Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/core-iso.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Isochronous I/O functionality:
4
* - Isochronous DMA context management
5
* - Isochronous bus resource management (channels, bandwidth), client side
6
*
7
* Copyright (C) 2006 Kristian Hoegsberg <[email protected]>
8
*/
9
10
#include <linux/dma-mapping.h>
11
#include <linux/errno.h>
12
#include <linux/firewire.h>
13
#include <linux/firewire-constants.h>
14
#include <linux/kernel.h>
15
#include <linux/mm.h>
16
#include <linux/slab.h>
17
#include <linux/spinlock.h>
18
#include <linux/vmalloc.h>
19
#include <linux/export.h>
20
21
#include <asm/byteorder.h>
22
23
#include "core.h"
24
25
#include <trace/events/firewire.h>
26
27
/*
28
* Isochronous DMA context management
29
*/
30
31
int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
32
{
33
int i;
34
35
buffer->page_count = 0;
36
buffer->page_count_mapped = 0;
37
buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
38
GFP_KERNEL);
39
if (buffer->pages == NULL)
40
return -ENOMEM;
41
42
for (i = 0; i < page_count; i++) {
43
buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
44
if (buffer->pages[i] == NULL)
45
break;
46
}
47
buffer->page_count = i;
48
if (i < page_count) {
49
fw_iso_buffer_destroy(buffer, NULL);
50
return -ENOMEM;
51
}
52
53
return 0;
54
}
55
56
int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
57
enum dma_data_direction direction)
58
{
59
dma_addr_t address;
60
int i;
61
62
buffer->direction = direction;
63
64
for (i = 0; i < buffer->page_count; i++) {
65
address = dma_map_page(card->device, buffer->pages[i],
66
0, PAGE_SIZE, direction);
67
if (dma_mapping_error(card->device, address))
68
break;
69
70
set_page_private(buffer->pages[i], address);
71
}
72
buffer->page_count_mapped = i;
73
if (i < buffer->page_count)
74
return -ENOMEM;
75
76
return 0;
77
}
78
79
int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
80
int page_count, enum dma_data_direction direction)
81
{
82
int ret;
83
84
ret = fw_iso_buffer_alloc(buffer, page_count);
85
if (ret < 0)
86
return ret;
87
88
ret = fw_iso_buffer_map_dma(buffer, card, direction);
89
if (ret < 0)
90
fw_iso_buffer_destroy(buffer, card);
91
92
return ret;
93
}
94
EXPORT_SYMBOL(fw_iso_buffer_init);
95
96
void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
97
struct fw_card *card)
98
{
99
int i;
100
dma_addr_t address;
101
102
for (i = 0; i < buffer->page_count_mapped; i++) {
103
address = page_private(buffer->pages[i]);
104
dma_unmap_page(card->device, address,
105
PAGE_SIZE, buffer->direction);
106
}
107
for (i = 0; i < buffer->page_count; i++)
108
__free_page(buffer->pages[i]);
109
110
kfree(buffer->pages);
111
buffer->pages = NULL;
112
buffer->page_count = 0;
113
buffer->page_count_mapped = 0;
114
}
115
EXPORT_SYMBOL(fw_iso_buffer_destroy);
116
117
/* Convert DMA address to offset into virtually contiguous buffer. */
118
size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
119
{
120
size_t i;
121
dma_addr_t address;
122
ssize_t offset;
123
124
for (i = 0; i < buffer->page_count; i++) {
125
address = page_private(buffer->pages[i]);
126
offset = (ssize_t)completed - (ssize_t)address;
127
if (offset > 0 && offset <= PAGE_SIZE)
128
return (i << PAGE_SHIFT) + offset;
129
}
130
131
return 0;
132
}
133
134
struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
135
int type, int channel, int speed, size_t header_size,
136
fw_iso_callback_t callback, void *callback_data)
137
{
138
struct fw_iso_context *ctx;
139
140
ctx = card->driver->allocate_iso_context(card,
141
type, channel, header_size);
142
if (IS_ERR(ctx))
143
return ctx;
144
145
ctx->card = card;
146
ctx->type = type;
147
ctx->channel = channel;
148
ctx->speed = speed;
149
ctx->header_size = header_size;
150
ctx->callback.sc = callback;
151
ctx->callback_data = callback_data;
152
153
trace_isoc_outbound_allocate(ctx, channel, speed);
154
trace_isoc_inbound_single_allocate(ctx, channel, header_size);
155
trace_isoc_inbound_multiple_allocate(ctx);
156
157
return ctx;
158
}
159
EXPORT_SYMBOL(fw_iso_context_create);
160
161
void fw_iso_context_destroy(struct fw_iso_context *ctx)
162
{
163
trace_isoc_outbound_destroy(ctx);
164
trace_isoc_inbound_single_destroy(ctx);
165
trace_isoc_inbound_multiple_destroy(ctx);
166
167
ctx->card->driver->free_iso_context(ctx);
168
}
169
EXPORT_SYMBOL(fw_iso_context_destroy);
170
171
int fw_iso_context_start(struct fw_iso_context *ctx,
172
int cycle, int sync, int tags)
173
{
174
trace_isoc_outbound_start(ctx, cycle);
175
trace_isoc_inbound_single_start(ctx, cycle, sync, tags);
176
trace_isoc_inbound_multiple_start(ctx, cycle, sync, tags);
177
178
return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
179
}
180
EXPORT_SYMBOL(fw_iso_context_start);
181
182
int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
183
{
184
trace_isoc_inbound_multiple_channels(ctx, *channels);
185
186
return ctx->card->driver->set_iso_channels(ctx, channels);
187
}
188
189
int fw_iso_context_queue(struct fw_iso_context *ctx,
190
struct fw_iso_packet *packet,
191
struct fw_iso_buffer *buffer,
192
unsigned long payload)
193
{
194
trace_isoc_outbound_queue(ctx, payload, packet);
195
trace_isoc_inbound_single_queue(ctx, payload, packet);
196
trace_isoc_inbound_multiple_queue(ctx, payload, packet);
197
198
return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
199
}
200
EXPORT_SYMBOL(fw_iso_context_queue);
201
202
void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
203
{
204
trace_isoc_outbound_flush(ctx);
205
trace_isoc_inbound_single_flush(ctx);
206
trace_isoc_inbound_multiple_flush(ctx);
207
208
ctx->card->driver->flush_queue_iso(ctx);
209
}
210
EXPORT_SYMBOL(fw_iso_context_queue_flush);
211
212
/**
213
* fw_iso_context_flush_completions() - process isochronous context in current process context.
214
* @ctx: the isochronous context
215
*
216
* Process the isochronous context in the current process context. The registered callback function
217
* is called when a queued packet buffer with the interrupt flag is completed, either after
218
* transmission in the IT context or after being filled in the IR context. Additionally, the
219
* callback function is also called for the packet buffer completed at last. Furthermore, the
220
* callback function is called as well when the header buffer in the context becomes full. If it is
221
* required to process the context asynchronously, fw_iso_context_schedule_flush_completions() is
222
* available instead.
223
*
224
* Context: Process context. May sleep due to disable_work_sync().
225
*/
226
int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
227
{
228
int err;
229
230
trace_isoc_outbound_flush_completions(ctx);
231
trace_isoc_inbound_single_flush_completions(ctx);
232
trace_isoc_inbound_multiple_flush_completions(ctx);
233
234
might_sleep();
235
236
// Avoid dead lock due to programming mistake.
237
if (WARN_ON_ONCE(current_work() == &ctx->work))
238
return 0;
239
240
disable_work_sync(&ctx->work);
241
242
err = ctx->card->driver->flush_iso_completions(ctx);
243
244
enable_work(&ctx->work);
245
246
return err;
247
}
248
EXPORT_SYMBOL(fw_iso_context_flush_completions);
249
250
int fw_iso_context_stop(struct fw_iso_context *ctx)
251
{
252
int err;
253
254
trace_isoc_outbound_stop(ctx);
255
trace_isoc_inbound_single_stop(ctx);
256
trace_isoc_inbound_multiple_stop(ctx);
257
258
might_sleep();
259
260
// Avoid dead lock due to programming mistake.
261
if (WARN_ON_ONCE(current_work() == &ctx->work))
262
return 0;
263
264
err = ctx->card->driver->stop_iso(ctx);
265
266
cancel_work_sync(&ctx->work);
267
268
return err;
269
}
270
EXPORT_SYMBOL(fw_iso_context_stop);
271
272
/*
273
* Isochronous bus resource management (channels, bandwidth), client side
274
*/
275
276
static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
277
int bandwidth, bool allocate)
278
{
279
int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
280
__be32 data[2];
281
282
/*
283
* On a 1394a IRM with low contention, try < 1 is enough.
284
* On a 1394-1995 IRM, we need at least try < 2.
285
* Let's just do try < 5.
286
*/
287
for (try = 0; try < 5; try++) {
288
new = allocate ? old - bandwidth : old + bandwidth;
289
if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
290
return -EBUSY;
291
292
data[0] = cpu_to_be32(old);
293
data[1] = cpu_to_be32(new);
294
switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
295
irm_id, generation, SCODE_100,
296
CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
297
data, 8)) {
298
case RCODE_GENERATION:
299
/* A generation change frees all bandwidth. */
300
return allocate ? -EAGAIN : bandwidth;
301
302
case RCODE_COMPLETE:
303
if (be32_to_cpup(data) == old)
304
return bandwidth;
305
306
old = be32_to_cpup(data);
307
/* Fall through. */
308
}
309
}
310
311
return -EIO;
312
}
313
314
static int manage_channel(struct fw_card *card, int irm_id, int generation,
315
u32 channels_mask, u64 offset, bool allocate)
316
{
317
__be32 bit, all, old;
318
__be32 data[2];
319
int channel, ret = -EIO, retry = 5;
320
321
old = all = allocate ? cpu_to_be32(~0) : 0;
322
323
for (channel = 0; channel < 32; channel++) {
324
if (!(channels_mask & 1 << channel))
325
continue;
326
327
ret = -EBUSY;
328
329
bit = cpu_to_be32(1 << (31 - channel));
330
if ((old & bit) != (all & bit))
331
continue;
332
333
data[0] = old;
334
data[1] = old ^ bit;
335
switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
336
irm_id, generation, SCODE_100,
337
offset, data, 8)) {
338
case RCODE_GENERATION:
339
/* A generation change frees all channels. */
340
return allocate ? -EAGAIN : channel;
341
342
case RCODE_COMPLETE:
343
if (data[0] == old)
344
return channel;
345
346
old = data[0];
347
348
/* Is the IRM 1394a-2000 compliant? */
349
if ((data[0] & bit) == (data[1] & bit))
350
continue;
351
352
fallthrough; /* It's a 1394-1995 IRM, retry */
353
default:
354
if (retry) {
355
retry--;
356
channel--;
357
} else {
358
ret = -EIO;
359
}
360
}
361
}
362
363
return ret;
364
}
365
366
static void deallocate_channel(struct fw_card *card, int irm_id,
367
int generation, int channel)
368
{
369
u32 mask;
370
u64 offset;
371
372
mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
373
offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
374
CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
375
376
manage_channel(card, irm_id, generation, mask, offset, false);
377
}
378
379
/**
380
* fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
381
* @card: card interface for this action
382
* @generation: bus generation
383
* @channels_mask: bitmask for channel allocation
384
* @channel: pointer for returning channel allocation result
385
* @bandwidth: pointer for returning bandwidth allocation result
386
* @allocate: whether to allocate (true) or deallocate (false)
387
*
388
* In parameters: card, generation, channels_mask, bandwidth, allocate
389
* Out parameters: channel, bandwidth
390
*
391
* This function blocks (sleeps) during communication with the IRM.
392
*
393
* Allocates or deallocates at most one channel out of channels_mask.
394
* channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
395
* (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
396
* channel 0 and LSB for channel 63.)
397
* Allocates or deallocates as many bandwidth allocation units as specified.
398
*
399
* Returns channel < 0 if no channel was allocated or deallocated.
400
* Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
401
*
402
* If generation is stale, deallocations succeed but allocations fail with
403
* channel = -EAGAIN.
404
*
405
* If channel allocation fails, no bandwidth will be allocated either.
406
* If bandwidth allocation fails, no channel will be allocated either.
407
* But deallocations of channel and bandwidth are tried independently
408
* of each other's success.
409
*/
410
void fw_iso_resource_manage(struct fw_card *card, int generation,
411
u64 channels_mask, int *channel, int *bandwidth,
412
bool allocate)
413
{
414
u32 channels_hi = channels_mask; /* channels 31...0 */
415
u32 channels_lo = channels_mask >> 32; /* channels 63...32 */
416
int irm_id, ret, c = -EINVAL;
417
418
scoped_guard(spinlock_irq, &card->lock)
419
irm_id = card->irm_node->node_id;
420
421
if (channels_hi)
422
c = manage_channel(card, irm_id, generation, channels_hi,
423
CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
424
allocate);
425
if (channels_lo && c < 0) {
426
c = manage_channel(card, irm_id, generation, channels_lo,
427
CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
428
allocate);
429
if (c >= 0)
430
c += 32;
431
}
432
*channel = c;
433
434
if (allocate && channels_mask != 0 && c < 0)
435
*bandwidth = 0;
436
437
if (*bandwidth == 0)
438
return;
439
440
ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
441
if (ret < 0)
442
*bandwidth = 0;
443
444
if (allocate && ret < 0) {
445
if (c >= 0)
446
deallocate_channel(card, irm_id, generation, c);
447
*channel = ret;
448
}
449
}
450
EXPORT_SYMBOL(fw_iso_resource_manage);
451
452