Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/core-card.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright (C) 2005-2007 Kristian Hoegsberg <[email protected]>
4
*/
5
6
#include <linux/bug.h>
7
#include <linux/completion.h>
8
#include <linux/crc-itu-t.h>
9
#include <linux/device.h>
10
#include <linux/errno.h>
11
#include <linux/firewire.h>
12
#include <linux/firewire-constants.h>
13
#include <linux/jiffies.h>
14
#include <linux/kernel.h>
15
#include <linux/kref.h>
16
#include <linux/list.h>
17
#include <linux/module.h>
18
#include <linux/mutex.h>
19
#include <linux/spinlock.h>
20
#include <linux/workqueue.h>
21
22
#include <linux/atomic.h>
23
#include <asm/byteorder.h>
24
25
#include "core.h"
26
#include <trace/events/firewire.h>
27
28
#define define_fw_printk_level(func, kern_level) \
29
void func(const struct fw_card *card, const char *fmt, ...) \
30
{ \
31
struct va_format vaf; \
32
va_list args; \
33
\
34
va_start(args, fmt); \
35
vaf.fmt = fmt; \
36
vaf.va = &args; \
37
printk(kern_level KBUILD_MODNAME " %s: %pV", \
38
dev_name(card->device), &vaf); \
39
va_end(args); \
40
}
41
define_fw_printk_level(fw_err, KERN_ERR);
42
define_fw_printk_level(fw_notice, KERN_NOTICE);
43
44
int fw_compute_block_crc(__be32 *block)
45
{
46
int length;
47
u16 crc;
48
49
length = (be32_to_cpu(block[0]) >> 16) & 0xff;
50
crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
51
*block |= cpu_to_be32(crc);
52
53
return length;
54
}
55
56
static DEFINE_MUTEX(card_mutex);
57
static LIST_HEAD(card_list);
58
59
static LIST_HEAD(descriptor_list);
60
static int descriptor_count;
61
62
static __be32 tmp_config_rom[256];
63
/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
64
static size_t config_rom_length = 1 + 4 + 1 + 1;
65
66
#define BIB_CRC(v) ((v) << 0)
67
#define BIB_CRC_LENGTH(v) ((v) << 16)
68
#define BIB_INFO_LENGTH(v) ((v) << 24)
69
#define BIB_BUS_NAME 0x31333934 /* "1394" */
70
#define BIB_LINK_SPEED(v) ((v) << 0)
71
#define BIB_GENERATION(v) ((v) << 4)
72
#define BIB_MAX_ROM(v) ((v) << 8)
73
#define BIB_MAX_RECEIVE(v) ((v) << 12)
74
#define BIB_CYC_CLK_ACC(v) ((v) << 16)
75
#define BIB_PMC ((1) << 27)
76
#define BIB_BMC ((1) << 28)
77
#define BIB_ISC ((1) << 29)
78
#define BIB_CMC ((1) << 30)
79
#define BIB_IRMC ((1) << 31)
80
#define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
81
82
/*
83
* IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
84
* but we have to make it longer because there are many devices whose firmware
85
* is just too slow for that.
86
*/
87
#define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
88
89
#define CANON_OUI 0x000085
90
91
static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
92
{
93
struct fw_descriptor *desc;
94
int i, j, k, length;
95
96
/*
97
* Initialize contents of config rom buffer. On the OHCI
98
* controller, block reads to the config rom accesses the host
99
* memory, but quadlet read access the hardware bus info block
100
* registers. That's just crack, but it means we should make
101
* sure the contents of bus info block in host memory matches
102
* the version stored in the OHCI registers.
103
*/
104
105
config_rom[0] = cpu_to_be32(
106
BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
107
config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
108
config_rom[2] = cpu_to_be32(
109
BIB_LINK_SPEED(card->link_speed) |
110
BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
111
BIB_MAX_ROM(2) |
112
BIB_MAX_RECEIVE(card->max_receive) |
113
BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
114
config_rom[3] = cpu_to_be32(card->guid >> 32);
115
config_rom[4] = cpu_to_be32(card->guid);
116
117
/* Generate root directory. */
118
config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
119
i = 7;
120
j = 7 + descriptor_count;
121
122
/* Generate root directory entries for descriptors. */
123
list_for_each_entry (desc, &descriptor_list, link) {
124
if (desc->immediate > 0)
125
config_rom[i++] = cpu_to_be32(desc->immediate);
126
config_rom[i] = cpu_to_be32(desc->key | (j - i));
127
i++;
128
j += desc->length;
129
}
130
131
/* Update root directory length. */
132
config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
133
134
/* End of root directory, now copy in descriptors. */
135
list_for_each_entry (desc, &descriptor_list, link) {
136
for (k = 0; k < desc->length; k++)
137
config_rom[i + k] = cpu_to_be32(desc->data[k]);
138
i += desc->length;
139
}
140
141
/* Calculate CRCs for all blocks in the config rom. This
142
* assumes that CRC length and info length are identical for
143
* the bus info block, which is always the case for this
144
* implementation. */
145
for (i = 0; i < j; i += length + 1)
146
length = fw_compute_block_crc(config_rom + i);
147
148
WARN_ON(j != config_rom_length);
149
}
150
151
static void update_config_roms(void)
152
{
153
struct fw_card *card;
154
155
list_for_each_entry (card, &card_list, link) {
156
generate_config_rom(card, tmp_config_rom);
157
card->driver->set_config_rom(card, tmp_config_rom,
158
config_rom_length);
159
}
160
}
161
162
static size_t required_space(struct fw_descriptor *desc)
163
{
164
/* descriptor + entry into root dir + optional immediate entry */
165
return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
166
}
167
168
int fw_core_add_descriptor(struct fw_descriptor *desc)
169
{
170
size_t i;
171
172
/*
173
* Check descriptor is valid; the length of all blocks in the
174
* descriptor has to add up to exactly the length of the
175
* block.
176
*/
177
i = 0;
178
while (i < desc->length)
179
i += (desc->data[i] >> 16) + 1;
180
181
if (i != desc->length)
182
return -EINVAL;
183
184
guard(mutex)(&card_mutex);
185
186
if (config_rom_length + required_space(desc) > 256)
187
return -EBUSY;
188
189
list_add_tail(&desc->link, &descriptor_list);
190
config_rom_length += required_space(desc);
191
descriptor_count++;
192
if (desc->immediate > 0)
193
descriptor_count++;
194
update_config_roms();
195
196
return 0;
197
}
198
EXPORT_SYMBOL(fw_core_add_descriptor);
199
200
void fw_core_remove_descriptor(struct fw_descriptor *desc)
201
{
202
guard(mutex)(&card_mutex);
203
204
list_del(&desc->link);
205
config_rom_length -= required_space(desc);
206
descriptor_count--;
207
if (desc->immediate > 0)
208
descriptor_count--;
209
update_config_roms();
210
}
211
EXPORT_SYMBOL(fw_core_remove_descriptor);
212
213
static int reset_bus(struct fw_card *card, bool short_reset)
214
{
215
int reg = short_reset ? 5 : 1;
216
int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
217
218
trace_bus_reset_initiate(card->index, card->generation, short_reset);
219
220
return card->driver->update_phy_reg(card, reg, 0, bit);
221
}
222
223
void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
224
{
225
trace_bus_reset_schedule(card->index, card->generation, short_reset);
226
227
/* We don't try hard to sort out requests of long vs. short resets. */
228
card->br_short = short_reset;
229
230
/* Use an arbitrary short delay to combine multiple reset requests. */
231
fw_card_get(card);
232
if (!queue_delayed_work(fw_workqueue, &card->br_work,
233
delayed ? DIV_ROUND_UP(HZ, 100) : 0))
234
fw_card_put(card);
235
}
236
EXPORT_SYMBOL(fw_schedule_bus_reset);
237
238
static void br_work(struct work_struct *work)
239
{
240
struct fw_card *card = from_work(card, work, br_work.work);
241
242
/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
243
if (card->reset_jiffies != 0 &&
244
time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
245
trace_bus_reset_postpone(card->index, card->generation, card->br_short);
246
247
if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
248
fw_card_put(card);
249
return;
250
}
251
252
fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
253
FW_PHY_CONFIG_CURRENT_GAP_COUNT);
254
reset_bus(card, card->br_short);
255
fw_card_put(card);
256
}
257
258
static void allocate_broadcast_channel(struct fw_card *card, int generation)
259
{
260
int channel, bandwidth = 0;
261
262
if (!card->broadcast_channel_allocated) {
263
fw_iso_resource_manage(card, generation, 1ULL << 31,
264
&channel, &bandwidth, true);
265
if (channel != 31) {
266
fw_notice(card, "failed to allocate broadcast channel\n");
267
return;
268
}
269
card->broadcast_channel_allocated = true;
270
}
271
272
device_for_each_child(card->device, (void *)(long)generation,
273
fw_device_set_broadcast_channel);
274
}
275
276
void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
277
{
278
fw_card_get(card);
279
if (!schedule_delayed_work(&card->bm_work, delay))
280
fw_card_put(card);
281
}
282
283
static void bm_work(struct work_struct *work)
284
{
285
static const char gap_count_table[] = {
286
63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
287
};
288
struct fw_card *card = from_work(card, work, bm_work.work);
289
struct fw_device *root_device, *irm_device;
290
struct fw_node *root_node;
291
int root_id, new_root_id, irm_id, bm_id, local_id;
292
int gap_count, generation, grace, rcode;
293
bool do_reset = false;
294
bool root_device_is_running;
295
bool root_device_is_cmc;
296
bool irm_is_1394_1995_only;
297
bool keep_this_irm;
298
__be32 transaction_data[2];
299
300
spin_lock_irq(&card->lock);
301
302
if (card->local_node == NULL) {
303
spin_unlock_irq(&card->lock);
304
goto out_put_card;
305
}
306
307
generation = card->generation;
308
309
root_node = card->root_node;
310
fw_node_get(root_node);
311
root_device = root_node->data;
312
root_device_is_running = root_device &&
313
atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
314
root_device_is_cmc = root_device && root_device->cmc;
315
316
irm_device = card->irm_node->data;
317
irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
318
(irm_device->config_rom[2] & 0x000000f0) == 0;
319
320
/* Canon MV5i works unreliably if it is not root node. */
321
keep_this_irm = irm_device && irm_device->config_rom &&
322
irm_device->config_rom[3] >> 8 == CANON_OUI;
323
324
root_id = root_node->node_id;
325
irm_id = card->irm_node->node_id;
326
local_id = card->local_node->node_id;
327
328
grace = time_after64(get_jiffies_64(),
329
card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
330
331
if ((is_next_generation(generation, card->bm_generation) &&
332
!card->bm_abdicate) ||
333
(card->bm_generation != generation && grace)) {
334
/*
335
* This first step is to figure out who is IRM and
336
* then try to become bus manager. If the IRM is not
337
* well defined (e.g. does not have an active link
338
* layer or does not responds to our lock request, we
339
* will have to do a little vigilante bus management.
340
* In that case, we do a goto into the gap count logic
341
* so that when we do the reset, we still optimize the
342
* gap count. That could well save a reset in the
343
* next generation.
344
*/
345
346
if (!card->irm_node->link_on) {
347
new_root_id = local_id;
348
fw_notice(card, "%s, making local node (%02x) root\n",
349
"IRM has link off", new_root_id);
350
goto pick_me;
351
}
352
353
if (irm_is_1394_1995_only && !keep_this_irm) {
354
new_root_id = local_id;
355
fw_notice(card, "%s, making local node (%02x) root\n",
356
"IRM is not 1394a compliant", new_root_id);
357
goto pick_me;
358
}
359
360
transaction_data[0] = cpu_to_be32(0x3f);
361
transaction_data[1] = cpu_to_be32(local_id);
362
363
spin_unlock_irq(&card->lock);
364
365
rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
366
irm_id, generation, SCODE_100,
367
CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
368
transaction_data, 8);
369
370
if (rcode == RCODE_GENERATION)
371
/* Another bus reset, BM work has been rescheduled. */
372
goto out;
373
374
bm_id = be32_to_cpu(transaction_data[0]);
375
376
scoped_guard(spinlock_irq, &card->lock) {
377
if (rcode == RCODE_COMPLETE && generation == card->generation)
378
card->bm_node_id =
379
bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
380
}
381
382
if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
383
/* Somebody else is BM. Only act as IRM. */
384
if (local_id == irm_id)
385
allocate_broadcast_channel(card, generation);
386
387
goto out;
388
}
389
390
if (rcode == RCODE_SEND_ERROR) {
391
/*
392
* We have been unable to send the lock request due to
393
* some local problem. Let's try again later and hope
394
* that the problem has gone away by then.
395
*/
396
fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
397
goto out;
398
}
399
400
spin_lock_irq(&card->lock);
401
402
if (rcode != RCODE_COMPLETE && !keep_this_irm) {
403
/*
404
* The lock request failed, maybe the IRM
405
* isn't really IRM capable after all. Let's
406
* do a bus reset and pick the local node as
407
* root, and thus, IRM.
408
*/
409
new_root_id = local_id;
410
fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
411
fw_rcode_string(rcode), new_root_id);
412
goto pick_me;
413
}
414
} else if (card->bm_generation != generation) {
415
/*
416
* We weren't BM in the last generation, and the last
417
* bus reset is less than 125ms ago. Reschedule this job.
418
*/
419
spin_unlock_irq(&card->lock);
420
fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
421
goto out;
422
}
423
424
/*
425
* We're bus manager for this generation, so next step is to
426
* make sure we have an active cycle master and do gap count
427
* optimization.
428
*/
429
card->bm_generation = generation;
430
431
if (card->gap_count == 0) {
432
/*
433
* If self IDs have inconsistent gap counts, do a
434
* bus reset ASAP. The config rom read might never
435
* complete, so don't wait for it. However, still
436
* send a PHY configuration packet prior to the
437
* bus reset. The PHY configuration packet might
438
* fail, but 1394-2008 8.4.5.2 explicitly permits
439
* it in this case, so it should be safe to try.
440
*/
441
new_root_id = local_id;
442
/*
443
* We must always send a bus reset if the gap count
444
* is inconsistent, so bypass the 5-reset limit.
445
*/
446
card->bm_retries = 0;
447
} else if (root_device == NULL) {
448
/*
449
* Either link_on is false, or we failed to read the
450
* config rom. In either case, pick another root.
451
*/
452
new_root_id = local_id;
453
} else if (!root_device_is_running) {
454
/*
455
* If we haven't probed this device yet, bail out now
456
* and let's try again once that's done.
457
*/
458
spin_unlock_irq(&card->lock);
459
goto out;
460
} else if (root_device_is_cmc) {
461
/*
462
* We will send out a force root packet for this
463
* node as part of the gap count optimization.
464
*/
465
new_root_id = root_id;
466
} else {
467
/*
468
* Current root has an active link layer and we
469
* successfully read the config rom, but it's not
470
* cycle master capable.
471
*/
472
new_root_id = local_id;
473
}
474
475
pick_me:
476
/*
477
* Pick a gap count from 1394a table E-1. The table doesn't cover
478
* the typically much larger 1394b beta repeater delays though.
479
*/
480
if (!card->beta_repeaters_present &&
481
root_node->max_hops < ARRAY_SIZE(gap_count_table))
482
gap_count = gap_count_table[root_node->max_hops];
483
else
484
gap_count = 63;
485
486
/*
487
* Finally, figure out if we should do a reset or not. If we have
488
* done less than 5 resets with the same physical topology and we
489
* have either a new root or a new gap count setting, let's do it.
490
*/
491
492
if (card->bm_retries++ < 5 &&
493
(card->gap_count != gap_count || new_root_id != root_id))
494
do_reset = true;
495
496
spin_unlock_irq(&card->lock);
497
498
if (do_reset) {
499
fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
500
new_root_id, gap_count);
501
fw_send_phy_config(card, new_root_id, generation, gap_count);
502
/*
503
* Where possible, use a short bus reset to minimize
504
* disruption to isochronous transfers. But in the event
505
* of a gap count inconsistency, use a long bus reset.
506
*
507
* As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
508
* may set different gap counts after a bus reset. On a mixed
509
* 1394/1394a bus, a short bus reset can get doubled. Some
510
* nodes may treat the double reset as one bus reset and others
511
* may treat it as two, causing a gap count inconsistency
512
* again. Using a long bus reset prevents this.
513
*/
514
reset_bus(card, card->gap_count != 0);
515
/* Will allocate broadcast channel after the reset. */
516
goto out;
517
}
518
519
if (root_device_is_cmc) {
520
/*
521
* Make sure that the cycle master sends cycle start packets.
522
*/
523
transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
524
rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
525
root_id, generation, SCODE_100,
526
CSR_REGISTER_BASE + CSR_STATE_SET,
527
transaction_data, 4);
528
if (rcode == RCODE_GENERATION)
529
goto out;
530
}
531
532
if (local_id == irm_id)
533
allocate_broadcast_channel(card, generation);
534
535
out:
536
fw_node_put(root_node);
537
out_put_card:
538
fw_card_put(card);
539
}
540
541
void fw_card_initialize(struct fw_card *card,
542
const struct fw_card_driver *driver,
543
struct device *device)
544
{
545
static atomic_t index = ATOMIC_INIT(-1);
546
547
card->index = atomic_inc_return(&index);
548
card->driver = driver;
549
card->device = device;
550
card->current_tlabel = 0;
551
card->tlabel_mask = 0;
552
card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
553
card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
554
card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
555
card->split_timeout_jiffies =
556
DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
557
card->color = 0;
558
card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
559
560
kref_init(&card->kref);
561
init_completion(&card->done);
562
INIT_LIST_HEAD(&card->transaction_list);
563
INIT_LIST_HEAD(&card->phy_receiver_list);
564
spin_lock_init(&card->lock);
565
566
card->local_node = NULL;
567
568
INIT_DELAYED_WORK(&card->br_work, br_work);
569
INIT_DELAYED_WORK(&card->bm_work, bm_work);
570
}
571
EXPORT_SYMBOL(fw_card_initialize);
572
573
int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid,
574
unsigned int supported_isoc_contexts)
575
{
576
int ret;
577
578
// This workqueue should be:
579
// * != WQ_BH Sleepable.
580
// * == WQ_UNBOUND Any core can process data for isoc context. The
581
// implementation of unit protocol could consumes the core
582
// longer somehow.
583
// * != WQ_MEM_RECLAIM Not used for any backend of block device.
584
// * == WQ_FREEZABLE Isochronous communication is at regular interval in real
585
// time, thus should be drained if possible at freeze phase.
586
// * == WQ_HIGHPRI High priority to process semi-realtime timestamped data.
587
// * == WQ_SYSFS Parameters are available via sysfs.
588
// * max_active == n_it + n_ir A hardIRQ could notify events for multiple isochronous
589
// contexts if they are scheduled to the same cycle.
590
card->isoc_wq = alloc_workqueue("firewire-isoc-card%u",
591
WQ_UNBOUND | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
592
supported_isoc_contexts, card->index);
593
if (!card->isoc_wq)
594
return -ENOMEM;
595
596
// This workqueue should be:
597
// * != WQ_BH Sleepable.
598
// * == WQ_UNBOUND Any core can process data for asynchronous context.
599
// * == WQ_MEM_RECLAIM Used for any backend of block device.
600
// * == WQ_FREEZABLE The target device would not be available when being freezed.
601
// * == WQ_HIGHPRI High priority to process semi-realtime timestamped data.
602
// * == WQ_SYSFS Parameters are available via sysfs.
603
// * max_active == 4 A hardIRQ could notify events for a pair of requests and
604
// response AR/AT contexts.
605
card->async_wq = alloc_workqueue("firewire-async-card%u",
606
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
607
4, card->index);
608
if (!card->async_wq) {
609
ret = -ENOMEM;
610
goto err_isoc;
611
}
612
613
card->max_receive = max_receive;
614
card->link_speed = link_speed;
615
card->guid = guid;
616
617
scoped_guard(mutex, &card_mutex) {
618
generate_config_rom(card, tmp_config_rom);
619
ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
620
if (ret < 0)
621
goto err_async;
622
623
list_add_tail(&card->link, &card_list);
624
}
625
626
return 0;
627
err_async:
628
destroy_workqueue(card->async_wq);
629
err_isoc:
630
destroy_workqueue(card->isoc_wq);
631
return ret;
632
}
633
EXPORT_SYMBOL(fw_card_add);
634
635
/*
636
* The next few functions implement a dummy driver that is used once a card
637
* driver shuts down an fw_card. This allows the driver to cleanly unload,
638
* as all IO to the card will be handled (and failed) by the dummy driver
639
* instead of calling into the module. Only functions for iso context
640
* shutdown still need to be provided by the card driver.
641
*
642
* .read/write_csr() should never be called anymore after the dummy driver
643
* was bound since they are only used within request handler context.
644
* .set_config_rom() is never called since the card is taken out of card_list
645
* before switching to the dummy driver.
646
*/
647
648
static int dummy_read_phy_reg(struct fw_card *card, int address)
649
{
650
return -ENODEV;
651
}
652
653
static int dummy_update_phy_reg(struct fw_card *card, int address,
654
int clear_bits, int set_bits)
655
{
656
return -ENODEV;
657
}
658
659
static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
660
{
661
packet->callback(packet, card, RCODE_CANCELLED);
662
}
663
664
static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
665
{
666
packet->callback(packet, card, RCODE_CANCELLED);
667
}
668
669
static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
670
{
671
return -ENOENT;
672
}
673
674
static int dummy_enable_phys_dma(struct fw_card *card,
675
int node_id, int generation)
676
{
677
return -ENODEV;
678
}
679
680
static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
681
int type, int channel, size_t header_size)
682
{
683
return ERR_PTR(-ENODEV);
684
}
685
686
static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
687
{
688
return 0;
689
}
690
691
static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
692
{
693
}
694
695
static int dummy_start_iso(struct fw_iso_context *ctx,
696
s32 cycle, u32 sync, u32 tags)
697
{
698
return -ENODEV;
699
}
700
701
static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
702
{
703
return -ENODEV;
704
}
705
706
static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
707
struct fw_iso_buffer *buffer, unsigned long payload)
708
{
709
return -ENODEV;
710
}
711
712
static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
713
{
714
}
715
716
static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
717
{
718
return -ENODEV;
719
}
720
721
static const struct fw_card_driver dummy_driver_template = {
722
.read_phy_reg = dummy_read_phy_reg,
723
.update_phy_reg = dummy_update_phy_reg,
724
.send_request = dummy_send_request,
725
.send_response = dummy_send_response,
726
.cancel_packet = dummy_cancel_packet,
727
.enable_phys_dma = dummy_enable_phys_dma,
728
.read_csr = dummy_read_csr,
729
.write_csr = dummy_write_csr,
730
.allocate_iso_context = dummy_allocate_iso_context,
731
.start_iso = dummy_start_iso,
732
.set_iso_channels = dummy_set_iso_channels,
733
.queue_iso = dummy_queue_iso,
734
.flush_queue_iso = dummy_flush_queue_iso,
735
.flush_iso_completions = dummy_flush_iso_completions,
736
};
737
738
void fw_card_release(struct kref *kref)
739
{
740
struct fw_card *card = container_of(kref, struct fw_card, kref);
741
742
complete(&card->done);
743
}
744
EXPORT_SYMBOL_GPL(fw_card_release);
745
746
void fw_core_remove_card(struct fw_card *card)
747
{
748
struct fw_card_driver dummy_driver = dummy_driver_template;
749
750
might_sleep();
751
752
card->driver->update_phy_reg(card, 4,
753
PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
754
fw_schedule_bus_reset(card, false, true);
755
756
scoped_guard(mutex, &card_mutex)
757
list_del_init(&card->link);
758
759
/* Switch off most of the card driver interface. */
760
dummy_driver.free_iso_context = card->driver->free_iso_context;
761
dummy_driver.stop_iso = card->driver->stop_iso;
762
card->driver = &dummy_driver;
763
drain_workqueue(card->isoc_wq);
764
drain_workqueue(card->async_wq);
765
766
scoped_guard(spinlock_irqsave, &card->lock)
767
fw_destroy_nodes(card);
768
769
/* Wait for all users, especially device workqueue jobs, to finish. */
770
fw_card_put(card);
771
wait_for_completion(&card->done);
772
773
destroy_workqueue(card->isoc_wq);
774
destroy_workqueue(card->async_wq);
775
776
WARN_ON(!list_empty(&card->transaction_list));
777
}
778
EXPORT_SYMBOL(fw_core_remove_card);
779
780
/**
781
* fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
782
* for controller card.
783
* @card: The instance of card for 1394 OHCI controller.
784
* @cycle_time: The mutual reference to value of cycle time for the read operation.
785
*
786
* Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
787
* controller card. This function accesses the region without any lock primitives or IRQ mask.
788
* When returning successfully, the content of @value argument has value aligned to host endianness,
789
* formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
790
*
791
* Context: Any context.
792
* Return:
793
* * 0 - Read successfully.
794
* * -ENODEV - The controller is unavailable due to being removed or unbound.
795
*/
796
int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
797
{
798
if (card->driver->read_csr == dummy_read_csr)
799
return -ENODEV;
800
801
// It's possible to switch to dummy driver between the above and the below. This is the best
802
// effort to return -ENODEV.
803
*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
804
return 0;
805
}
806
EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);
807
808