int *num_dimms_per_channel,
1333
int *num_channels)
1334
{
1335
u8 value;
1336
1337
/* Need to retrieve just how many channels and dimms per channel are
1338
* supported on this memory controller
1339
*/
1340
pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1341
*num_dimms_per_channel = (int)value;
1342
1343
pci_read_config_byte(pdev, MAXCH, &value);
1344
*num_channels = (int)value;
1345
}
1346
1347
/*
1348
* i5000_probe1 Probe for ONE instance of device to see if it is
1349
* present.
1350
* return:
1351
* 0 for FOUND a device
1352
* < 0 for error code
1353
*/
1354
static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1355
{
1356
struct mem_ctl_info *mci;
1357
struct edac_mc_layer layers[3];
1358
struct i5000_pvt *pvt;
1359
int num_channels;
1360
int num_dimms_per_channel;
1361
1362
edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1363
pdev->bus->number,
1364
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1365
1366
/* We only are looking for func 0 of the set */
1367
if (PCI_FUNC(pdev->devfn) != 0)
1368
return -ENODEV;
1369
1370
/* Ask the devices for the number of CSROWS and CHANNELS so
1371
* that we can calculate the memory resources, etc
1372
*
1373
* The Chipset will report what it can handle which will be greater
1374
* or equal to what the motherboard manufacturer will implement.
1375
*
1376
* As we don't have a motherboard identification routine to determine
1377
* actual number of slots/dimms per channel, we thus utilize the
1378
* resource as specified by the chipset. Thus, we might have
1379
* have more DIMMs per channel than actually on the mobo, but this
1380
* allows the driver to support up to the chipset max, without
1381
* some fancy mobo determination.
1382
*/
1383
i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1384
&num_channels);
1385
1386
edac_dbg(0, "MC: Number of Branches=2 Channels= %d DIMMS= %d\n",
1387
num_channels, num_dimms_per_channel);
1388
1389
/* allocate a new MC control structure */
1390
1391
layers[0].type = EDAC_MC_LAYER_BRANCH;
1392
layers[0].size = MAX_BRANCHES;
1393
layers[0].is_virt_csrow = false;
1394
layers[1].type = EDAC_MC_LAYER_CHANNEL;
1395
layers[1].size = num_channels / MAX_BRANCHES;
1396
layers[1].is_virt_csrow = false;
1397
layers[2].type = EDAC_MC_LAYER_SLOT;
1398
layers[2].size = num_dimms_per_channel;
1399
layers[2].is_virt_csrow = true;
1400
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1401
if (mci == NULL)
1402
return -ENOMEM;
1403
1404
edac_dbg(0, "MC: mci = %p\n", mci);
1405
1406
mci->pdev = &pdev->dev; /* record ptr to the generic device */
1407
1408
pvt = mci->pvt_info;
1409
pvt->system_address = pdev; /* Record this device in our private */
1410
pvt->maxch = num_channels;
1411
pvt->maxdimmperch = num_dimms_per_channel;
1412
1413
/* 'get' the pci devices we want to reserve for our use */
1414
if (i5000_get_devices(mci, dev_idx))
1415
goto fail0;
1416
1417
/* Time to get serious */
1418
i5000_get_mc_regs(mci); /* retrieve the hardware registers */
1419
1420
mci->mc_idx = 0;
1421
mci->mtype_cap = MEM_FLAG_FB_DDR2;
1422
mci->edac_ctl_cap = EDAC_FLAG_NONE;
1423
mci->edac_cap = EDAC_FLAG_NONE;
1424
mci->mod_name = "i5000_edac.c";
1425
mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1426
mci->dev_name = pci_name(pdev);
1427
mci->ctl_page_to_phys = NULL;
1428
1429
/* Set the function pointer to an actual operation function */
1430
mci->edac_check = i5000_check_error;
1431
1432
/* initialize the MC control structure 'csrows' table
1433
* with the mapping and control information */
1434
if (i5000_init_csrows(mci)) {
1435
edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
1436
mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1437
} else {
1438
edac_dbg(1, "MC: Enable error reporting now\n");
1439
i5000_enable_error_reporting(mci);
1440
}
1441
1442
/* add this new MC control structure to EDAC's list of MCs */
1443
if (edac_mc_add_mc(mci)) {
1444
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1445
/* FIXME: perhaps some code should go here that disables error
1446
* reporting if we just enabled it
1447
*/
1448
goto fail1;
1449
}
1450
1451
i5000_clear_error(mci);
1452
1453
/* allocating generic PCI control info */
1454
i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1455
if (!i5000_pci) {
1456
printk(KERN_WARNING
1457
"%s(): Unable to create PCI control\n",
1458
__func__);
1459
printk(KERN_WARNING
1460
"%s(): PCI error report via EDAC not setup\n",
1461
__func__);
1462
}
1463
1464
return 0;
1465
1466
/* Error exit unwinding stack */
1467
fail1:
1468
1469
i5000_put_devices(mci);
1470
1471
fail0:
1472
edac_mc_free(mci);
1473
return -ENODEV;
1474
}
1475
1476
/*
1477
* i5000_init_one constructor for one instance of device
1478
*
1479
* returns:
1480
* negative on error
1481
* count (>= 0)
1482
*/
1483
static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1484
{
1485
int rc;
1486
1487
edac_dbg(0, "MC:\n");
1488
1489
/* wake up device */
1490
rc = pci_enable_device(pdev);
1491
if (rc)
1492
return rc;
1493
1494
/* now probe and enable the device */
1495
return i5000_probe1(pdev, id->driver_data);
1496
}
1497
1498
/*
1499
* i5000_remove_one destructor for one instance of device
1500
*
1501
*/
1502
static void i5000_remove_one(struct pci_dev *pdev)
1503
{
1504
struct mem_ctl_info *mci;
1505
1506
edac_dbg(0, "\n");
1507
1508
if (i5000_pci)
1509
edac_pci_release_generic_ctl(i5000_pci);
1510
1511
if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1512
return;
1513
1514
/* retrieve references to resources, and free those resources */
1515
i5000_put_devices(mci);
1516
edac_mc_free(mci);
1517
}
1518
1519
/*
1520
* pci_device_id table for which devices we are looking for
1521
*
1522
* The "E500P" device is the first device supported.
1523
*/
1524
static const struct pci_device_id i5000_pci_tbl[] = {
1525
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1526
.driver_data = I5000P},
1527
1528
{0,} /* 0 terminated list. */
1529
};
1530
1531
MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1532
1533
/*
1534
* i5000_driver pci_driver structure for this module
1535
*
1536
*/
1537
static struct pci_driver i5000_driver = {
1538
.name = KBUILD_BASENAME,
1539
.probe = i5000_init_one,
1540
.remove = i5000_remove_one,
1541
.id_table = i5000_pci_tbl,
1542
};
1543
1544
/*
1545
* i5000_init Module entry function
1546
* Try to initialize this module for its devices
1547
*/
1548
static int __init i5000_init(void)
1549
{
1550
int pci_rc;
1551
1552
edac_dbg(2, "MC:\n");
1553
1554
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1555
opstate_init();
1556
1557
pci_rc = pci_register_driver(&i5000_driver);
1558
1559
return (pci_rc < 0) ? pci_rc : 0;
1560
}
1561
1562
/*
1563
* i5000_exit() Module exit function
1564
* Unregister the driver
1565
*/
1566
static void __exit i5000_exit(void)
1567
{
1568
edac_dbg(2, "MC:\n");
1569
pci_unregister_driver(&i5000_driver);
1570
}
1571
1572
module_init(i5000_init);
1573
module_exit(i5000_exit);
1574
1575
MODULE_LICENSE("GPL");
1576
MODULE_AUTHOR("Linux Networx (http://lnxi.com) Doug Thompson <[email protected]>");
1577
MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - " I5000_REVISION);
1578
1579
module_param(edac_op_state, int, 0444);
1580
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1581
module_param(misc_messages, int, 0444);
1582
MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
1583
1584