Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/edac/i5400_edac.c
26278 views
1
/*
2
* Intel 5400 class Memory Controllers kernel module (Seaburg)
3
*
4
* This file may be distributed under the terms of the
5
* GNU General Public License.
6
*
7
* Copyright (c) 2008 by:
8
* Ben Woodard <[email protected]>
9
* Mauro Carvalho Chehab
10
*
11
* Red Hat Inc. https://www.redhat.com
12
*
13
* Forked and adapted from the i5000_edac driver which was
14
* written by Douglas Thompson Linux Networx <[email protected]>
15
*
16
* This module is based on the following document:
17
*
18
* Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19
* http://developer.intel.com/design/chipsets/datashts/313070.htm
20
*
21
* This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
22
* 2 channels operating in lockstep no-mirror mode. Each channel can have up to
23
* 4 dimm's, each with up to 8GB.
24
*
25
*/
26
27
#include <linux/module.h>
28
#include <linux/init.h>
29
#include <linux/pci.h>
30
#include <linux/pci_ids.h>
31
#include <linux/slab.h>
32
#include <linux/edac.h>
33
#include <linux/mmzone.h>
34
#include <linux/string_choices.h>
35
36
#include "edac_module.h"
37
38
/*
39
* Alter this version for the I5400 module when modifications are made
40
*/
41
#define I5400_REVISION " Ver: 1.0.0"
42
43
#define EDAC_MOD_STR "i5400_edac"
44
45
#define i5400_printk(level, fmt, arg...) \
46
edac_printk(level, "i5400", fmt, ##arg)
47
48
#define i5400_mc_printk(mci, level, fmt, arg...) \
49
edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
50
51
/* Limits for i5400 */
52
#define MAX_BRANCHES 2
53
#define CHANNELS_PER_BRANCH 2
54
#define DIMMS_PER_CHANNEL 4
55
#define MAX_CHANNELS (MAX_BRANCHES * CHANNELS_PER_BRANCH)
56
57
/* Device 16,
58
* Function 0: System Address
59
* Function 1: Memory Branch Map, Control, Errors Register
60
* Function 2: FSB Error Registers
61
*
62
* All 3 functions of Device 16 (0,1,2) share the SAME DID and
63
* uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
64
* PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
65
* for device 21 (0,1).
66
*/
67
68
/* OFFSETS for Function 0 */
69
#define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
70
#define MAXCH 0x56 /* Max Channel Number */
71
#define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
72
73
/* OFFSETS for Function 1 */
74
#define TOLM 0x6C
75
#define REDMEMB 0x7C
76
#define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0] indicate EVEN */
77
#define MIR0 0x80
78
#define MIR1 0x84
79
#define AMIR0 0x8c
80
#define AMIR1 0x90
81
82
/* Fatal error registers */
83
#define FERR_FAT_FBD 0x98 /* also called as FERR_FAT_FB_DIMM at datasheet */
84
#define FERR_FAT_FBDCHAN (3<<28) /* channel index where the highest-order error occurred */
85
86
#define NERR_FAT_FBD 0x9c
87
#define FERR_NF_FBD 0xa0 /* also called as FERR_NFAT_FB_DIMM at datasheet */
88
89
/* Non-fatal error register */
90
#define NERR_NF_FBD 0xa4
91
92
/* Enable error mask */
93
#define EMASK_FBD 0xa8
94
95
#define ERR0_FBD 0xac
96
#define ERR1_FBD 0xb0
97
#define ERR2_FBD 0xb4
98
#define MCERR_FBD 0xb8
99
100
/* No OFFSETS for Device 16 Function 2 */
101
102
/*
103
* Device 21,
104
* Function 0: Memory Map Branch 0
105
*
106
* Device 22,
107
* Function 0: Memory Map Branch 1
108
*/
109
110
/* OFFSETS for Function 0 */
111
#define AMBPRESENT_0 0x64
112
#define AMBPRESENT_1 0x66
113
#define MTR0 0x80
114
#define MTR1 0x82
115
#define MTR2 0x84
116
#define MTR3 0x86
117
118
/* OFFSETS for Function 1 */
119
#define NRECFGLOG 0x74
120
#define RECFGLOG 0x78
121
#define NRECMEMA 0xbe
122
#define NRECMEMB 0xc0
123
#define NRECFB_DIMMA 0xc4
124
#define NRECFB_DIMMB 0xc8
125
#define NRECFB_DIMMC 0xcc
126
#define NRECFB_DIMMD 0xd0
127
#define NRECFB_DIMME 0xd4
128
#define NRECFB_DIMMF 0xd8
129
#define REDMEMA 0xdC
130
#define RECMEMA 0xf0
131
#define RECMEMB 0xf4
132
#define RECFB_DIMMA 0xf8
133
#define RECFB_DIMMB 0xec
134
#define RECFB_DIMMC 0xf0
135
#define RECFB_DIMMD 0xf4
136
#define RECFB_DIMME 0xf8
137
#define RECFB_DIMMF 0xfC
138
139
/*
140
* Error indicator bits and masks
141
* Error masks are according with Table 5-17 of i5400 datasheet
142
*/
143
144
enum error_mask {
145
EMASK_M1 = 1<<0, /* Memory Write error on non-redundant retry */
146
EMASK_M2 = 1<<1, /* Memory or FB-DIMM configuration CRC read error */
147
EMASK_M3 = 1<<2, /* Reserved */
148
EMASK_M4 = 1<<3, /* Uncorrectable Data ECC on Replay */
149
EMASK_M5 = 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
150
EMASK_M6 = 1<<5, /* Unsupported on i5400 */
151
EMASK_M7 = 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
152
EMASK_M8 = 1<<7, /* Aliased Uncorrectable Patrol Data ECC */
153
EMASK_M9 = 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
154
EMASK_M10 = 1<<9, /* Unsupported on i5400 */
155
EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
156
EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
157
EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
158
EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
159
EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
160
EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
161
EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
162
EMASK_M18 = 1<<17, /* Unsupported on i5400 */
163
EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
164
EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
165
EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
166
EMASK_M22 = 1<<21, /* SPD protocol Error */
167
EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
168
EMASK_M24 = 1<<23, /* Refresh error */
169
EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
170
EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
171
EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
172
EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
173
EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
174
};
175
176
/*
177
* Names to translate bit error into something useful
178
*/
179
static const char *error_name[] = {
180
[0] = "Memory Write error on non-redundant retry",
181
[1] = "Memory or FB-DIMM configuration CRC read error",
182
/* Reserved */
183
[3] = "Uncorrectable Data ECC on Replay",
184
[4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
185
/* M6 Unsupported on i5400 */
186
[6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
187
[7] = "Aliased Uncorrectable Patrol Data ECC",
188
[8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
189
/* M10 Unsupported on i5400 */
190
[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
191
[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
192
[12] = "Memory Write error on first attempt",
193
[13] = "FB-DIMM Configuration Write error on first attempt",
194
[14] = "Memory or FB-DIMM configuration CRC read error",
195
[15] = "Channel Failed-Over Occurred",
196
[16] = "Correctable Non-Mirrored Demand Data ECC",
197
/* M18 Unsupported on i5400 */
198
[18] = "Correctable Resilver- or Spare-Copy Data ECC",
199
[19] = "Correctable Patrol Data ECC",
200
[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
201
[21] = "SPD protocol Error",
202
[22] = "Non-Redundant Fast Reset Timeout",
203
[23] = "Refresh error",
204
[24] = "Memory Write error on redundant retry",
205
[25] = "Redundant Fast Reset Timeout",
206
[26] = "Correctable Counter Threshold Exceeded",
207
[27] = "DIMM-Spare Copy Completed",
208
[28] = "DIMM-Isolation Completed",
209
};
210
211
/* Fatal errors */
212
#define ERROR_FAT_MASK (EMASK_M1 | \
213
EMASK_M2 | \
214
EMASK_M23)
215
216
/* Correctable errors */
217
#define ERROR_NF_CORRECTABLE (EMASK_M27 | \
218
EMASK_M20 | \
219
EMASK_M19 | \
220
EMASK_M18 | \
221
EMASK_M17 | \
222
EMASK_M16)
223
#define ERROR_NF_DIMM_SPARE (EMASK_M29 | \
224
EMASK_M28)
225
#define ERROR_NF_SPD_PROTOCOL (EMASK_M22)
226
#define ERROR_NF_NORTH_CRC (EMASK_M21)
227
228
/* Recoverable errors */
229
#define ERROR_NF_RECOVERABLE (EMASK_M26 | \
230
EMASK_M25 | \
231
EMASK_M24 | \
232
EMASK_M15 | \
233
EMASK_M14 | \
234
EMASK_M13 | \
235
EMASK_M12 | \
236
EMASK_M11 | \
237
EMASK_M9 | \
238
EMASK_M8 | \
239
EMASK_M7 | \
240
EMASK_M5)
241
242
/* uncorrectable errors */
243
#define ERROR_NF_UNCORRECTABLE (EMASK_M4)
244
245
/* mask to all non-fatal errors */
246
#define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \
247
ERROR_NF_UNCORRECTABLE | \
248
ERROR_NF_RECOVERABLE | \
249
ERROR_NF_DIMM_SPARE | \
250
ERROR_NF_SPD_PROTOCOL | \
251
ERROR_NF_NORTH_CRC)
252
253
/*
254
* Define error masks for the several registers
255
*/
256
257
/* Enable all fatal and non fatal errors */
258
#define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK)
259
260
/* mask for fatal error registers */
261
#define FERR_FAT_MASK ERROR_FAT_MASK
262
263
/* masks for non-fatal error register */
264
static inline int to_nf_mask(unsigned int mask)
265
{
266
return (mask & EMASK_M29) | (mask >> 3);
267
};
268
269
static inline int from_nf_ferr(unsigned int mask)
270
{
271
return (mask & EMASK_M29) | /* Bit 28 */
272
(mask & ((1 << 28) - 1) << 3); /* Bits 0 to 27 */
273
};
274
275
#define FERR_NF_MASK to_nf_mask(ERROR_NF_MASK)
276
#define FERR_NF_CORRECTABLE to_nf_mask(ERROR_NF_CORRECTABLE)
277
#define FERR_NF_DIMM_SPARE to_nf_mask(ERROR_NF_DIMM_SPARE)
278
#define FERR_NF_SPD_PROTOCOL to_nf_mask(ERROR_NF_SPD_PROTOCOL)
279
#define FERR_NF_NORTH_CRC to_nf_mask(ERROR_NF_NORTH_CRC)
280
#define FERR_NF_RECOVERABLE to_nf_mask(ERROR_NF_RECOVERABLE)
281
#define FERR_NF_UNCORRECTABLE to_nf_mask(ERROR_NF_UNCORRECTABLE)
282
283
/*
284
* Defines to extract the various fields from the
285
* MTRx - Memory Technology Registers
286
*/
287
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 10))
288
#define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 9))
289
#define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 8)) ? 8 : 4)
290
#define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
291
#define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
292
#define MTR_DIMM_RANK(mtr) (((mtr) >> 5) & 0x1)
293
#define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
294
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
295
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
296
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
297
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
298
299
/* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
300
static inline int extract_fbdchan_indx(u32 x)
301
{
302
return (x>>28) & 0x3;
303
}
304
305
/* Device name and register DID (Device ID) */
306
struct i5400_dev_info {
307
const char *ctl_name; /* name for this device */
308
u16 fsb_mapping_errors; /* DID for the branchmap,control */
309
};
310
311
/* Table of devices attributes supported by this driver */
312
static const struct i5400_dev_info i5400_devs[] = {
313
{
314
.ctl_name = "I5400",
315
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
316
},
317
};
318
319
struct i5400_dimm_info {
320
int megabytes; /* size, 0 means not present */
321
};
322
323
/* driver private data structure */
324
struct i5400_pvt {
325
struct pci_dev *system_address; /* 16.0 */
326
struct pci_dev *branchmap_werrors; /* 16.1 */
327
struct pci_dev *fsb_error_regs; /* 16.2 */
328
struct pci_dev *branch_0; /* 21.0 */
329
struct pci_dev *branch_1; /* 22.0 */
330
331
u16 tolm; /* top of low memory */
332
union {
333
u64 ambase; /* AMB BAR */
334
struct {
335
u32 ambase_bottom;
336
u32 ambase_top;
337
} u __packed;
338
};
339
340
u16 mir0, mir1;
341
342
u16 b0_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */
343
u16 b0_ambpresent0; /* Branch 0, Channel 0 */
344
u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
345
346
u16 b1_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */
347
u16 b1_ambpresent0; /* Branch 1, Channel 8 */
348
u16 b1_ambpresent1; /* Branch 1, Channel 1 */
349
350
/* DIMM information matrix, allocating architecture maximums */
351
struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS];
352
353
/* Actual values for this controller */
354
int maxch; /* Max channels */
355
int maxdimmperch; /* Max DIMMs per channel */
356
};
357
358
/* I5400 MCH error information retrieved from Hardware */
359
struct i5400_error_info {
360
/* These registers are always read from the MC */
361
u32 ferr_fat_fbd; /* First Errors Fatal */
362
u32 nerr_fat_fbd; /* Next Errors Fatal */
363
u32 ferr_nf_fbd; /* First Errors Non-Fatal */
364
u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
365
366
/* These registers are input ONLY if there was a Recoverable Error */
367
u32 redmemb; /* Recoverable Mem Data Error log B */
368
u16 recmema; /* Recoverable Mem Error log A */
369
u32 recmemb; /* Recoverable Mem Error log B */
370
371
/* These registers are input ONLY if there was a Non-Rec Error */
372
u16 nrecmema; /* Non-Recoverable Mem log A */
373
u32 nrecmemb; /* Non-Recoverable Mem log B */
374
375
};
376
377
/* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
378
5400 better to use an inline function than a macro in this case */
379
static inline int nrec_bank(struct i5400_error_info *info)
380
{
381
return ((info->nrecmema) >> 12) & 0x7;
382
}
383
static inline int nrec_rank(struct i5400_error_info *info)
384
{
385
return ((info->nrecmema) >> 8) & 0xf;
386
}
387
static inline int nrec_buf_id(struct i5400_error_info *info)
388
{
389
return ((info->nrecmema)) & 0xff;
390
}
391
static inline int nrec_rdwr(struct i5400_error_info *info)
392
{
393
return (info->nrecmemb) >> 31;
394
}
395
/* This applies to both NREC and REC string so it can be used with nrec_rdwr
396
and rec_rdwr */
397
static inline const char *rdwr_str(int rdwr)
398
{
399
return rdwr ? "Write" : "Read";
400
}
401
static inline int nrec_cas(struct i5400_error_info *info)
402
{
403
return ((info->nrecmemb) >> 16) & 0x1fff;
404
}
405
static inline int nrec_ras(struct i5400_error_info *info)
406
{
407
return (info->nrecmemb) & 0xffff;
408
}
409
static inline int rec_bank(struct i5400_error_info *info)
410
{
411
return ((info->recmema) >> 12) & 0x7;
412
}
413
static inline int rec_rank(struct i5400_error_info *info)
414
{
415
return ((info->recmema) >> 8) & 0xf;
416
}
417
static inline int rec_rdwr(struct i5400_error_info *info)
418
{
419
return (info->recmemb) >> 31;
420
}
421
static inline int rec_cas(struct i5400_error_info *info)
422
{
423
return ((info->recmemb) >> 16) & 0x1fff;
424
}
425
static inline int rec_ras(struct i5400_error_info *info)
426
{
427
return (info->recmemb) & 0xffff;
428
}
429
430
static struct edac_pci_ctl_info *i5400_pci;
431
432
/*
433
* i5400_get_error_info Retrieve the hardware error information from
434
* the hardware and cache it in the 'info'
435
* structure
436
*/
437
static void i5400_get_error_info(struct mem_ctl_info *mci,
438
struct i5400_error_info *info)
439
{
440
struct i5400_pvt *pvt;
441
u32 value;
442
443
pvt = mci->pvt_info;
444
445
/* read in the 1st FATAL error register */
446
pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
447
448
/* Mask only the bits that the doc says are valid
449
*/
450
value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
451
452
/* If there is an error, then read in the
453
NEXT FATAL error register and the Memory Error Log Register A
454
*/
455
if (value & FERR_FAT_MASK) {
456
info->ferr_fat_fbd = value;
457
458
/* harvest the various error data we need */
459
pci_read_config_dword(pvt->branchmap_werrors,
460
NERR_FAT_FBD, &info->nerr_fat_fbd);
461
pci_read_config_word(pvt->branchmap_werrors,
462
NRECMEMA, &info->nrecmema);
463
pci_read_config_dword(pvt->branchmap_werrors,
464
NRECMEMB, &info->nrecmemb);
465
466
/* Clear the error bits, by writing them back */
467
pci_write_config_dword(pvt->branchmap_werrors,
468
FERR_FAT_FBD, value);
469
} else {
470
info->ferr_fat_fbd = 0;
471
info->nerr_fat_fbd = 0;
472
info->nrecmema = 0;
473
info->nrecmemb = 0;
474
}
475
476
/* read in the 1st NON-FATAL error register */
477
pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
478
479
/* If there is an error, then read in the 1st NON-FATAL error
480
* register as well */
481
if (value & FERR_NF_MASK) {
482
info->ferr_nf_fbd = value;
483
484
/* harvest the various error data we need */
485
pci_read_config_dword(pvt->branchmap_werrors,
486
NERR_NF_FBD, &info->nerr_nf_fbd);
487
pci_read_config_word(pvt->branchmap_werrors,
488
RECMEMA, &info->recmema);
489
pci_read_config_dword(pvt->branchmap_werrors,
490
RECMEMB, &info->recmemb);
491
pci_read_config_dword(pvt->branchmap_werrors,
492
REDMEMB, &info->redmemb);
493
494
/* Clear the error bits, by writing them back */
495
pci_write_config_dword(pvt->branchmap_werrors,
496
FERR_NF_FBD, value);
497
} else {
498
info->ferr_nf_fbd = 0;
499
info->nerr_nf_fbd = 0;
500
info->recmema = 0;
501
info->recmemb = 0;
502
info->redmemb = 0;
503
}
504
}
505
506
/*
507
* i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
508
* struct i5400_error_info *info,
509
* int handle_errors);
510
*
511
* handle the Intel FATAL and unrecoverable errors, if any
512
*/
513
static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
514
struct i5400_error_info *info,
515
unsigned long allErrors)
516
{
517
char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
518
int branch;
519
int channel;
520
int bank;
521
int buf_id;
522
int rank;
523
int rdwr;
524
int ras, cas;
525
int errnum;
526
char *type = NULL;
527
enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED;
528
529
if (!allErrors)
530
return; /* if no error, return now */
531
532
if (allErrors & ERROR_FAT_MASK) {
533
type = "FATAL";
534
tp_event = HW_EVENT_ERR_FATAL;
535
} else if (allErrors & FERR_NF_UNCORRECTABLE)
536
type = "NON-FATAL uncorrected";
537
else
538
type = "NON-FATAL recoverable";
539
540
/* ONLY ONE of the possible error bits will be set, as per the docs */
541
542
branch = extract_fbdchan_indx(info->ferr_fat_fbd);
543
channel = branch;
544
545
/* Use the NON-Recoverable macros to extract data */
546
bank = nrec_bank(info);
547
rank = nrec_rank(info);
548
buf_id = nrec_buf_id(info);
549
rdwr = nrec_rdwr(info);
550
ras = nrec_ras(info);
551
cas = nrec_cas(info);
552
553
edac_dbg(0, "\t\t%s DIMM= %d Channels= %d,%d (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
554
type, rank, channel, channel + 1, branch >> 1, bank,
555
buf_id, rdwr_str(rdwr), ras, cas);
556
557
/* Only 1 bit will be on */
558
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
559
560
/* Form out message */
561
snprintf(msg, sizeof(msg),
562
"Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
563
bank, buf_id, ras, cas, allErrors, error_name[errnum]);
564
565
edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0,
566
branch >> 1, -1, rank,
567
rdwr ? "Write error" : "Read error",
568
msg);
569
}
570
571
/*
572
* i5400_process_fatal_error_info(struct mem_ctl_info *mci,
573
* struct i5400_error_info *info,
574
* int handle_errors);
575
*
576
* handle the Intel NON-FATAL errors, if any
577
*/
578
static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
579
struct i5400_error_info *info)
580
{
581
char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
582
unsigned long allErrors;
583
int branch;
584
int channel;
585
int bank;
586
int rank;
587
int rdwr;
588
int ras, cas;
589
int errnum;
590
591
/* mask off the Error bits that are possible */
592
allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
593
if (!allErrors)
594
return; /* if no error, return now */
595
596
/* ONLY ONE of the possible error bits will be set, as per the docs */
597
598
if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
599
i5400_proccess_non_recoverable_info(mci, info, allErrors);
600
return;
601
}
602
603
/* Correctable errors */
604
if (allErrors & ERROR_NF_CORRECTABLE) {
605
edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors);
606
607
branch = extract_fbdchan_indx(info->ferr_nf_fbd);
608
609
channel = 0;
610
if (REC_ECC_LOCATOR_ODD(info->redmemb))
611
channel = 1;
612
613
/* Convert channel to be based from zero, instead of
614
* from branch base of 0 */
615
channel += branch;
616
617
bank = rec_bank(info);
618
rank = rec_rank(info);
619
rdwr = rec_rdwr(info);
620
ras = rec_ras(info);
621
cas = rec_cas(info);
622
623
/* Only 1 bit will be on */
624
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
625
626
edac_dbg(0, "\t\tDIMM= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
627
rank, channel, branch >> 1, bank,
628
rdwr_str(rdwr), ras, cas);
629
630
/* Form out message */
631
snprintf(msg, sizeof(msg),
632
"Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
633
"RAS=%d CAS=%d, CE Err=0x%lx (%s))",
634
branch >> 1, bank, rdwr_str(rdwr), ras, cas,
635
allErrors, error_name[errnum]);
636
637
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
638
branch >> 1, channel % 2, rank,
639
rdwr ? "Write error" : "Read error",
640
msg);
641
642
return;
643
}
644
645
/* Miscellaneous errors */
646
errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
647
648
branch = extract_fbdchan_indx(info->ferr_nf_fbd);
649
650
i5400_mc_printk(mci, KERN_EMERG,
651
"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
652
branch >> 1, allErrors, error_name[errnum]);
653
}
654
655
/*
656
* i5400_process_error_info Process the error info that is
657
* in the 'info' structure, previously retrieved from hardware
658
*/
659
static void i5400_process_error_info(struct mem_ctl_info *mci,
660
struct i5400_error_info *info)
661
{ u32 allErrors;
662
663
/* First handle any fatal errors that occurred */
664
allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
665
i5400_proccess_non_recoverable_info(mci, info, allErrors);
666
667
/* now handle any non-fatal errors that occurred */
668
i5400_process_nonfatal_error_info(mci, info);
669
}
670
671
/*
672
* i5400_clear_error Retrieve any error from the hardware
673
* but do NOT process that error.
674
* Used for 'clearing' out of previous errors
675
* Called by the Core module.
676
*/
677
static void i5400_clear_error(struct mem_ctl_info *mci)
678
{
679
struct i5400_error_info info;
680
681
i5400_get_error_info(mci, &info);
682
}
683
684
/*
685
* i5400_check_error Retrieve and process errors reported by the
686
* hardware. Called by the Core module.
687
*/
688
static void i5400_check_error(struct mem_ctl_info *mci)
689
{
690
struct i5400_error_info info;
691
692
i5400_get_error_info(mci, &info);
693
i5400_process_error_info(mci, &info);
694
}
695
696
/*
697
* i5400_put_devices 'put' all the devices that we have
698
* reserved via 'get'
699
*/
700
static void i5400_put_devices(struct mem_ctl_info *mci)
701
{
702
struct i5400_pvt *pvt;
703
704
pvt = mci->pvt_info;
705
706
/* Decrement usage count for devices */
707
pci_dev_put(pvt->branch_1);
708
pci_dev_put(pvt->branch_0);
709
pci_dev_put(pvt->fsb_error_regs);
710
pci_dev_put(pvt->branchmap_werrors);
711
}
712
713
/*
714
* i5400_get_devices Find and perform 'get' operation on the MCH's
715
* device/functions we want to reference for this driver
716
*
717
* Need to 'get' device 16 func 1 and func 2
718
*/
719
static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
720
{
721
struct i5400_pvt *pvt;
722
struct pci_dev *pdev;
723
724
pvt = mci->pvt_info;
725
pvt->branchmap_werrors = NULL;
726
pvt->fsb_error_regs = NULL;
727
pvt->branch_0 = NULL;
728
pvt->branch_1 = NULL;
729
730
/* Attempt to 'get' the MCH register we want */
731
pdev = NULL;
732
while (1) {
733
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
734
PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
735
if (!pdev) {
736
/* End of list, leave */
737
i5400_printk(KERN_ERR,
738
"'system address,Process Bus' "
739
"device not found:"
740
"vendor 0x%x device 0x%x ERR func 1 "
741
"(broken BIOS?)\n",
742
PCI_VENDOR_ID_INTEL,
743
PCI_DEVICE_ID_INTEL_5400_ERR);
744
return -ENODEV;
745
}
746
747
/* Store device 16 func 1 */
748
if (PCI_FUNC(pdev->devfn) == 1)
749
break;
750
}
751
pvt->branchmap_werrors = pdev;
752
753
pdev = NULL;
754
while (1) {
755
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
756
PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
757
if (!pdev) {
758
/* End of list, leave */
759
i5400_printk(KERN_ERR,
760
"'system address,Process Bus' "
761
"device not found:"
762
"vendor 0x%x device 0x%x ERR func 2 "
763
"(broken BIOS?)\n",
764
PCI_VENDOR_ID_INTEL,
765
PCI_DEVICE_ID_INTEL_5400_ERR);
766
767
pci_dev_put(pvt->branchmap_werrors);
768
return -ENODEV;
769
}
770
771
/* Store device 16 func 2 */
772
if (PCI_FUNC(pdev->devfn) == 2)
773
break;
774
}
775
pvt->fsb_error_regs = pdev;
776
777
edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
778
pci_name(pvt->system_address),
779
pvt->system_address->vendor, pvt->system_address->device);
780
edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
781
pci_name(pvt->branchmap_werrors),
782
pvt->branchmap_werrors->vendor,
783
pvt->branchmap_werrors->device);
784
edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
785
pci_name(pvt->fsb_error_regs),
786
pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
787
788
pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
789
PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
790
if (!pvt->branch_0) {
791
i5400_printk(KERN_ERR,
792
"MC: 'BRANCH 0' device not found:"
793
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
794
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
795
796
pci_dev_put(pvt->fsb_error_regs);
797
pci_dev_put(pvt->branchmap_werrors);
798
return -ENODEV;
799
}
800
801
/* If this device claims to have more than 2 channels then
802
* fetch Branch 1's information
803
*/
804
if (pvt->maxch < CHANNELS_PER_BRANCH)
805
return 0;
806
807
pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
808
PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
809
if (!pvt->branch_1) {
810
i5400_printk(KERN_ERR,
811
"MC: 'BRANCH 1' device not found:"
812
"vendor 0x%x device 0x%x Func 0 "
813
"(broken BIOS?)\n",
814
PCI_VENDOR_ID_INTEL,
815
PCI_DEVICE_ID_INTEL_5400_FBD1);
816
817
pci_dev_put(pvt->branch_0);
818
pci_dev_put(pvt->fsb_error_regs);
819
pci_dev_put(pvt->branchmap_werrors);
820
return -ENODEV;
821
}
822
823
return 0;
824
}
825
826
/*
827
* determine_amb_present
828
*
829
* the information is contained in DIMMS_PER_CHANNEL different
830
* registers determining which of the DIMMS_PER_CHANNEL requires
831
* knowing which channel is in question
832
*
833
* 2 branches, each with 2 channels
834
* b0_ambpresent0 for channel '0'
835
* b0_ambpresent1 for channel '1'
836
* b1_ambpresent0 for channel '2'
837
* b1_ambpresent1 for channel '3'
838
*/
839
static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
840
{
841
int amb_present;
842
843
if (channel < CHANNELS_PER_BRANCH) {
844
if (channel & 0x1)
845
amb_present = pvt->b0_ambpresent1;
846
else
847
amb_present = pvt->b0_ambpresent0;
848
} else {
849
if (channel & 0x1)
850
amb_present = pvt->b1_ambpresent1;
851
else
852
amb_present = pvt->b1_ambpresent0;
853
}
854
855
return amb_present;
856
}
857
858
/*
859
* determine_mtr(pvt, dimm, channel)
860
*
861
* return the proper MTR register as determine by the dimm and desired channel
862
*/
863
static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
864
{
865
int mtr;
866
int n;
867
868
/* There is one MTR for each slot pair of FB-DIMMs,
869
Each slot pair may be at branch 0 or branch 1.
870
*/
871
n = dimm;
872
873
if (n >= DIMMS_PER_CHANNEL) {
874
edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
875
dimm);
876
return 0;
877
}
878
879
if (channel < CHANNELS_PER_BRANCH)
880
mtr = pvt->b0_mtr[n];
881
else
882
mtr = pvt->b1_mtr[n];
883
884
return mtr;
885
}
886
887
/*
888
*/
889
static void decode_mtr(int slot_row, u16 mtr)
890
{
891
int ans;
892
893
ans = MTR_DIMMS_PRESENT(mtr);
894
895
edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n",
896
slot_row, mtr, ans ? "" : "NOT ");
897
if (!ans)
898
return;
899
900
edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
901
902
edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
903
str_enabled_disabled(MTR_DIMMS_ETHROTTLE(mtr)));
904
905
edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
906
edac_dbg(2, "\t\tNUMRANK: %s\n",
907
MTR_DIMM_RANK(mtr) ? "double" : "single");
908
edac_dbg(2, "\t\tNUMROW: %s\n",
909
MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
910
MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
911
MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
912
"65,536 - 16 rows");
913
edac_dbg(2, "\t\tNUMCOL: %s\n",
914
MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
915
MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
916
MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
917
"reserved");
918
}
919
920
static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
921
struct i5400_dimm_info *dinfo)
922
{
923
int mtr;
924
int amb_present_reg;
925
int addrBits;
926
927
mtr = determine_mtr(pvt, dimm, channel);
928
if (MTR_DIMMS_PRESENT(mtr)) {
929
amb_present_reg = determine_amb_present_reg(pvt, channel);
930
931
/* Determine if there is a DIMM present in this DIMM slot */
932
if (amb_present_reg & (1 << dimm)) {
933
/* Start with the number of bits for a Bank
934
* on the DRAM */
935
addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
936
/* Add thenumber of ROW bits */
937
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
938
/* add the number of COLUMN bits */
939
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
940
/* add the number of RANK bits */
941
addrBits += MTR_DIMM_RANK(mtr);
942
943
addrBits += 6; /* add 64 bits per DIMM */
944
addrBits -= 20; /* divide by 2^^20 */
945
addrBits -= 3; /* 8 bits per bytes */
946
947
dinfo->megabytes = 1 << addrBits;
948
}
949
}
950
}
951
952
/*
953
* calculate_dimm_size
954
*
955
* also will output a DIMM matrix map, if debug is enabled, for viewing
956
* how the DIMMs are populated
957
*/
958
static void calculate_dimm_size(struct i5400_pvt *pvt)
959
{
960
struct i5400_dimm_info *dinfo;
961
int dimm, max_dimms;
962
char *p, *mem_buffer;
963
int space, n;
964
int channel, branch;
965
966
/* ================= Generate some debug output ================= */
967
space = PAGE_SIZE;
968
mem_buffer = p = kmalloc(space, GFP_KERNEL);
969
if (p == NULL) {
970
i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
971
__FILE__, __func__);
972
return;
973
}
974
975
/* Scan all the actual DIMMS
976
* and calculate the information for each DIMM
977
* Start with the highest dimm first, to display it first
978
* and work toward the 0th dimm
979
*/
980
max_dimms = pvt->maxdimmperch;
981
for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
982
983
/* on an odd dimm, first output a 'boundary' marker,
984
* then reset the message buffer */
985
if (dimm & 0x1) {
986
n = snprintf(p, space, "---------------------------"
987
"-------------------------------");
988
p += n;
989
space -= n;
990
edac_dbg(2, "%s\n", mem_buffer);
991
p = mem_buffer;
992
space = PAGE_SIZE;
993
}
994
n = snprintf(p, space, "dimm %2d ", dimm);
995
p += n;
996
space -= n;
997
998
for (channel = 0; channel < pvt->maxch; channel++) {
999
dinfo = &pvt->dimm_info[dimm][channel];
1000
handle_channel(pvt, dimm, channel, dinfo);
1001
n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
1002
p += n;
1003
space -= n;
1004
}
1005
edac_dbg(2, "%s\n", mem_buffer);
1006
p = mem_buffer;
1007
space = PAGE_SIZE;
1008
}
1009
1010
/* Output the last bottom 'boundary' marker */
1011
n = snprintf(p, space, "---------------------------"
1012
"-------------------------------");
1013
p += n;
1014
space -= n;
1015
edac_dbg(2, "%s\n", mem_buffer);
1016
p = mem_buffer;
1017
space = PAGE_SIZE;
1018
1019
/* now output the 'channel' labels */
1020
n = snprintf(p, space, " ");
1021
p += n;
1022
space -= n;
1023
for (channel = 0; channel < pvt->maxch; channel++) {
1024
n = snprintf(p, space, "channel %d | ", channel);
1025
p += n;
1026
space -= n;
1027
}
1028
1029
space -= n;
1030
edac_dbg(2, "%s\n", mem_buffer);
1031
p = mem_buffer;
1032
space = PAGE_SIZE;
1033
1034
n = snprintf(p, space, " ");
1035
p += n;
1036
for (branch = 0; branch < MAX_BRANCHES; branch++) {
1037
n = snprintf(p, space, " branch %d | ", branch);
1038
p += n;
1039
space -= n;
1040
}
1041
1042
/* output the last message and free buffer */
1043
edac_dbg(2, "%s\n", mem_buffer);
1044
kfree(mem_buffer);
1045
}
1046
1047
/*
1048
* i5400_get_mc_regs read in the necessary registers and
1049
* cache locally
1050
*
1051
* Fills in the private data members
1052
*/
1053
static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1054
{
1055
struct i5400_pvt *pvt;
1056
u32 actual_tolm;
1057
u16 limit;
1058
int slot_row;
1059
int way0, way1;
1060
1061
pvt = mci->pvt_info;
1062
1063
pci_read_config_dword(pvt->system_address, AMBASE,
1064
&pvt->u.ambase_bottom);
1065
pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1066
&pvt->u.ambase_top);
1067
1068
edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1069
(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1070
1071
/* Get the Branch Map regs */
1072
pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1073
pvt->tolm >>= 12;
1074
edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
1075
pvt->tolm, pvt->tolm);
1076
1077
actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1078
edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1079
actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1080
1081
pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1082
pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1083
1084
/* Get the MIR[0-1] regs */
1085
limit = (pvt->mir0 >> 4) & 0x0fff;
1086
way0 = pvt->mir0 & 0x1;
1087
way1 = pvt->mir0 & 0x2;
1088
edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n",
1089
limit, way1, way0);
1090
limit = (pvt->mir1 >> 4) & 0xfff;
1091
way0 = pvt->mir1 & 0x1;
1092
way1 = pvt->mir1 & 0x2;
1093
edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n",
1094
limit, way1, way0);
1095
1096
/* Get the set of MTR[0-3] regs by each branch */
1097
for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
1098
int where = MTR0 + (slot_row * sizeof(u16));
1099
1100
/* Branch 0 set of MTR registers */
1101
pci_read_config_word(pvt->branch_0, where,
1102
&pvt->b0_mtr[slot_row]);
1103
1104
edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1105
slot_row, where, pvt->b0_mtr[slot_row]);
1106
1107
if (pvt->maxch < CHANNELS_PER_BRANCH) {
1108
pvt->b1_mtr[slot_row] = 0;
1109
continue;
1110
}
1111
1112
/* Branch 1 set of MTR registers */
1113
pci_read_config_word(pvt->branch_1, where,
1114
&pvt->b1_mtr[slot_row]);
1115
edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1116
slot_row, where, pvt->b1_mtr[slot_row]);
1117
}
1118
1119
/* Read and dump branch 0's MTRs */
1120
edac_dbg(2, "Memory Technology Registers:\n");
1121
edac_dbg(2, " Branch 0:\n");
1122
for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1123
decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1124
1125
pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1126
&pvt->b0_ambpresent0);
1127
edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1128
pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1129
&pvt->b0_ambpresent1);
1130
edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1131
1132
/* Only if we have 2 branchs (4 channels) */
1133
if (pvt->maxch < CHANNELS_PER_BRANCH) {
1134
pvt->b1_ambpresent0 = 0;
1135
pvt->b1_ambpresent1 = 0;
1136
} else {
1137
/* Read and dump branch 1's MTRs */
1138
edac_dbg(2, " Branch 1:\n");
1139
for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1140
decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1141
1142
pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1143
&pvt->b1_ambpresent0);
1144
edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1145
pvt->b1_ambpresent0);
1146
pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1147
&pvt->b1_ambpresent1);
1148
edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1149
pvt->b1_ambpresent1);
1150
}
1151
1152
/* Go and determine the size of each DIMM and place in an
1153
* orderly matrix */
1154
calculate_dimm_size(pvt);
1155
}
1156
1157
/*
1158
* i5400_init_dimms Initialize the 'dimms' table within
1159
* the mci control structure with the
1160
* addressing of memory.
1161
*
1162
* return:
1163
* 0 success
1164
* 1 no actual memory found on this MC
1165
*/
1166
static int i5400_init_dimms(struct mem_ctl_info *mci)
1167
{
1168
struct i5400_pvt *pvt;
1169
struct dimm_info *dimm;
1170
int ndimms;
1171
int mtr;
1172
int size_mb;
1173
int channel, slot;
1174
1175
pvt = mci->pvt_info;
1176
1177
ndimms = 0;
1178
1179
/*
1180
* FIXME: remove pvt->dimm_info[slot][channel] and use the 3
1181
* layers here.
1182
*/
1183
for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
1184
channel++) {
1185
for (slot = 0; slot < mci->layers[2].size; slot++) {
1186
mtr = determine_mtr(pvt, slot, channel);
1187
1188
/* if no DIMMS on this slot, continue */
1189
if (!MTR_DIMMS_PRESENT(mtr))
1190
continue;
1191
1192
dimm = edac_get_dimm(mci, channel / 2, channel % 2, slot);
1193
1194
size_mb = pvt->dimm_info[slot][channel].megabytes;
1195
1196
edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
1197
channel / 2, channel % 2, slot,
1198
size_mb / 1000, size_mb % 1000);
1199
1200
dimm->nr_pages = size_mb << 8;
1201
dimm->grain = 8;
1202
dimm->dtype = MTR_DRAM_WIDTH(mtr) == 8 ?
1203
DEV_X8 : DEV_X4;
1204
dimm->mtype = MEM_FB_DDR2;
1205
/*
1206
* The eccc mechanism is SDDC (aka SECC), with
1207
* is similar to Chipkill.
1208
*/
1209
dimm->edac_mode = MTR_DRAM_WIDTH(mtr) == 8 ?
1210
EDAC_S8ECD8ED : EDAC_S4ECD4ED;
1211
ndimms++;
1212
}
1213
}
1214
1215
/*
1216
* When just one memory is provided, it should be at location (0,0,0).
1217
* With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
1218
*/
1219
if (ndimms == 1)
1220
mci->dimms[0]->edac_mode = EDAC_SECDED;
1221
1222
return (ndimms == 0);
1223
}
1224
1225
/*
1226
* i5400_enable_error_reporting
1227
* Turn on the memory reporting features of the hardware
1228
*/
1229
static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1230
{
1231
struct i5400_pvt *pvt;
1232
u32 fbd_error_mask;
1233
1234
pvt = mci->pvt_info;
1235
1236
/* Read the FBD Error Mask Register */
1237
pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1238
&fbd_error_mask);
1239
1240
/* Enable with a '0' */
1241
fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1242
1243
pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1244
fbd_error_mask);
1245
}
1246
1247
/*
1248
* i5400_probe1 Probe for ONE instance of device to see if it is
1249
* present.
1250
* return:
1251
* 0 for FOUND a device
1252
* < 0 for error code
1253
*/
1254
static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1255
{
1256
struct mem_ctl_info *mci;
1257
struct i5400_pvt *pvt;
1258
struct edac_mc_layer layers[3];
1259
1260
if (dev_idx >= ARRAY_SIZE(i5400_devs))
1261
return -EINVAL;
1262
1263
edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1264
pdev->bus->number,
1265
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1266
1267
/* We only are looking for func 0 of the set */
1268
if (PCI_FUNC(pdev->devfn) != 0)
1269
return -ENODEV;
1270
1271
/*
1272
* allocate a new MC control structure
1273
*
1274
* This drivers uses the DIMM slot as "csrow" and the rest as "channel".
1275
*/
1276
layers[0].type = EDAC_MC_LAYER_BRANCH;
1277
layers[0].size = MAX_BRANCHES;
1278
layers[0].is_virt_csrow = false;
1279
layers[1].type = EDAC_MC_LAYER_CHANNEL;
1280
layers[1].size = CHANNELS_PER_BRANCH;
1281
layers[1].is_virt_csrow = false;
1282
layers[2].type = EDAC_MC_LAYER_SLOT;
1283
layers[2].size = DIMMS_PER_CHANNEL;
1284
layers[2].is_virt_csrow = true;
1285
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1286
if (mci == NULL)
1287
return -ENOMEM;
1288
1289
edac_dbg(0, "MC: mci = %p\n", mci);
1290
1291
mci->pdev = &pdev->dev; /* record ptr to the generic device */
1292
1293
pvt = mci->pvt_info;
1294
pvt->system_address = pdev; /* Record this device in our private */
1295
pvt->maxch = MAX_CHANNELS;
1296
pvt->maxdimmperch = DIMMS_PER_CHANNEL;
1297
1298
/* 'get' the pci devices we want to reserve for our use */
1299
if (i5400_get_devices(mci, dev_idx))
1300
goto fail0;
1301
1302
/* Time to get serious */
1303
i5400_get_mc_regs(mci); /* retrieve the hardware registers */
1304
1305
mci->mc_idx = 0;
1306
mci->mtype_cap = MEM_FLAG_FB_DDR2;
1307
mci->edac_ctl_cap = EDAC_FLAG_NONE;
1308
mci->edac_cap = EDAC_FLAG_NONE;
1309
mci->mod_name = "i5400_edac.c";
1310
mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1311
mci->dev_name = pci_name(pdev);
1312
mci->ctl_page_to_phys = NULL;
1313
1314
/* Set the function pointer to an actual operation function */
1315
mci->edac_check = i5400_check_error;
1316
1317
/* initialize the MC control structure 'dimms' table
1318
* with the mapping and control information */
1319
if (i5400_init_dimms(mci)) {
1320
edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
1321
mci->edac_cap = EDAC_FLAG_NONE; /* no dimms found */
1322
} else {
1323
edac_dbg(1, "MC: Enable error reporting now\n");
1324
i5400_enable_error_reporting(mci);
1325
}
1326
1327
/* add this new MC control structure to EDAC's list of MCs */
1328
if (edac_mc_add_mc(mci)) {
1329
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1330
/* FIXME: perhaps some code should go here that disables error
1331
* reporting if we just enabled it
1332
*/
1333
goto fail1;
1334
}
1335
1336
i5400_clear_error(mci);
1337
1338
/* allocating generic PCI control info */
1339
i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1340
if (!i5400_pci) {
1341
printk(KERN_WARNING
1342
"%s(): Unable to create PCI control\n",
1343
__func__);
1344
printk(KERN_WARNING
1345
"%s(): PCI error report via EDAC not setup\n",
1346
__func__);
1347
}
1348
1349
return 0;
1350
1351
/* Error exit unwinding stack */
1352
fail1:
1353
1354
i5400_put_devices(mci);
1355
1356
fail0:
1357
edac_mc_free(mci);
1358
return -ENODEV;
1359
}
1360
1361
/*
1362
* i5400_init_one constructor for one instance of device
1363
*
1364
* returns:
1365
* negative on error
1366
* count (>= 0)
1367
*/
1368
static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1369
{
1370
int rc;
1371
1372
edac_dbg(0, "MC:\n");
1373
1374
/* wake up device */
1375
rc = pci_enable_device(pdev);
1376
if (rc)
1377
return rc;
1378
1379
/* now probe and enable the device */
1380
return i5400_probe1(pdev, id->driver_data);
1381
}
1382
1383
/*
1384
* i5400_remove_one destructor for one instance of device
1385
*
1386
*/
1387
static void i5400_remove_one(struct pci_dev *pdev)
1388
{
1389
struct mem_ctl_info *mci;
1390
1391
edac_dbg(0, "\n");
1392
1393
if (i5400_pci)
1394
edac_pci_release_generic_ctl(i5400_pci);
1395
1396
mci = edac_mc_del_mc(&pdev->dev);
1397
if (!mci)
1398
return;
1399
1400
/* retrieve references to resources, and free those resources */
1401
i5400_put_devices(mci);
1402
1403
pci_disable_device(pdev);
1404
1405
edac_mc_free(mci);
1406
}
1407
1408
/*
1409
* pci_device_id table for which devices we are looking for
1410
*
1411
* The "E500P" device is the first device supported.
1412
*/
1413
static const struct pci_device_id i5400_pci_tbl[] = {
1414
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1415
{0,} /* 0 terminated list. */
1416
};
1417
1418
MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1419
1420
/*
1421
* i5400_driver pci_driver structure for this module
1422
*
1423
*/
1424
static struct pci_driver i5400_driver = {
1425
.name = "i5400_edac",
1426
.probe = i5400_init_one,
1427
.remove = i5400_remove_one,
1428
.id_table = i5400_pci_tbl,
1429
};
1430
1431
/*
1432
* i5400_init Module entry function
1433
* Try to initialize this module for its devices
1434
*/
1435
static int __init i5400_init(void)
1436
{
1437
int pci_rc;
1438
1439
edac_dbg(2, "MC:\n");
1440
1441
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1442
opstate_init();
1443
1444
pci_rc = pci_register_driver(&i5400_driver);
1445
1446
return (pci_rc < 0) ? pci_rc : 0;
1447
}
1448
1449
/*
1450
* i5400_exit() Module exit function
1451
* Unregister the driver
1452
*/
1453
static void __exit i5400_exit(void)
1454
{
1455
edac_dbg(2, "MC:\n");
1456
pci_unregister_driver(&i5400_driver);
1457
}
1458
1459
module_init(i5400_init);
1460
module_exit(i5400_exit);
1461
1462
MODULE_LICENSE("GPL");
1463
MODULE_AUTHOR("Ben Woodard <[email protected]>");
1464
MODULE_AUTHOR("Mauro Carvalho Chehab");
1465
MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
1466
MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1467
I5400_REVISION);
1468
1469
module_param(edac_op_state, int, 0444);
1470
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1471
1472