Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/core-card.c
49147 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright (C) 2005-2007 Kristian Hoegsberg <[email protected]>
4
*/
5
6
#include <linux/bug.h>
7
#include <linux/completion.h>
8
#include <linux/crc-itu-t.h>
9
#include <linux/device.h>
10
#include <linux/errno.h>
11
#include <linux/firewire.h>
12
#include <linux/firewire-constants.h>
13
#include <linux/jiffies.h>
14
#include <linux/kernel.h>
15
#include <linux/kref.h>
16
#include <linux/list.h>
17
#include <linux/module.h>
18
#include <linux/mutex.h>
19
#include <linux/spinlock.h>
20
#include <linux/workqueue.h>
21
22
#include <linux/atomic.h>
23
#include <asm/byteorder.h>
24
25
#include "core.h"
26
#include <trace/events/firewire.h>
27
28
#define define_fw_printk_level(func, kern_level) \
29
void func(const struct fw_card *card, const char *fmt, ...) \
30
{ \
31
struct va_format vaf; \
32
va_list args; \
33
\
34
va_start(args, fmt); \
35
vaf.fmt = fmt; \
36
vaf.va = &args; \
37
printk(kern_level KBUILD_MODNAME " %s: %pV", \
38
dev_name(card->device), &vaf); \
39
va_end(args); \
40
}
41
define_fw_printk_level(fw_err, KERN_ERR);
42
define_fw_printk_level(fw_notice, KERN_NOTICE);
43
44
int fw_compute_block_crc(__be32 *block)
45
{
46
int length;
47
u16 crc;
48
49
length = (be32_to_cpu(block[0]) >> 16) & 0xff;
50
crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
51
*block |= cpu_to_be32(crc);
52
53
return length;
54
}
55
56
static DEFINE_MUTEX(card_mutex);
57
static LIST_HEAD(card_list);
58
59
static LIST_HEAD(descriptor_list);
60
static int descriptor_count;
61
62
static __be32 tmp_config_rom[256];
63
/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
64
static size_t config_rom_length = 1 + 4 + 1 + 1;
65
66
#define BIB_CRC(v) ((v) << 0)
67
#define BIB_CRC_LENGTH(v) ((v) << 16)
68
#define BIB_INFO_LENGTH(v) ((v) << 24)
69
#define BIB_BUS_NAME 0x31333934 /* "1394" */
70
#define BIB_LINK_SPEED(v) ((v) << 0)
71
#define BIB_GENERATION(v) ((v) << 4)
72
#define BIB_MAX_ROM(v) ((v) << 8)
73
#define BIB_MAX_RECEIVE(v) ((v) << 12)
74
#define BIB_CYC_CLK_ACC(v) ((v) << 16)
75
#define BIB_PMC ((1) << 27)
76
#define BIB_BMC ((1) << 28)
77
#define BIB_ISC ((1) << 29)
78
#define BIB_CMC ((1) << 30)
79
#define BIB_IRMC ((1) << 31)
80
#define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
81
82
/*
83
* IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
84
* but we have to make it longer because there are many devices whose firmware
85
* is just too slow for that.
86
*/
87
#define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
88
89
static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
90
{
91
struct fw_descriptor *desc;
92
int i, j, k, length;
93
94
/*
95
* Initialize contents of config rom buffer. On the OHCI
96
* controller, block reads to the config rom accesses the host
97
* memory, but quadlet read access the hardware bus info block
98
* registers. That's just crack, but it means we should make
99
* sure the contents of bus info block in host memory matches
100
* the version stored in the OHCI registers.
101
*/
102
103
config_rom[0] = cpu_to_be32(
104
BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
105
config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
106
config_rom[2] = cpu_to_be32(
107
BIB_LINK_SPEED(card->link_speed) |
108
BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
109
BIB_MAX_ROM(2) |
110
BIB_MAX_RECEIVE(card->max_receive) |
111
BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
112
config_rom[3] = cpu_to_be32(card->guid >> 32);
113
config_rom[4] = cpu_to_be32(card->guid);
114
115
/* Generate root directory. */
116
config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
117
i = 7;
118
j = 7 + descriptor_count;
119
120
/* Generate root directory entries for descriptors. */
121
list_for_each_entry (desc, &descriptor_list, link) {
122
if (desc->immediate > 0)
123
config_rom[i++] = cpu_to_be32(desc->immediate);
124
config_rom[i] = cpu_to_be32(desc->key | (j - i));
125
i++;
126
j += desc->length;
127
}
128
129
/* Update root directory length. */
130
config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
131
132
/* End of root directory, now copy in descriptors. */
133
list_for_each_entry (desc, &descriptor_list, link) {
134
for (k = 0; k < desc->length; k++)
135
config_rom[i + k] = cpu_to_be32(desc->data[k]);
136
i += desc->length;
137
}
138
139
/* Calculate CRCs for all blocks in the config rom. This
140
* assumes that CRC length and info length are identical for
141
* the bus info block, which is always the case for this
142
* implementation. */
143
for (i = 0; i < j; i += length + 1)
144
length = fw_compute_block_crc(config_rom + i);
145
146
WARN_ON(j != config_rom_length);
147
}
148
149
static void update_config_roms(void)
150
{
151
struct fw_card *card;
152
153
list_for_each_entry (card, &card_list, link) {
154
generate_config_rom(card, tmp_config_rom);
155
card->driver->set_config_rom(card, tmp_config_rom,
156
config_rom_length);
157
}
158
}
159
160
static size_t required_space(struct fw_descriptor *desc)
161
{
162
/* descriptor + entry into root dir + optional immediate entry */
163
return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
164
}
165
166
int fw_core_add_descriptor(struct fw_descriptor *desc)
167
{
168
size_t i;
169
170
/*
171
* Check descriptor is valid; the length of all blocks in the
172
* descriptor has to add up to exactly the length of the
173
* block.
174
*/
175
i = 0;
176
while (i < desc->length)
177
i += (desc->data[i] >> 16) + 1;
178
179
if (i != desc->length)
180
return -EINVAL;
181
182
guard(mutex)(&card_mutex);
183
184
if (config_rom_length + required_space(desc) > 256)
185
return -EBUSY;
186
187
list_add_tail(&desc->link, &descriptor_list);
188
config_rom_length += required_space(desc);
189
descriptor_count++;
190
if (desc->immediate > 0)
191
descriptor_count++;
192
update_config_roms();
193
194
return 0;
195
}
196
EXPORT_SYMBOL(fw_core_add_descriptor);
197
198
void fw_core_remove_descriptor(struct fw_descriptor *desc)
199
{
200
guard(mutex)(&card_mutex);
201
202
list_del(&desc->link);
203
config_rom_length -= required_space(desc);
204
descriptor_count--;
205
if (desc->immediate > 0)
206
descriptor_count--;
207
update_config_roms();
208
}
209
EXPORT_SYMBOL(fw_core_remove_descriptor);
210
211
static int reset_bus(struct fw_card *card, bool short_reset)
212
{
213
int reg = short_reset ? 5 : 1;
214
int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
215
216
trace_bus_reset_initiate(card->index, card->generation, short_reset);
217
218
return card->driver->update_phy_reg(card, reg, 0, bit);
219
}
220
221
void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
222
{
223
trace_bus_reset_schedule(card->index, card->generation, short_reset);
224
225
/* We don't try hard to sort out requests of long vs. short resets. */
226
card->br_short = short_reset;
227
228
/* Use an arbitrary short delay to combine multiple reset requests. */
229
fw_card_get(card);
230
if (!queue_delayed_work(fw_workqueue, &card->br_work, delayed ? msecs_to_jiffies(10) : 0))
231
fw_card_put(card);
232
}
233
EXPORT_SYMBOL(fw_schedule_bus_reset);
234
235
static void br_work(struct work_struct *work)
236
{
237
struct fw_card *card = from_work(card, work, br_work.work);
238
239
/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
240
if (card->reset_jiffies != 0 &&
241
time_is_after_jiffies64(card->reset_jiffies + secs_to_jiffies(2))) {
242
trace_bus_reset_postpone(card->index, card->generation, card->br_short);
243
244
if (!queue_delayed_work(fw_workqueue, &card->br_work, secs_to_jiffies(2)))
245
fw_card_put(card);
246
return;
247
}
248
249
fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
250
FW_PHY_CONFIG_CURRENT_GAP_COUNT);
251
reset_bus(card, card->br_short);
252
fw_card_put(card);
253
}
254
255
static void allocate_broadcast_channel(struct fw_card *card, int generation)
256
{
257
int channel, bandwidth = 0;
258
259
if (!card->broadcast_channel_allocated) {
260
fw_iso_resource_manage(card, generation, 1ULL << 31,
261
&channel, &bandwidth, true);
262
if (channel != 31) {
263
fw_notice(card, "failed to allocate broadcast channel\n");
264
return;
265
}
266
card->broadcast_channel_allocated = true;
267
}
268
269
device_for_each_child(card->device, (void *)(long)generation,
270
fw_device_set_broadcast_channel);
271
}
272
273
void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
274
{
275
fw_card_get(card);
276
if (!schedule_delayed_work(&card->bm_work, delay))
277
fw_card_put(card);
278
}
279
280
enum bm_contention_outcome {
281
// The bus management contention window is not expired.
282
BM_CONTENTION_OUTCOME_WITHIN_WINDOW = 0,
283
// The IRM node has link off.
284
BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF,
285
// The IRM node complies IEEE 1394:1994 only.
286
BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY,
287
// Another bus reset, BM work has been rescheduled.
288
BM_CONTENTION_OUTCOME_AT_NEW_GENERATION,
289
// We have been unable to send the lock request to IRM node due to some local problem.
290
BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION,
291
// The lock request failed, maybe the IRM isn't really IRM capable after all.
292
BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM,
293
// Somebody else is BM.
294
BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM,
295
// The local node succeeds after contending for bus manager.
296
BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM,
297
};
298
299
static enum bm_contention_outcome contend_for_bm(struct fw_card *card)
300
__must_hold(&card->lock)
301
{
302
int generation = card->generation;
303
int local_id = card->local_node->node_id;
304
__be32 data[2] = {
305
cpu_to_be32(BUS_MANAGER_ID_NOT_REGISTERED),
306
cpu_to_be32(local_id),
307
};
308
bool grace = time_is_before_jiffies64(card->reset_jiffies + msecs_to_jiffies(125));
309
struct fw_node *irm_node;
310
struct fw_device *irm_device;
311
int irm_node_id, irm_device_quirks = 0;
312
int rcode;
313
314
lockdep_assert_held(&card->lock);
315
316
if (!grace) {
317
if (!is_next_generation(generation, card->bm_generation) || card->bm_abdicate)
318
return BM_CONTENTION_OUTCOME_WITHIN_WINDOW;
319
}
320
321
irm_node = card->irm_node;
322
if (!irm_node->link_on) {
323
fw_notice(card, "IRM has link off, making local node (%02x) root\n", local_id);
324
return BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF;
325
}
326
327
// NOTE: It is likely that the quirk detection for IRM device has not done yet.
328
irm_device = fw_node_get_device(irm_node);
329
if (irm_device)
330
irm_device_quirks = READ_ONCE(irm_device->quirks);
331
if ((irm_device_quirks & FW_DEVICE_QUIRK_IRM_IS_1394_1995_ONLY) &&
332
!(irm_device_quirks & FW_DEVICE_QUIRK_IRM_IGNORES_BUS_MANAGER)) {
333
fw_notice(card, "IRM is not 1394a compliant, making local node (%02x) root\n",
334
local_id);
335
return BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY;
336
}
337
338
irm_node_id = irm_node->node_id;
339
340
spin_unlock_irq(&card->lock);
341
342
rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, irm_node_id, generation,
343
SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, data,
344
sizeof(data));
345
346
spin_lock_irq(&card->lock);
347
348
switch (rcode) {
349
case RCODE_GENERATION:
350
return BM_CONTENTION_OUTCOME_AT_NEW_GENERATION;
351
case RCODE_SEND_ERROR:
352
return BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION;
353
case RCODE_COMPLETE:
354
{
355
int bm_id = be32_to_cpu(data[0]);
356
357
// Used by cdev layer for "struct fw_cdev_event_bus_reset".
358
if (bm_id != BUS_MANAGER_ID_NOT_REGISTERED)
359
card->bm_node_id = 0xffc0 & bm_id;
360
else
361
card->bm_node_id = local_id;
362
363
if (bm_id != BUS_MANAGER_ID_NOT_REGISTERED)
364
return BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM;
365
else
366
return BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM;
367
}
368
default:
369
if (!(irm_device_quirks & FW_DEVICE_QUIRK_IRM_IGNORES_BUS_MANAGER)) {
370
fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
371
fw_rcode_string(rcode), local_id);
372
return BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY;
373
} else {
374
return BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM;
375
}
376
}
377
}
378
379
DEFINE_FREE(node_unref, struct fw_node *, if (_T) fw_node_put(_T))
380
DEFINE_FREE(card_unref, struct fw_card *, if (_T) fw_card_put(_T))
381
382
static void bm_work(struct work_struct *work)
383
{
384
static const char gap_count_table[] = {
385
63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
386
};
387
struct fw_card *card __free(card_unref) = from_work(card, work, bm_work.work);
388
struct fw_node *root_node __free(node_unref) = NULL;
389
int root_id, new_root_id, irm_id, local_id;
390
int expected_gap_count, generation;
391
bool stand_for_root = false;
392
393
spin_lock_irq(&card->lock);
394
395
if (card->local_node == NULL) {
396
spin_unlock_irq(&card->lock);
397
return;
398
}
399
400
generation = card->generation;
401
402
root_node = fw_node_get(card->root_node);
403
404
root_id = root_node->node_id;
405
irm_id = card->irm_node->node_id;
406
local_id = card->local_node->node_id;
407
408
if (card->bm_generation != generation) {
409
enum bm_contention_outcome result = contend_for_bm(card);
410
411
switch (result) {
412
case BM_CONTENTION_OUTCOME_WITHIN_WINDOW:
413
spin_unlock_irq(&card->lock);
414
fw_schedule_bm_work(card, msecs_to_jiffies(125));
415
return;
416
case BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF:
417
stand_for_root = true;
418
break;
419
case BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY:
420
stand_for_root = true;
421
break;
422
case BM_CONTENTION_OUTCOME_AT_NEW_GENERATION:
423
// BM work has been rescheduled.
424
spin_unlock_irq(&card->lock);
425
return;
426
case BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION:
427
// Let's try again later and hope that the local problem has gone away by
428
// then.
429
spin_unlock_irq(&card->lock);
430
fw_schedule_bm_work(card, msecs_to_jiffies(125));
431
return;
432
case BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM:
433
// Let's do a bus reset and pick the local node as root, and thus, IRM.
434
stand_for_root = true;
435
break;
436
case BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM:
437
if (local_id == irm_id) {
438
// Only acts as IRM.
439
spin_unlock_irq(&card->lock);
440
allocate_broadcast_channel(card, generation);
441
spin_lock_irq(&card->lock);
442
}
443
fallthrough;
444
case BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM:
445
default:
446
card->bm_generation = generation;
447
break;
448
}
449
}
450
451
// We're bus manager for this generation, so next step is to make sure we have an active
452
// cycle master and do gap count optimization.
453
if (!stand_for_root) {
454
if (card->gap_count == GAP_COUNT_MISMATCHED) {
455
// If self IDs have inconsistent gap counts, do a
456
// bus reset ASAP. The config rom read might never
457
// complete, so don't wait for it. However, still
458
// send a PHY configuration packet prior to the
459
// bus reset. The PHY configuration packet might
460
// fail, but 1394-2008 8.4.5.2 explicitly permits
461
// it in this case, so it should be safe to try.
462
stand_for_root = true;
463
464
// We must always send a bus reset if the gap count
465
// is inconsistent, so bypass the 5-reset limit.
466
card->bm_retries = 0;
467
} else {
468
// Now investigate root node.
469
struct fw_device *root_device = fw_node_get_device(root_node);
470
471
if (root_device == NULL) {
472
// Either link_on is false, or we failed to read the
473
// config rom. In either case, pick another root.
474
stand_for_root = true;
475
} else {
476
bool root_device_is_running =
477
atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
478
479
if (!root_device_is_running) {
480
// If we haven't probed this device yet, bail out now
481
// and let's try again once that's done.
482
spin_unlock_irq(&card->lock);
483
return;
484
} else if (!root_device->cmc) {
485
// Current root has an active link layer and we
486
// successfully read the config rom, but it's not
487
// cycle master capable.
488
stand_for_root = true;
489
}
490
}
491
}
492
}
493
494
if (stand_for_root) {
495
new_root_id = local_id;
496
} else {
497
// We will send out a force root packet for this node as part of the gap count
498
// optimization on behalf of the node.
499
new_root_id = root_id;
500
}
501
502
/*
503
* Pick a gap count from 1394a table E-1. The table doesn't cover
504
* the typically much larger 1394b beta repeater delays though.
505
*/
506
if (!card->beta_repeaters_present &&
507
root_node->max_hops < ARRAY_SIZE(gap_count_table))
508
expected_gap_count = gap_count_table[root_node->max_hops];
509
else
510
expected_gap_count = 63;
511
512
// Finally, figure out if we should do a reset or not. If we have done less than 5 resets
513
// with the same physical topology and we have either a new root or a new gap count
514
// setting, let's do it.
515
if (card->bm_retries++ < 5 && (card->gap_count != expected_gap_count || new_root_id != root_id)) {
516
int card_gap_count = card->gap_count;
517
518
spin_unlock_irq(&card->lock);
519
520
fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
521
new_root_id, expected_gap_count);
522
fw_send_phy_config(card, new_root_id, generation, expected_gap_count);
523
/*
524
* Where possible, use a short bus reset to minimize
525
* disruption to isochronous transfers. But in the event
526
* of a gap count inconsistency, use a long bus reset.
527
*
528
* As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
529
* may set different gap counts after a bus reset. On a mixed
530
* 1394/1394a bus, a short bus reset can get doubled. Some
531
* nodes may treat the double reset as one bus reset and others
532
* may treat it as two, causing a gap count inconsistency
533
* again. Using a long bus reset prevents this.
534
*/
535
reset_bus(card, card_gap_count != 0);
536
/* Will allocate broadcast channel after the reset. */
537
} else {
538
struct fw_device *root_device = fw_node_get_device(root_node);
539
540
spin_unlock_irq(&card->lock);
541
542
if (root_device && root_device->cmc) {
543
// Make sure that the cycle master sends cycle start packets.
544
__be32 data = cpu_to_be32(CSR_STATE_BIT_CMSTR);
545
int rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
546
root_id, generation, SCODE_100,
547
CSR_REGISTER_BASE + CSR_STATE_SET,
548
&data, sizeof(data));
549
if (rcode == RCODE_GENERATION)
550
return;
551
}
552
553
if (local_id == irm_id)
554
allocate_broadcast_channel(card, generation);
555
}
556
}
557
558
void fw_card_initialize(struct fw_card *card,
559
const struct fw_card_driver *driver,
560
struct device *device)
561
{
562
static atomic_t index = ATOMIC_INIT(-1);
563
564
card->index = atomic_inc_return(&index);
565
card->driver = driver;
566
card->device = device;
567
568
card->transactions.current_tlabel = 0;
569
card->transactions.tlabel_mask = 0;
570
INIT_LIST_HEAD(&card->transactions.list);
571
spin_lock_init(&card->transactions.lock);
572
573
spin_lock_init(&card->topology_map.lock);
574
575
card->split_timeout.hi = DEFAULT_SPLIT_TIMEOUT / 8000;
576
card->split_timeout.lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
577
card->split_timeout.cycles = DEFAULT_SPLIT_TIMEOUT;
578
card->split_timeout.jiffies = isoc_cycles_to_jiffies(DEFAULT_SPLIT_TIMEOUT);
579
spin_lock_init(&card->split_timeout.lock);
580
581
card->color = 0;
582
card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
583
584
kref_init(&card->kref);
585
init_completion(&card->done);
586
587
spin_lock_init(&card->lock);
588
589
card->local_node = NULL;
590
591
INIT_DELAYED_WORK(&card->br_work, br_work);
592
INIT_DELAYED_WORK(&card->bm_work, bm_work);
593
}
594
EXPORT_SYMBOL(fw_card_initialize);
595
596
DEFINE_FREE(workqueue_destroy, struct workqueue_struct *, if (_T) destroy_workqueue(_T))
597
598
int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid,
599
unsigned int supported_isoc_contexts)
600
{
601
struct workqueue_struct *isoc_wq __free(workqueue_destroy) = NULL;
602
struct workqueue_struct *async_wq __free(workqueue_destroy) = NULL;
603
int ret;
604
605
// This workqueue should be:
606
// * != WQ_BH Sleepable.
607
// * == WQ_UNBOUND Any core can process data for isoc context. The
608
// implementation of unit protocol could consumes the core
609
// longer somehow.
610
// * != WQ_MEM_RECLAIM Not used for any backend of block device.
611
// * == WQ_FREEZABLE Isochronous communication is at regular interval in real
612
// time, thus should be drained if possible at freeze phase.
613
// * == WQ_HIGHPRI High priority to process semi-realtime timestamped data.
614
// * == WQ_SYSFS Parameters are available via sysfs.
615
// * max_active == n_it + n_ir A hardIRQ could notify events for multiple isochronous
616
// contexts if they are scheduled to the same cycle.
617
isoc_wq = alloc_workqueue("firewire-isoc-card%u",
618
WQ_UNBOUND | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
619
supported_isoc_contexts, card->index);
620
if (!isoc_wq)
621
return -ENOMEM;
622
623
// This workqueue should be:
624
// * != WQ_BH Sleepable.
625
// * == WQ_UNBOUND Any core can process data for asynchronous context.
626
// * == WQ_MEM_RECLAIM Used for any backend of block device.
627
// * == WQ_FREEZABLE The target device would not be available when being freezed.
628
// * == WQ_HIGHPRI High priority to process semi-realtime timestamped data.
629
// * == WQ_SYSFS Parameters are available via sysfs.
630
// * max_active == 4 A hardIRQ could notify events for a pair of requests and
631
// response AR/AT contexts.
632
async_wq = alloc_workqueue("firewire-async-card%u",
633
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
634
4, card->index);
635
if (!async_wq)
636
return -ENOMEM;
637
638
card->isoc_wq = isoc_wq;
639
card->async_wq = async_wq;
640
card->max_receive = max_receive;
641
card->link_speed = link_speed;
642
card->guid = guid;
643
644
scoped_guard(mutex, &card_mutex) {
645
generate_config_rom(card, tmp_config_rom);
646
ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
647
if (ret < 0) {
648
card->isoc_wq = NULL;
649
card->async_wq = NULL;
650
return ret;
651
}
652
retain_and_null_ptr(isoc_wq);
653
retain_and_null_ptr(async_wq);
654
655
list_add_tail(&card->link, &card_list);
656
}
657
658
return 0;
659
}
660
EXPORT_SYMBOL(fw_card_add);
661
662
/*
663
* The next few functions implement a dummy driver that is used once a card
664
* driver shuts down an fw_card. This allows the driver to cleanly unload,
665
* as all IO to the card will be handled (and failed) by the dummy driver
666
* instead of calling into the module. Only functions for iso context
667
* shutdown still need to be provided by the card driver.
668
*
669
* .read/write_csr() should never be called anymore after the dummy driver
670
* was bound since they are only used within request handler context.
671
* .set_config_rom() is never called since the card is taken out of card_list
672
* before switching to the dummy driver.
673
*/
674
675
static int dummy_read_phy_reg(struct fw_card *card, int address)
676
{
677
return -ENODEV;
678
}
679
680
static int dummy_update_phy_reg(struct fw_card *card, int address,
681
int clear_bits, int set_bits)
682
{
683
return -ENODEV;
684
}
685
686
static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
687
{
688
packet->callback(packet, card, RCODE_CANCELLED);
689
}
690
691
static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
692
{
693
packet->callback(packet, card, RCODE_CANCELLED);
694
}
695
696
static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
697
{
698
return -ENOENT;
699
}
700
701
static int dummy_enable_phys_dma(struct fw_card *card,
702
int node_id, int generation)
703
{
704
return -ENODEV;
705
}
706
707
static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
708
int type, int channel, size_t header_size)
709
{
710
return ERR_PTR(-ENODEV);
711
}
712
713
static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
714
{
715
return 0;
716
}
717
718
static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
719
{
720
}
721
722
static int dummy_start_iso(struct fw_iso_context *ctx,
723
s32 cycle, u32 sync, u32 tags)
724
{
725
return -ENODEV;
726
}
727
728
static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
729
{
730
return -ENODEV;
731
}
732
733
static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
734
struct fw_iso_buffer *buffer, unsigned long payload)
735
{
736
return -ENODEV;
737
}
738
739
static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
740
{
741
}
742
743
static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
744
{
745
return -ENODEV;
746
}
747
748
static const struct fw_card_driver dummy_driver_template = {
749
.read_phy_reg = dummy_read_phy_reg,
750
.update_phy_reg = dummy_update_phy_reg,
751
.send_request = dummy_send_request,
752
.send_response = dummy_send_response,
753
.cancel_packet = dummy_cancel_packet,
754
.enable_phys_dma = dummy_enable_phys_dma,
755
.read_csr = dummy_read_csr,
756
.write_csr = dummy_write_csr,
757
.allocate_iso_context = dummy_allocate_iso_context,
758
.start_iso = dummy_start_iso,
759
.set_iso_channels = dummy_set_iso_channels,
760
.queue_iso = dummy_queue_iso,
761
.flush_queue_iso = dummy_flush_queue_iso,
762
.flush_iso_completions = dummy_flush_iso_completions,
763
};
764
765
void fw_card_release(struct kref *kref)
766
{
767
struct fw_card *card = container_of(kref, struct fw_card, kref);
768
769
complete(&card->done);
770
}
771
EXPORT_SYMBOL_GPL(fw_card_release);
772
773
void fw_core_remove_card(struct fw_card *card)
774
{
775
struct fw_card_driver dummy_driver = dummy_driver_template;
776
777
might_sleep();
778
779
card->driver->update_phy_reg(card, 4,
780
PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
781
fw_schedule_bus_reset(card, false, true);
782
783
scoped_guard(mutex, &card_mutex)
784
list_del_init(&card->link);
785
786
/* Switch off most of the card driver interface. */
787
dummy_driver.free_iso_context = card->driver->free_iso_context;
788
dummy_driver.stop_iso = card->driver->stop_iso;
789
dummy_driver.disable = card->driver->disable;
790
card->driver = &dummy_driver;
791
792
drain_workqueue(card->isoc_wq);
793
drain_workqueue(card->async_wq);
794
card->driver->disable(card);
795
fw_cancel_pending_transactions(card);
796
797
scoped_guard(spinlock_irqsave, &card->lock)
798
fw_destroy_nodes(card);
799
800
/* Wait for all users, especially device workqueue jobs, to finish. */
801
fw_card_put(card);
802
wait_for_completion(&card->done);
803
804
destroy_workqueue(card->isoc_wq);
805
destroy_workqueue(card->async_wq);
806
807
WARN_ON(!list_empty(&card->transactions.list));
808
}
809
EXPORT_SYMBOL(fw_core_remove_card);
810
811
/**
812
* fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
813
* for controller card.
814
* @card: The instance of card for 1394 OHCI controller.
815
* @cycle_time: The mutual reference to value of cycle time for the read operation.
816
*
817
* Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
818
* controller card. This function accesses the region without any lock primitives or IRQ mask.
819
* When returning successfully, the content of @value argument has value aligned to host endianness,
820
* formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
821
*
822
* Context: Any context.
823
* Return:
824
* * 0 - Read successfully.
825
* * -ENODEV - The controller is unavailable due to being removed or unbound.
826
*/
827
int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
828
{
829
if (card->driver->read_csr == dummy_read_csr)
830
return -ENODEV;
831
832
// It's possible to switch to dummy driver between the above and the below. This is the best
833
// effort to return -ENODEV.
834
*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
835
return 0;
836
}
837
EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);
838
839