Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/core-device.c
49347 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Device probing and sysfs code.
4
*
5
* Copyright (C) 2005-2006 Kristian Hoegsberg <[email protected]>
6
*/
7
8
#include <linux/bug.h>
9
#include <linux/ctype.h>
10
#include <linux/delay.h>
11
#include <linux/device.h>
12
#include <linux/errno.h>
13
#include <linux/firewire.h>
14
#include <linux/firewire-constants.h>
15
#include <linux/jiffies.h>
16
#include <linux/kobject.h>
17
#include <linux/list.h>
18
#include <linux/mod_devicetable.h>
19
#include <linux/module.h>
20
#include <linux/mutex.h>
21
#include <linux/random.h>
22
#include <linux/rwsem.h>
23
#include <linux/slab.h>
24
#include <linux/spinlock.h>
25
#include <linux/string.h>
26
#include <linux/workqueue.h>
27
28
#include <linux/atomic.h>
29
#include <asm/byteorder.h>
30
31
#include "core.h"
32
33
#define ROOT_DIR_OFFSET 5
34
35
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
36
{
37
ci->p = p + 1;
38
ci->end = ci->p + (p[0] >> 16);
39
}
40
EXPORT_SYMBOL(fw_csr_iterator_init);
41
42
int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
43
{
44
*key = *ci->p >> 24;
45
*value = *ci->p & 0xffffff;
46
47
return ci->p++ < ci->end;
48
}
49
EXPORT_SYMBOL(fw_csr_iterator_next);
50
51
static const u32 *search_directory(const u32 *directory, int search_key)
52
{
53
struct fw_csr_iterator ci;
54
int key, value;
55
56
search_key |= CSR_DIRECTORY;
57
58
fw_csr_iterator_init(&ci, directory);
59
while (fw_csr_iterator_next(&ci, &key, &value)) {
60
if (key == search_key)
61
return ci.p - 1 + value;
62
}
63
64
return NULL;
65
}
66
67
static const u32 *search_leaf(const u32 *directory, int search_key)
68
{
69
struct fw_csr_iterator ci;
70
int last_key = 0, key, value;
71
72
fw_csr_iterator_init(&ci, directory);
73
while (fw_csr_iterator_next(&ci, &key, &value)) {
74
if (last_key == search_key &&
75
key == (CSR_DESCRIPTOR | CSR_LEAF))
76
return ci.p - 1 + value;
77
78
last_key = key;
79
}
80
81
return NULL;
82
}
83
84
static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
85
{
86
unsigned int quadlets, i;
87
char c;
88
89
if (!size || !buf)
90
return -EINVAL;
91
92
quadlets = min(block[0] >> 16, 256U);
93
if (quadlets < 2)
94
return -ENODATA;
95
96
if (block[1] != 0 || block[2] != 0)
97
/* unknown language/character set */
98
return -ENODATA;
99
100
block += 3;
101
quadlets -= 2;
102
for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
103
c = block[i / 4] >> (24 - 8 * (i % 4));
104
if (c == '\0')
105
break;
106
buf[i] = c;
107
}
108
buf[i] = '\0';
109
110
return i;
111
}
112
113
/**
114
* fw_csr_string() - reads a string from the configuration ROM
115
* @directory: e.g. root directory or unit directory
116
* @key: the key of the preceding directory entry
117
* @buf: where to put the string
118
* @size: size of @buf, in bytes
119
*
120
* The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
121
* @key. The string is zero-terminated. An overlong string is silently truncated such that it
122
* and the zero byte fit into @size.
123
*
124
* Returns strlen(buf) or a negative error code.
125
*/
126
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
127
{
128
const u32 *leaf = search_leaf(directory, key);
129
if (!leaf)
130
return -ENOENT;
131
132
return textual_leaf_to_string(leaf, buf, size);
133
}
134
EXPORT_SYMBOL(fw_csr_string);
135
136
static void get_ids(const u32 *directory, int *id)
137
{
138
struct fw_csr_iterator ci;
139
int key, value;
140
141
fw_csr_iterator_init(&ci, directory);
142
while (fw_csr_iterator_next(&ci, &key, &value)) {
143
switch (key) {
144
case CSR_VENDOR: id[0] = value; break;
145
case CSR_MODEL: id[1] = value; break;
146
case CSR_SPECIFIER_ID: id[2] = value; break;
147
case CSR_VERSION: id[3] = value; break;
148
}
149
}
150
}
151
152
static void get_modalias_ids(const struct fw_unit *unit, int *id)
153
{
154
const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET];
155
const u32 *directories[] = {NULL, NULL, NULL};
156
const u32 *vendor_directory;
157
int i;
158
159
directories[0] = root_directory;
160
161
// Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C
162
// Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'.
163
vendor_directory = search_directory(root_directory, CSR_VENDOR);
164
if (!vendor_directory) {
165
directories[1] = unit->directory;
166
} else {
167
directories[1] = vendor_directory;
168
directories[2] = unit->directory;
169
}
170
171
for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i)
172
get_ids(directories[i], id);
173
}
174
175
static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
176
{
177
int match = 0;
178
179
if (id[0] == id_table->vendor_id)
180
match |= IEEE1394_MATCH_VENDOR_ID;
181
if (id[1] == id_table->model_id)
182
match |= IEEE1394_MATCH_MODEL_ID;
183
if (id[2] == id_table->specifier_id)
184
match |= IEEE1394_MATCH_SPECIFIER_ID;
185
if (id[3] == id_table->version)
186
match |= IEEE1394_MATCH_VERSION;
187
188
return (match & id_table->match_flags) == id_table->match_flags;
189
}
190
191
static const struct ieee1394_device_id *unit_match(struct device *dev,
192
const struct device_driver *drv)
193
{
194
const struct ieee1394_device_id *id_table =
195
container_of_const(drv, struct fw_driver, driver)->id_table;
196
int id[] = {0, 0, 0, 0};
197
198
get_modalias_ids(fw_unit(dev), id);
199
200
for (; id_table->match_flags != 0; id_table++)
201
if (match_ids(id_table, id))
202
return id_table;
203
204
return NULL;
205
}
206
207
static bool is_fw_unit(const struct device *dev);
208
209
static int fw_unit_match(struct device *dev, const struct device_driver *drv)
210
{
211
/* We only allow binding to fw_units. */
212
return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
213
}
214
215
static int fw_unit_probe(struct device *dev)
216
{
217
struct fw_driver *driver =
218
container_of(dev->driver, struct fw_driver, driver);
219
220
return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
221
}
222
223
static void fw_unit_remove(struct device *dev)
224
{
225
struct fw_driver *driver =
226
container_of(dev->driver, struct fw_driver, driver);
227
228
driver->remove(fw_unit(dev));
229
}
230
231
static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size)
232
{
233
int id[] = {0, 0, 0, 0};
234
235
get_modalias_ids(unit, id);
236
237
return snprintf(buffer, buffer_size,
238
"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
239
id[0], id[1], id[2], id[3]);
240
}
241
242
static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env)
243
{
244
const struct fw_unit *unit = fw_unit(dev);
245
char modalias[64];
246
247
get_modalias(unit, modalias, sizeof(modalias));
248
249
if (add_uevent_var(env, "MODALIAS=%s", modalias))
250
return -ENOMEM;
251
252
return 0;
253
}
254
255
const struct bus_type fw_bus_type = {
256
.name = "firewire",
257
.match = fw_unit_match,
258
.probe = fw_unit_probe,
259
.remove = fw_unit_remove,
260
};
261
EXPORT_SYMBOL(fw_bus_type);
262
263
int fw_device_enable_phys_dma(struct fw_device *device)
264
{
265
int generation = device->generation;
266
267
/* device->node_id, accessed below, must not be older than generation */
268
smp_rmb();
269
270
return device->card->driver->enable_phys_dma(device->card,
271
device->node_id,
272
generation);
273
}
274
EXPORT_SYMBOL(fw_device_enable_phys_dma);
275
276
struct config_rom_attribute {
277
struct device_attribute attr;
278
u32 key;
279
};
280
281
static ssize_t show_immediate(struct device *dev,
282
struct device_attribute *dattr, char *buf)
283
{
284
struct config_rom_attribute *attr =
285
container_of(dattr, struct config_rom_attribute, attr);
286
struct fw_csr_iterator ci;
287
const u32 *directories[] = {NULL, NULL};
288
int i, value = -1;
289
290
guard(rwsem_read)(&fw_device_rwsem);
291
292
if (is_fw_unit(dev)) {
293
directories[0] = fw_unit(dev)->directory;
294
} else {
295
const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
296
const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
297
298
if (!vendor_directory) {
299
directories[0] = root_directory;
300
} else {
301
// Legacy layout of configuration ROM described in Annex 1 of
302
// 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading
303
// Association, TA Document 1999027)'.
304
directories[0] = vendor_directory;
305
directories[1] = root_directory;
306
}
307
}
308
309
for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
310
int key, val;
311
312
fw_csr_iterator_init(&ci, directories[i]);
313
while (fw_csr_iterator_next(&ci, &key, &val)) {
314
if (attr->key == key)
315
value = val;
316
}
317
}
318
319
if (value < 0)
320
return -ENOENT;
321
322
// Note that this function is also called by init_fw_attribute_group() with NULL pointer.
323
return buf ? sysfs_emit(buf, "0x%06x\n", value) : 0;
324
}
325
326
#define IMMEDIATE_ATTR(name, key) \
327
{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
328
329
static ssize_t show_text_leaf(struct device *dev,
330
struct device_attribute *dattr, char *buf)
331
{
332
struct config_rom_attribute *attr =
333
container_of(dattr, struct config_rom_attribute, attr);
334
const u32 *directories[] = {NULL, NULL};
335
size_t bufsize;
336
char dummy_buf[2];
337
int i, ret = -ENOENT;
338
339
guard(rwsem_read)(&fw_device_rwsem);
340
341
if (is_fw_unit(dev)) {
342
directories[0] = fw_unit(dev)->directory;
343
} else {
344
const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
345
const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
346
347
if (!vendor_directory) {
348
directories[0] = root_directory;
349
} else {
350
// Legacy layout of configuration ROM described in Annex 1 of
351
// 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394
352
// Trading Association, TA Document 1999027)'.
353
directories[0] = root_directory;
354
directories[1] = vendor_directory;
355
}
356
}
357
358
// Note that this function is also called by init_fw_attribute_group() with NULL pointer.
359
if (buf) {
360
bufsize = PAGE_SIZE - 1;
361
} else {
362
buf = dummy_buf;
363
bufsize = 1;
364
}
365
366
for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
367
int result = fw_csr_string(directories[i], attr->key, buf, bufsize);
368
// Detected.
369
if (result >= 0) {
370
ret = result;
371
} else if (i == 0 && attr->key == CSR_VENDOR) {
372
// Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry
373
// in the root directory follows to the directory entry for vendor ID
374
// instead of the immediate value for vendor ID.
375
result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf,
376
bufsize);
377
if (result >= 0)
378
ret = result;
379
}
380
}
381
382
if (ret < 0)
383
return ret;
384
385
// Strip trailing whitespace and add newline.
386
while (ret > 0 && isspace(buf[ret - 1]))
387
ret--;
388
strcpy(buf + ret, "\n");
389
ret++;
390
391
return ret;
392
}
393
394
#define TEXT_LEAF_ATTR(name, key) \
395
{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
396
397
static struct config_rom_attribute config_rom_attributes[] = {
398
IMMEDIATE_ATTR(vendor, CSR_VENDOR),
399
IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
400
IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
401
IMMEDIATE_ATTR(version, CSR_VERSION),
402
IMMEDIATE_ATTR(model, CSR_MODEL),
403
TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
404
TEXT_LEAF_ATTR(model_name, CSR_MODEL),
405
TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
406
};
407
408
static void init_fw_attribute_group(struct device *dev,
409
struct device_attribute *attrs,
410
struct fw_attribute_group *group)
411
{
412
struct device_attribute *attr;
413
int i, j;
414
415
for (j = 0; attrs[j].attr.name != NULL; j++)
416
group->attrs[j] = &attrs[j].attr;
417
418
for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
419
attr = &config_rom_attributes[i].attr;
420
if (attr->show(dev, attr, NULL) < 0)
421
continue;
422
group->attrs[j++] = &attr->attr;
423
}
424
425
group->attrs[j] = NULL;
426
group->groups[0] = &group->group;
427
group->groups[1] = NULL;
428
group->group.attrs = group->attrs;
429
dev->groups = (const struct attribute_group **) group->groups;
430
}
431
432
static ssize_t modalias_show(struct device *dev,
433
struct device_attribute *attr, char *buf)
434
{
435
struct fw_unit *unit = fw_unit(dev);
436
int length;
437
438
length = get_modalias(unit, buf, PAGE_SIZE);
439
strcpy(buf + length, "\n");
440
441
return length + 1;
442
}
443
444
static ssize_t rom_index_show(struct device *dev,
445
struct device_attribute *attr, char *buf)
446
{
447
struct fw_device *device = fw_device(dev->parent);
448
struct fw_unit *unit = fw_unit(dev);
449
450
return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom);
451
}
452
453
static struct device_attribute fw_unit_attributes[] = {
454
__ATTR_RO(modalias),
455
__ATTR_RO(rom_index),
456
__ATTR_NULL,
457
};
458
459
static ssize_t config_rom_show(struct device *dev,
460
struct device_attribute *attr, char *buf)
461
{
462
struct fw_device *device = fw_device(dev);
463
size_t length;
464
465
guard(rwsem_read)(&fw_device_rwsem);
466
467
length = device->config_rom_length * 4;
468
memcpy(buf, device->config_rom, length);
469
470
return length;
471
}
472
473
static ssize_t guid_show(struct device *dev,
474
struct device_attribute *attr, char *buf)
475
{
476
struct fw_device *device = fw_device(dev);
477
478
guard(rwsem_read)(&fw_device_rwsem);
479
480
return sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]);
481
}
482
483
static ssize_t is_local_show(struct device *dev,
484
struct device_attribute *attr, char *buf)
485
{
486
struct fw_device *device = fw_device(dev);
487
488
return sysfs_emit(buf, "%u\n", device->is_local);
489
}
490
491
static int units_sprintf(char *buf, const u32 *directory)
492
{
493
struct fw_csr_iterator ci;
494
int key, value;
495
int specifier_id = 0;
496
int version = 0;
497
498
fw_csr_iterator_init(&ci, directory);
499
while (fw_csr_iterator_next(&ci, &key, &value)) {
500
switch (key) {
501
case CSR_SPECIFIER_ID:
502
specifier_id = value;
503
break;
504
case CSR_VERSION:
505
version = value;
506
break;
507
}
508
}
509
510
return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
511
}
512
513
static ssize_t units_show(struct device *dev,
514
struct device_attribute *attr, char *buf)
515
{
516
struct fw_device *device = fw_device(dev);
517
struct fw_csr_iterator ci;
518
int key, value, i = 0;
519
520
guard(rwsem_read)(&fw_device_rwsem);
521
522
fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
523
while (fw_csr_iterator_next(&ci, &key, &value)) {
524
if (key != (CSR_UNIT | CSR_DIRECTORY))
525
continue;
526
i += units_sprintf(&buf[i], ci.p + value - 1);
527
if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
528
break;
529
}
530
531
if (i)
532
buf[i - 1] = '\n';
533
534
return i;
535
}
536
537
static struct device_attribute fw_device_attributes[] = {
538
__ATTR_RO(config_rom),
539
__ATTR_RO(guid),
540
__ATTR_RO(is_local),
541
__ATTR_RO(units),
542
__ATTR_NULL,
543
};
544
545
#define CANON_OUI 0x000085
546
547
static int detect_quirks_by_bus_information_block(const u32 *bus_information_block)
548
{
549
int quirks = 0;
550
551
if ((bus_information_block[2] & 0x000000f0) == 0)
552
quirks |= FW_DEVICE_QUIRK_IRM_IS_1394_1995_ONLY;
553
554
if ((bus_information_block[3] >> 8) == CANON_OUI)
555
quirks |= FW_DEVICE_QUIRK_IRM_IGNORES_BUS_MANAGER;
556
557
return quirks;
558
}
559
560
struct entry_match {
561
unsigned int index;
562
u32 value;
563
};
564
565
static const struct entry_match motu_audio_express_matches[] = {
566
{ 1, 0x030001f2 },
567
{ 3, 0xd1000002 },
568
{ 4, 0x8d000005 },
569
{ 6, 0x120001f2 },
570
{ 7, 0x13000033 },
571
{ 8, 0x17104800 },
572
};
573
574
static const struct entry_match tascam_fw_series_matches[] = {
575
{ 1, 0x0300022e },
576
{ 3, 0x8d000006 },
577
{ 4, 0xd1000001 },
578
{ 6, 0x1200022e },
579
{ 8, 0xd4000004 },
580
};
581
582
static int detect_quirks_by_root_directory(const u32 *root_directory, unsigned int length)
583
{
584
static const struct {
585
enum fw_device_quirk quirk;
586
const struct entry_match *matches;
587
unsigned int match_count;
588
} *entry, entries[] = {
589
{
590
.quirk = FW_DEVICE_QUIRK_ACK_PACKET_WITH_INVALID_PENDING_CODE,
591
.matches = motu_audio_express_matches,
592
.match_count = ARRAY_SIZE(motu_audio_express_matches),
593
},
594
{
595
.quirk = FW_DEVICE_QUIRK_UNSTABLE_AT_S400,
596
.matches = tascam_fw_series_matches,
597
.match_count = ARRAY_SIZE(tascam_fw_series_matches),
598
},
599
};
600
int quirks = 0;
601
int i;
602
603
for (i = 0; i < ARRAY_SIZE(entries); ++i) {
604
int j;
605
606
entry = entries + i;
607
for (j = 0; j < entry->match_count; ++j) {
608
unsigned int index = entry->matches[j].index;
609
unsigned int value = entry->matches[j].value;
610
611
if ((length < index) || (root_directory[index] != value))
612
break;
613
}
614
if (j == entry->match_count)
615
quirks |= entry->quirk;
616
}
617
618
return quirks;
619
}
620
621
static int read_rom(struct fw_device *device, int generation, int speed, int index, u32 *data)
622
{
623
u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
624
int i, rcode;
625
626
/* device->node_id, accessed below, must not be older than generation */
627
smp_rmb();
628
629
for (i = 10; i < 100; i += 10) {
630
rcode = fw_run_transaction(device->card,
631
TCODE_READ_QUADLET_REQUEST, device->node_id,
632
generation, speed, offset, data, 4);
633
if (rcode != RCODE_BUSY)
634
break;
635
msleep(i);
636
}
637
be32_to_cpus(data);
638
639
return rcode;
640
}
641
642
// By quadlet unit.
643
#define MAX_CONFIG_ROM_SIZE ((CSR_CONFIG_ROM_END - CSR_CONFIG_ROM) / sizeof(u32))
644
645
/*
646
* Read the bus info block, perform a speed probe, and read all of the rest of
647
* the config ROM. We do all this with a cached bus generation. If the bus
648
* generation changes under us, read_config_rom will fail and get retried.
649
* It's better to start all over in this case because the node from which we
650
* are reading the ROM may have changed the ROM during the reset.
651
* Returns either a result code or a negative error code.
652
*/
653
static int read_config_rom(struct fw_device *device, int generation)
654
{
655
struct fw_card *card = device->card;
656
const u32 *new_rom, *old_rom __free(kfree) = NULL;
657
u32 *stack, *rom __free(kfree) = NULL;
658
u32 sp, key;
659
int i, end, length, ret, speed;
660
int quirks;
661
662
rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
663
sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
664
if (rom == NULL)
665
return -ENOMEM;
666
667
stack = &rom[MAX_CONFIG_ROM_SIZE];
668
memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
669
670
speed = SCODE_100;
671
672
/* First read the bus info block. */
673
for (i = 0; i < 5; i++) {
674
ret = read_rom(device, generation, speed, i, &rom[i]);
675
if (ret != RCODE_COMPLETE)
676
return ret;
677
/*
678
* As per IEEE1212 7.2, during initialization, devices can
679
* reply with a 0 for the first quadlet of the config
680
* rom to indicate that they are booting (for example,
681
* if the firmware is on the disk of a external
682
* harddisk). In that case we just fail, and the
683
* retry mechanism will try again later.
684
*/
685
if (i == 0 && rom[i] == 0)
686
return RCODE_BUSY;
687
}
688
689
quirks = detect_quirks_by_bus_information_block(rom);
690
691
// Just prevent from torn writing/reading.
692
WRITE_ONCE(device->quirks, quirks);
693
694
/*
695
* Now parse the config rom. The config rom is a recursive
696
* directory structure so we parse it using a stack of
697
* references to the blocks that make up the structure. We
698
* push a reference to the root directory on the stack to
699
* start things off.
700
*/
701
length = i;
702
sp = 0;
703
stack[sp++] = 0xc0000005;
704
while (sp > 0) {
705
/*
706
* Pop the next block reference of the stack. The
707
* lower 24 bits is the offset into the config rom,
708
* the upper 8 bits are the type of the reference the
709
* block.
710
*/
711
key = stack[--sp];
712
i = key & 0xffffff;
713
if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
714
return -ENXIO;
715
716
/* Read header quadlet for the block to get the length. */
717
ret = read_rom(device, generation, speed, i, &rom[i]);
718
if (ret != RCODE_COMPLETE)
719
return ret;
720
end = i + (rom[i] >> 16) + 1;
721
if (end > MAX_CONFIG_ROM_SIZE) {
722
/*
723
* This block extends outside the config ROM which is
724
* a firmware bug. Ignore this whole block, i.e.
725
* simply set a fake block length of 0.
726
*/
727
fw_err(card, "skipped invalid ROM block %x at %llx\n",
728
rom[i],
729
i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
730
rom[i] = 0;
731
end = i;
732
}
733
i++;
734
735
/*
736
* Now read in the block. If this is a directory
737
* block, check the entries as we read them to see if
738
* it references another block, and push it in that case.
739
*/
740
for (; i < end; i++) {
741
ret = read_rom(device, generation, speed, i, &rom[i]);
742
if (ret != RCODE_COMPLETE)
743
return ret;
744
745
if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
746
continue;
747
/*
748
* Offset points outside the ROM. May be a firmware
749
* bug or an Extended ROM entry (IEEE 1212-2001 clause
750
* 7.7.18). Simply overwrite this pointer here by a
751
* fake immediate entry so that later iterators over
752
* the ROM don't have to check offsets all the time.
753
*/
754
if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
755
fw_err(card,
756
"skipped unsupported ROM entry %x at %llx\n",
757
rom[i],
758
i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
759
rom[i] = 0;
760
continue;
761
}
762
stack[sp++] = i + rom[i];
763
}
764
if (length < i)
765
length = i;
766
}
767
768
quirks |= detect_quirks_by_root_directory(rom + ROOT_DIR_OFFSET, length - ROOT_DIR_OFFSET);
769
770
// Just prevent from torn writing/reading.
771
WRITE_ONCE(device->quirks, quirks);
772
773
if (unlikely(quirks & FW_DEVICE_QUIRK_UNSTABLE_AT_S400))
774
speed = SCODE_200;
775
else
776
speed = device->node->max_speed;
777
778
// Determine the speed of
779
// - devices with link speed less than PHY speed,
780
// - devices with 1394b PHY (unless only connected to 1394a PHYs),
781
// - all devices if there are 1394b repeaters.
782
// Note, we cannot use the bus info block's link_spd as starting point because some buggy
783
// firmwares set it lower than necessary and because 1394-1995 nodes do not have the field.
784
if ((rom[2] & 0x7) < speed || speed == SCODE_BETA || card->beta_repeaters_present) {
785
u32 dummy;
786
787
// for S1600 and S3200.
788
if (speed == SCODE_BETA)
789
speed = card->link_speed;
790
791
while (speed > SCODE_100) {
792
if (read_rom(device, generation, speed, 0, &dummy) ==
793
RCODE_COMPLETE)
794
break;
795
--speed;
796
}
797
}
798
799
device->max_speed = speed;
800
801
old_rom = device->config_rom;
802
new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
803
if (new_rom == NULL)
804
return -ENOMEM;
805
806
scoped_guard(rwsem_write, &fw_device_rwsem) {
807
device->config_rom = new_rom;
808
device->config_rom_length = length;
809
}
810
811
device->max_rec = rom[2] >> 12 & 0xf;
812
device->cmc = rom[2] >> 30 & 1;
813
device->irmc = rom[2] >> 31 & 1;
814
815
return RCODE_COMPLETE;
816
}
817
818
static void fw_unit_release(struct device *dev)
819
{
820
struct fw_unit *unit = fw_unit(dev);
821
822
fw_device_put(fw_parent_device(unit));
823
kfree(unit);
824
}
825
826
static struct device_type fw_unit_type = {
827
.uevent = fw_unit_uevent,
828
.release = fw_unit_release,
829
};
830
831
static bool is_fw_unit(const struct device *dev)
832
{
833
return dev->type == &fw_unit_type;
834
}
835
836
static void create_units(struct fw_device *device)
837
{
838
struct fw_csr_iterator ci;
839
struct fw_unit *unit;
840
int key, value, i;
841
842
i = 0;
843
fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
844
while (fw_csr_iterator_next(&ci, &key, &value)) {
845
if (key != (CSR_UNIT | CSR_DIRECTORY))
846
continue;
847
848
/*
849
* Get the address of the unit directory and try to
850
* match the drivers id_tables against it.
851
*/
852
unit = kzalloc(sizeof(*unit), GFP_KERNEL);
853
if (unit == NULL)
854
continue;
855
856
unit->directory = ci.p + value - 1;
857
unit->device.bus = &fw_bus_type;
858
unit->device.type = &fw_unit_type;
859
unit->device.parent = &device->device;
860
dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
861
862
BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
863
ARRAY_SIZE(fw_unit_attributes) +
864
ARRAY_SIZE(config_rom_attributes));
865
init_fw_attribute_group(&unit->device,
866
fw_unit_attributes,
867
&unit->attribute_group);
868
869
fw_device_get(device);
870
if (device_register(&unit->device) < 0) {
871
put_device(&unit->device);
872
continue;
873
}
874
}
875
}
876
877
static int shutdown_unit(struct device *device, void *data)
878
{
879
device_unregister(device);
880
881
return 0;
882
}
883
884
/*
885
* fw_device_rwsem acts as dual purpose mutex:
886
* - serializes accesses to fw_device.config_rom/.config_rom_length and
887
* fw_unit.directory, unless those accesses happen at safe occasions
888
*/
889
DECLARE_RWSEM(fw_device_rwsem);
890
891
DEFINE_XARRAY_ALLOC(fw_device_xa);
892
int fw_cdev_major;
893
894
struct fw_device *fw_device_get_by_devt(dev_t devt)
895
{
896
struct fw_device *device;
897
898
device = xa_load(&fw_device_xa, MINOR(devt));
899
if (device)
900
fw_device_get(device);
901
902
return device;
903
}
904
905
struct workqueue_struct *fw_workqueue;
906
EXPORT_SYMBOL(fw_workqueue);
907
908
static void fw_schedule_device_work(struct fw_device *device,
909
unsigned long delay)
910
{
911
queue_delayed_work(fw_workqueue, &device->work, delay);
912
}
913
914
/*
915
* These defines control the retry behavior for reading the config
916
* rom. It shouldn't be necessary to tweak these; if the device
917
* doesn't respond to a config rom read within 10 seconds, it's not
918
* going to respond at all. As for the initial delay, a lot of
919
* devices will be able to respond within half a second after bus
920
* reset. On the other hand, it's not really worth being more
921
* aggressive than that, since it scales pretty well; if 10 devices
922
* are plugged in, they're all getting read within one second.
923
*/
924
925
#define MAX_RETRIES 10
926
#define RETRY_DELAY secs_to_jiffies(3)
927
#define INITIAL_DELAY msecs_to_jiffies(500)
928
#define SHUTDOWN_DELAY secs_to_jiffies(2)
929
930
static void fw_device_shutdown(struct work_struct *work)
931
{
932
struct fw_device *device = from_work(device, work, work.work);
933
934
if (time_is_after_jiffies64(device->card->reset_jiffies + SHUTDOWN_DELAY)
935
&& !list_empty(&device->card->link)) {
936
fw_schedule_device_work(device, SHUTDOWN_DELAY);
937
return;
938
}
939
940
if (atomic_cmpxchg(&device->state,
941
FW_DEVICE_GONE,
942
FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
943
return;
944
945
fw_device_cdev_remove(device);
946
device_for_each_child(&device->device, NULL, shutdown_unit);
947
device_unregister(&device->device);
948
949
xa_erase(&fw_device_xa, MINOR(device->device.devt));
950
951
fw_device_put(device);
952
}
953
954
static void fw_device_release(struct device *dev)
955
{
956
struct fw_device *device = fw_device(dev);
957
struct fw_card *card = device->card;
958
959
/*
960
* Take the card lock so we don't set this to NULL while a
961
* FW_NODE_UPDATED callback is being handled or while the
962
* bus manager work looks at this node.
963
*/
964
scoped_guard(spinlock_irqsave, &card->lock)
965
fw_node_set_device(device->node, NULL);
966
967
fw_node_put(device->node);
968
kfree(device->config_rom);
969
kfree(device);
970
fw_card_put(card);
971
}
972
973
static struct device_type fw_device_type = {
974
.release = fw_device_release,
975
};
976
977
static bool is_fw_device(const struct device *dev)
978
{
979
return dev->type == &fw_device_type;
980
}
981
982
static int update_unit(struct device *dev, void *data)
983
{
984
struct fw_unit *unit = fw_unit(dev);
985
struct fw_driver *driver = (struct fw_driver *)dev->driver;
986
987
if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
988
device_lock(dev);
989
driver->update(unit);
990
device_unlock(dev);
991
}
992
993
return 0;
994
}
995
996
static void fw_device_update(struct work_struct *work)
997
{
998
struct fw_device *device = from_work(device, work, work.work);
999
1000
fw_device_cdev_update(device);
1001
device_for_each_child(&device->device, NULL, update_unit);
1002
}
1003
1004
enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
1005
1006
static void set_broadcast_channel(struct fw_device *device, int generation)
1007
{
1008
struct fw_card *card = device->card;
1009
__be32 data;
1010
int rcode;
1011
1012
if (!card->broadcast_channel_allocated)
1013
return;
1014
1015
/*
1016
* The Broadcast_Channel Valid bit is required by nodes which want to
1017
* transmit on this channel. Such transmissions are practically
1018
* exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
1019
* to be IRM capable and have a max_rec of 8 or more. We use this fact
1020
* to narrow down to which nodes we send Broadcast_Channel updates.
1021
*/
1022
if (!device->irmc || device->max_rec < 8)
1023
return;
1024
1025
/*
1026
* Some 1394-1995 nodes crash if this 1394a-2000 register is written.
1027
* Perform a read test first.
1028
*/
1029
if (device->bc_implemented == BC_UNKNOWN) {
1030
rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
1031
device->node_id, generation, device->max_speed,
1032
CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
1033
&data, 4);
1034
switch (rcode) {
1035
case RCODE_COMPLETE:
1036
if (data & cpu_to_be32(1 << 31)) {
1037
device->bc_implemented = BC_IMPLEMENTED;
1038
break;
1039
}
1040
fallthrough; /* to case address error */
1041
case RCODE_ADDRESS_ERROR:
1042
device->bc_implemented = BC_UNIMPLEMENTED;
1043
}
1044
}
1045
1046
if (device->bc_implemented == BC_IMPLEMENTED) {
1047
data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
1048
BROADCAST_CHANNEL_VALID);
1049
fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
1050
device->node_id, generation, device->max_speed,
1051
CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
1052
&data, 4);
1053
}
1054
}
1055
1056
int fw_device_set_broadcast_channel(struct device *dev, void *gen)
1057
{
1058
if (is_fw_device(dev))
1059
set_broadcast_channel(fw_device(dev), (long)gen);
1060
1061
return 0;
1062
}
1063
1064
static int compare_configuration_rom(struct device *dev, const void *data)
1065
{
1066
const struct fw_device *old = fw_device(dev);
1067
const u32 *config_rom = data;
1068
1069
if (!is_fw_device(dev))
1070
return 0;
1071
1072
// Compare the bus information block and root_length/root_crc.
1073
return !memcmp(old->config_rom, config_rom, 6 * 4);
1074
}
1075
1076
static void fw_device_init(struct work_struct *work)
1077
{
1078
struct fw_device *device = from_work(device, work, work.work);
1079
struct fw_card *card = device->card;
1080
struct device *found;
1081
u32 minor;
1082
int ret;
1083
1084
/*
1085
* All failure paths here call fw_node_set_device(node, NULL), so that we
1086
* don't try to do device_for_each_child() on a kfree()'d
1087
* device.
1088
*/
1089
1090
ret = read_config_rom(device, device->generation);
1091
if (ret != RCODE_COMPLETE) {
1092
if (device->config_rom_retries < MAX_RETRIES &&
1093
atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1094
device->config_rom_retries++;
1095
fw_schedule_device_work(device, RETRY_DELAY);
1096
} else {
1097
if (device->node->link_on)
1098
fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1099
device->node_id,
1100
fw_rcode_string(ret));
1101
if (device->node == card->root_node)
1102
fw_schedule_bm_work(card, 0);
1103
fw_device_release(&device->device);
1104
}
1105
return;
1106
}
1107
1108
// If a device was pending for deletion because its node went away but its bus info block
1109
// and root directory header matches that of a newly discovered device, revive the
1110
// existing fw_device. The newly allocated fw_device becomes obsolete instead.
1111
//
1112
// serialize config_rom access.
1113
scoped_guard(rwsem_read, &fw_device_rwsem) {
1114
found = device_find_child(card->device, device->config_rom,
1115
compare_configuration_rom);
1116
}
1117
if (found) {
1118
struct fw_device *reused = fw_device(found);
1119
1120
if (atomic_cmpxchg(&reused->state,
1121
FW_DEVICE_GONE,
1122
FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1123
// serialize node access
1124
scoped_guard(spinlock_irq, &card->lock) {
1125
struct fw_node *current_node = device->node;
1126
struct fw_node *obsolete_node = reused->node;
1127
1128
device->node = obsolete_node;
1129
fw_node_set_device(device->node, device);
1130
reused->node = current_node;
1131
fw_node_set_device(reused->node, reused);
1132
1133
reused->max_speed = device->max_speed;
1134
reused->node_id = current_node->node_id;
1135
smp_wmb(); /* update node_id before generation */
1136
reused->generation = card->generation;
1137
reused->config_rom_retries = 0;
1138
fw_notice(card, "rediscovered device %s\n",
1139
dev_name(found));
1140
1141
reused->workfn = fw_device_update;
1142
fw_schedule_device_work(reused, 0);
1143
1144
if (current_node == card->root_node)
1145
fw_schedule_bm_work(card, 0);
1146
}
1147
1148
put_device(found);
1149
fw_device_release(&device->device);
1150
1151
return;
1152
}
1153
1154
put_device(found);
1155
}
1156
1157
device_initialize(&device->device);
1158
1159
fw_device_get(device);
1160
1161
// The index of allocated entry is used for minor identifier of device node.
1162
ret = xa_alloc(&fw_device_xa, &minor, device, XA_LIMIT(0, MINORMASK), GFP_KERNEL);
1163
if (ret < 0)
1164
goto error;
1165
1166
device->device.bus = &fw_bus_type;
1167
device->device.type = &fw_device_type;
1168
device->device.parent = card->device;
1169
device->device.devt = MKDEV(fw_cdev_major, minor);
1170
dev_set_name(&device->device, "fw%d", minor);
1171
1172
BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1173
ARRAY_SIZE(fw_device_attributes) +
1174
ARRAY_SIZE(config_rom_attributes));
1175
init_fw_attribute_group(&device->device,
1176
fw_device_attributes,
1177
&device->attribute_group);
1178
1179
if (device_add(&device->device)) {
1180
fw_err(card, "failed to add device\n");
1181
goto error_with_cdev;
1182
}
1183
1184
create_units(device);
1185
1186
/*
1187
* Transition the device to running state. If it got pulled
1188
* out from under us while we did the initialization work, we
1189
* have to shut down the device again here. Normally, though,
1190
* fw_node_event will be responsible for shutting it down when
1191
* necessary. We have to use the atomic cmpxchg here to avoid
1192
* racing with the FW_NODE_DESTROYED case in
1193
* fw_node_event().
1194
*/
1195
if (atomic_cmpxchg(&device->state,
1196
FW_DEVICE_INITIALIZING,
1197
FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1198
device->workfn = fw_device_shutdown;
1199
fw_schedule_device_work(device, SHUTDOWN_DELAY);
1200
} else {
1201
fw_notice(card, "created device %s: GUID %08x%08x, S%d00, quirks %08x\n",
1202
dev_name(&device->device),
1203
device->config_rom[3], device->config_rom[4],
1204
1 << device->max_speed, device->quirks);
1205
device->config_rom_retries = 0;
1206
1207
set_broadcast_channel(device, device->generation);
1208
1209
add_device_randomness(&device->config_rom[3], 8);
1210
}
1211
1212
/*
1213
* Reschedule the IRM work if we just finished reading the
1214
* root node config rom. If this races with a bus reset we
1215
* just end up running the IRM work a couple of extra times -
1216
* pretty harmless.
1217
*/
1218
if (device->node == card->root_node)
1219
fw_schedule_bm_work(card, 0);
1220
1221
return;
1222
1223
error_with_cdev:
1224
xa_erase(&fw_device_xa, minor);
1225
error:
1226
fw_device_put(device); // fw_device_xa's reference.
1227
1228
put_device(&device->device); /* our reference */
1229
}
1230
1231
/* Reread and compare bus info block and header of root directory */
1232
static int reread_config_rom(struct fw_device *device, int generation,
1233
bool *changed)
1234
{
1235
u32 q;
1236
int i, rcode;
1237
1238
for (i = 0; i < 6; i++) {
1239
rcode = read_rom(device, generation, device->max_speed, i, &q);
1240
if (rcode != RCODE_COMPLETE)
1241
return rcode;
1242
1243
if (i == 0 && q == 0)
1244
/* inaccessible (see read_config_rom); retry later */
1245
return RCODE_BUSY;
1246
1247
if (q != device->config_rom[i]) {
1248
*changed = true;
1249
return RCODE_COMPLETE;
1250
}
1251
}
1252
1253
*changed = false;
1254
return RCODE_COMPLETE;
1255
}
1256
1257
static void fw_device_refresh(struct work_struct *work)
1258
{
1259
struct fw_device *device = from_work(device, work, work.work);
1260
struct fw_card *card = device->card;
1261
int ret, node_id = device->node_id;
1262
bool changed;
1263
1264
ret = reread_config_rom(device, device->generation, &changed);
1265
if (ret != RCODE_COMPLETE)
1266
goto failed_config_rom;
1267
1268
if (!changed) {
1269
if (atomic_cmpxchg(&device->state,
1270
FW_DEVICE_INITIALIZING,
1271
FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1272
goto gone;
1273
1274
fw_device_update(work);
1275
device->config_rom_retries = 0;
1276
goto out;
1277
}
1278
1279
/*
1280
* Something changed. We keep things simple and don't investigate
1281
* further. We just destroy all previous units and create new ones.
1282
*/
1283
device_for_each_child(&device->device, NULL, shutdown_unit);
1284
1285
ret = read_config_rom(device, device->generation);
1286
if (ret != RCODE_COMPLETE)
1287
goto failed_config_rom;
1288
1289
fw_device_cdev_update(device);
1290
create_units(device);
1291
1292
/* Userspace may want to re-read attributes. */
1293
kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1294
1295
if (atomic_cmpxchg(&device->state,
1296
FW_DEVICE_INITIALIZING,
1297
FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1298
goto gone;
1299
1300
fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1301
device->config_rom_retries = 0;
1302
goto out;
1303
1304
failed_config_rom:
1305
if (device->config_rom_retries < MAX_RETRIES &&
1306
atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1307
device->config_rom_retries++;
1308
fw_schedule_device_work(device, RETRY_DELAY);
1309
return;
1310
}
1311
1312
fw_notice(card, "giving up on refresh of device %s: %s\n",
1313
dev_name(&device->device), fw_rcode_string(ret));
1314
gone:
1315
atomic_set(&device->state, FW_DEVICE_GONE);
1316
device->workfn = fw_device_shutdown;
1317
fw_schedule_device_work(device, SHUTDOWN_DELAY);
1318
out:
1319
if (node_id == card->root_node->node_id)
1320
fw_schedule_bm_work(card, 0);
1321
}
1322
1323
static void fw_device_workfn(struct work_struct *work)
1324
{
1325
struct fw_device *device = from_work(device, to_delayed_work(work), work);
1326
device->workfn(work);
1327
}
1328
1329
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1330
{
1331
struct fw_device *device;
1332
1333
switch (event) {
1334
case FW_NODE_CREATED:
1335
/*
1336
* Attempt to scan the node, regardless whether its self ID has
1337
* the L (link active) flag set or not. Some broken devices
1338
* send L=0 but have an up-and-running link; others send L=1
1339
* without actually having a link.
1340
*/
1341
create:
1342
device = kzalloc(sizeof(*device), GFP_ATOMIC);
1343
if (device == NULL)
1344
break;
1345
1346
/*
1347
* Do minimal initialization of the device here, the
1348
* rest will happen in fw_device_init().
1349
*
1350
* Attention: A lot of things, even fw_device_get(),
1351
* cannot be done before fw_device_init() finished!
1352
* You can basically just check device->state and
1353
* schedule work until then, but only while holding
1354
* card->lock.
1355
*/
1356
atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1357
device->card = fw_card_get(card);
1358
device->node = fw_node_get(node);
1359
device->node_id = node->node_id;
1360
device->generation = card->generation;
1361
device->is_local = node == card->local_node;
1362
mutex_init(&device->client_list_mutex);
1363
INIT_LIST_HEAD(&device->client_list);
1364
1365
/*
1366
* Set the node data to point back to this device so
1367
* FW_NODE_UPDATED callbacks can update the node_id
1368
* and generation for the device.
1369
*/
1370
fw_node_set_device(node, device);
1371
1372
/*
1373
* Many devices are slow to respond after bus resets,
1374
* especially if they are bus powered and go through
1375
* power-up after getting plugged in. We schedule the
1376
* first config rom scan half a second after bus reset.
1377
*/
1378
device->workfn = fw_device_init;
1379
INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1380
fw_schedule_device_work(device, INITIAL_DELAY);
1381
break;
1382
1383
case FW_NODE_INITIATED_RESET:
1384
case FW_NODE_LINK_ON:
1385
device = fw_node_get_device(node);
1386
if (device == NULL)
1387
goto create;
1388
1389
device->node_id = node->node_id;
1390
smp_wmb(); /* update node_id before generation */
1391
device->generation = card->generation;
1392
if (atomic_cmpxchg(&device->state,
1393
FW_DEVICE_RUNNING,
1394
FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1395
device->workfn = fw_device_refresh;
1396
fw_schedule_device_work(device,
1397
device->is_local ? 0 : INITIAL_DELAY);
1398
}
1399
break;
1400
1401
case FW_NODE_UPDATED:
1402
device = fw_node_get_device(node);
1403
if (device == NULL)
1404
break;
1405
1406
device->node_id = node->node_id;
1407
smp_wmb(); /* update node_id before generation */
1408
device->generation = card->generation;
1409
if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1410
device->workfn = fw_device_update;
1411
fw_schedule_device_work(device, 0);
1412
}
1413
break;
1414
1415
case FW_NODE_DESTROYED:
1416
case FW_NODE_LINK_OFF:
1417
if (!fw_node_get_device(node))
1418
break;
1419
1420
/*
1421
* Destroy the device associated with the node. There
1422
* are two cases here: either the device is fully
1423
* initialized (FW_DEVICE_RUNNING) or we're in the
1424
* process of reading its config rom
1425
* (FW_DEVICE_INITIALIZING). If it is fully
1426
* initialized we can reuse device->work to schedule a
1427
* full fw_device_shutdown(). If not, there's work
1428
* scheduled to read it's config rom, and we just put
1429
* the device in shutdown state to have that code fail
1430
* to create the device.
1431
*/
1432
device = fw_node_get_device(node);
1433
if (atomic_xchg(&device->state,
1434
FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1435
device->workfn = fw_device_shutdown;
1436
fw_schedule_device_work(device,
1437
list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1438
}
1439
break;
1440
}
1441
}
1442
1443
#ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST
1444
#include "device-attribute-test.c"
1445
#endif
1446
1447