Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/core-transaction.c
49317 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Core IEEE1394 transaction logic
4
*
5
* Copyright (C) 2004-2006 Kristian Hoegsberg <[email protected]>
6
*/
7
8
#include <linux/bug.h>
9
#include <linux/completion.h>
10
#include <linux/device.h>
11
#include <linux/errno.h>
12
#include <linux/firewire.h>
13
#include <linux/firewire-constants.h>
14
#include <linux/fs.h>
15
#include <linux/init.h>
16
#include <linux/jiffies.h>
17
#include <linux/kernel.h>
18
#include <linux/list.h>
19
#include <linux/module.h>
20
#include <linux/rculist.h>
21
#include <linux/slab.h>
22
#include <linux/spinlock.h>
23
#include <linux/string.h>
24
#include <linux/timer.h>
25
#include <linux/types.h>
26
#include <linux/workqueue.h>
27
28
#include <asm/byteorder.h>
29
30
#include "core.h"
31
#include "packet-header-definitions.h"
32
#include "phy-packet-definitions.h"
33
#include <trace/events/firewire.h>
34
35
#define HEADER_DESTINATION_IS_BROADCAST(header) \
36
((async_header_get_destination(header) & 0x3f) == 0x3f)
37
38
/* returns 0 if the split timeout handler is already running */
39
static int try_cancel_split_timeout(struct fw_transaction *t)
40
{
41
if (t->is_split_transaction)
42
return timer_delete(&t->split_timeout_timer);
43
else
44
return 1;
45
}
46
47
// card->transactions.lock must be acquired in advance.
48
static void remove_transaction_entry(struct fw_card *card, struct fw_transaction *entry)
49
{
50
list_del_init(&entry->link);
51
card->transactions.tlabel_mask &= ~(1ULL << entry->tlabel);
52
}
53
54
// Must be called without holding card->transactions.lock.
55
void fw_cancel_pending_transactions(struct fw_card *card)
56
{
57
struct fw_transaction *t, *tmp;
58
LIST_HEAD(pending_list);
59
60
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
61
// local destination never runs in any type of IRQ context.
62
scoped_guard(spinlock_irqsave, &card->transactions.lock) {
63
list_for_each_entry_safe(t, tmp, &card->transactions.list, link) {
64
if (try_cancel_split_timeout(t))
65
list_move(&t->link, &pending_list);
66
}
67
}
68
69
list_for_each_entry_safe(t, tmp, &pending_list, link) {
70
list_del(&t->link);
71
72
if (!t->with_tstamp) {
73
t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0,
74
t->callback_data);
75
} else {
76
t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, 0,
77
NULL, 0, t->callback_data);
78
}
79
}
80
}
81
82
// card->transactions.lock must be acquired in advance.
83
#define find_and_pop_transaction_entry(card, condition) \
84
({ \
85
struct fw_transaction *iter, *t = NULL; \
86
list_for_each_entry(iter, &card->transactions.list, link) { \
87
if (condition) { \
88
t = iter; \
89
break; \
90
} \
91
} \
92
if (t && try_cancel_split_timeout(t)) \
93
remove_transaction_entry(card, t); \
94
t; \
95
})
96
97
static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
98
u32 response_tstamp)
99
{
100
struct fw_transaction *t;
101
102
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
103
// local destination never runs in any type of IRQ context.
104
scoped_guard(spinlock_irqsave, &card->transactions.lock) {
105
t = find_and_pop_transaction_entry(card, iter == transaction);
106
if (!t)
107
return -ENOENT;
108
}
109
110
if (!t->with_tstamp) {
111
t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
112
} else {
113
t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
114
t->callback_data);
115
}
116
117
return 0;
118
}
119
120
/*
121
* Only valid for transactions that are potentially pending (ie have
122
* been sent).
123
*/
124
int fw_cancel_transaction(struct fw_card *card,
125
struct fw_transaction *transaction)
126
{
127
u32 tstamp;
128
129
/*
130
* Cancel the packet transmission if it's still queued. That
131
* will call the packet transmission callback which cancels
132
* the transaction.
133
*/
134
135
if (card->driver->cancel_packet(card, &transaction->packet) == 0)
136
return 0;
137
138
/*
139
* If the request packet has already been sent, we need to see
140
* if the transaction is still pending and remove it in that case.
141
*/
142
143
if (transaction->packet.ack == 0) {
144
// The timestamp is reused since it was just read now.
145
tstamp = transaction->packet.timestamp;
146
} else {
147
u32 curr_cycle_time = 0;
148
149
(void)fw_card_read_cycle_time(card, &curr_cycle_time);
150
tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
151
}
152
153
return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
154
}
155
EXPORT_SYMBOL(fw_cancel_transaction);
156
157
static void split_transaction_timeout_callback(struct timer_list *timer)
158
{
159
struct fw_transaction *t = timer_container_of(t, timer, split_timeout_timer);
160
struct fw_card *card = t->card;
161
162
scoped_guard(spinlock_irqsave, &card->transactions.lock) {
163
if (list_empty(&t->link))
164
return;
165
remove_transaction_entry(card, t);
166
}
167
168
if (!t->with_tstamp) {
169
t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
170
} else {
171
t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
172
t->split_timeout_cycle, NULL, 0, t->callback_data);
173
}
174
}
175
176
// card->transactions.lock should be acquired in advance for the linked list.
177
static void start_split_transaction_timeout(struct fw_transaction *t, unsigned int delta)
178
{
179
if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
180
return;
181
182
t->is_split_transaction = true;
183
184
mod_timer(&t->split_timeout_timer, jiffies + delta);
185
}
186
187
static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
188
189
static void transmit_complete_callback(struct fw_packet *packet,
190
struct fw_card *card, int status)
191
{
192
struct fw_transaction *t =
193
container_of(packet, struct fw_transaction, packet);
194
195
trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
196
packet->speed, status, packet->timestamp);
197
198
switch (status) {
199
case ACK_COMPLETE:
200
close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
201
break;
202
case ACK_PENDING:
203
{
204
unsigned int delta;
205
206
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
207
// local destination never runs in any type of IRQ context.
208
scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
209
t->split_timeout_cycle =
210
compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
211
delta = card->split_timeout.jiffies;
212
}
213
214
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
215
// local destination never runs in any type of IRQ context.
216
scoped_guard(spinlock_irqsave, &card->transactions.lock)
217
start_split_transaction_timeout(t, delta);
218
break;
219
}
220
case ACK_BUSY_X:
221
case ACK_BUSY_A:
222
case ACK_BUSY_B:
223
close_transaction(t, card, RCODE_BUSY, packet->timestamp);
224
break;
225
case ACK_DATA_ERROR:
226
close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
227
break;
228
case ACK_TYPE_ERROR:
229
close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
230
break;
231
default:
232
/*
233
* In this case the ack is really a juju specific
234
* rcode, so just forward that to the callback.
235
*/
236
close_transaction(t, card, status, packet->timestamp);
237
break;
238
}
239
}
240
241
static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
242
int destination_id, int source_id, int generation, int speed,
243
unsigned long long offset, void *payload, size_t length)
244
{
245
int ext_tcode;
246
247
if (tcode == TCODE_STREAM_DATA) {
248
// The value of destination_id argument should include tag, channel, and sy fields
249
// as isochronous packet header has.
250
packet->header[0] = destination_id;
251
isoc_header_set_data_length(packet->header, length);
252
isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
253
packet->header_length = 4;
254
packet->payload = payload;
255
packet->payload_length = length;
256
257
goto common;
258
}
259
260
if (tcode > 0x10) {
261
ext_tcode = tcode & ~0x10;
262
tcode = TCODE_LOCK_REQUEST;
263
} else
264
ext_tcode = 0;
265
266
async_header_set_retry(packet->header, RETRY_X);
267
async_header_set_tlabel(packet->header, tlabel);
268
async_header_set_tcode(packet->header, tcode);
269
async_header_set_destination(packet->header, destination_id);
270
async_header_set_source(packet->header, source_id);
271
async_header_set_offset(packet->header, offset);
272
273
switch (tcode) {
274
case TCODE_WRITE_QUADLET_REQUEST:
275
async_header_set_quadlet_data(packet->header, *(u32 *)payload);
276
packet->header_length = 16;
277
packet->payload_length = 0;
278
break;
279
280
case TCODE_LOCK_REQUEST:
281
case TCODE_WRITE_BLOCK_REQUEST:
282
async_header_set_data_length(packet->header, length);
283
async_header_set_extended_tcode(packet->header, ext_tcode);
284
packet->header_length = 16;
285
packet->payload = payload;
286
packet->payload_length = length;
287
break;
288
289
case TCODE_READ_QUADLET_REQUEST:
290
packet->header_length = 12;
291
packet->payload_length = 0;
292
break;
293
294
case TCODE_READ_BLOCK_REQUEST:
295
async_header_set_data_length(packet->header, length);
296
async_header_set_extended_tcode(packet->header, ext_tcode);
297
packet->header_length = 16;
298
packet->payload_length = 0;
299
break;
300
301
default:
302
WARN(1, "wrong tcode %d\n", tcode);
303
}
304
common:
305
packet->speed = speed;
306
packet->generation = generation;
307
packet->ack = 0;
308
packet->payload_mapped = false;
309
}
310
311
static int allocate_tlabel(struct fw_card *card)
312
__must_hold(&card->transactions.lock)
313
{
314
int tlabel;
315
316
lockdep_assert_held(&card->transactions.lock);
317
318
tlabel = card->transactions.current_tlabel;
319
while (card->transactions.tlabel_mask & (1ULL << tlabel)) {
320
tlabel = (tlabel + 1) & 0x3f;
321
if (tlabel == card->transactions.current_tlabel)
322
return -EBUSY;
323
}
324
325
card->transactions.current_tlabel = (tlabel + 1) & 0x3f;
326
card->transactions.tlabel_mask |= 1ULL << tlabel;
327
328
return tlabel;
329
}
330
331
/**
332
* __fw_send_request() - submit a request packet for transmission to generate callback for response
333
* subaction with or without time stamp.
334
* @card: interface to send the request at
335
* @t: transaction instance to which the request belongs
336
* @tcode: transaction code
337
* @destination_id: destination node ID, consisting of bus_ID and phy_ID
338
* @generation: bus generation in which request and response are valid
339
* @speed: transmission speed
340
* @offset: 48bit wide offset into destination's address space
341
* @payload: data payload for the request subaction
342
* @length: length of the payload, in bytes
343
* @callback: union of two functions whether to receive time stamp or not for response
344
* subaction.
345
* @with_tstamp: Whether to receive time stamp or not for response subaction.
346
* @callback_data: data to be passed to the transaction completion callback
347
*
348
* Submit a request packet into the asynchronous request transmission queue.
349
* Can be called from atomic context. If you prefer a blocking API, use
350
* fw_run_transaction() in a context that can sleep.
351
*
352
* In case of lock requests, specify one of the firewire-core specific %TCODE_
353
* constants instead of %TCODE_LOCK_REQUEST in @tcode.
354
*
355
* Make sure that the value in @destination_id is not older than the one in
356
* @generation. Otherwise the request is in danger to be sent to a wrong node.
357
*
358
* In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
359
* needs to synthesize @destination_id with fw_stream_packet_destination_id().
360
* It will contain tag, channel, and sy data instead of a node ID then.
361
*
362
* The payload buffer at @data is going to be DMA-mapped except in case of
363
* @length <= 8 or of local (loopback) requests. Hence make sure that the
364
* buffer complies with the restrictions of the streaming DMA mapping API.
365
* @payload must not be freed before the @callback is called.
366
*
367
* In case of request types without payload, @data is NULL and @length is 0.
368
*
369
* After the transaction is completed successfully or unsuccessfully, the
370
* @callback will be called. Among its parameters is the response code which
371
* is either one of the rcodes per IEEE 1394 or, in case of internal errors,
372
* the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
373
* specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
374
* %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
375
* generation, or missing ACK respectively.
376
*
377
* Note some timing corner cases: fw_send_request() may complete much earlier
378
* than when the request packet actually hits the wire. On the other hand,
379
* transaction completion and hence execution of @callback may happen even
380
* before fw_send_request() returns.
381
*/
382
void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
383
int destination_id, int generation, int speed, unsigned long long offset,
384
void *payload, size_t length, union fw_transaction_callback callback,
385
bool with_tstamp, void *callback_data)
386
{
387
int tlabel;
388
389
/*
390
* Allocate tlabel from the bitmap and put the transaction on
391
* the list while holding the card spinlock.
392
*/
393
394
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
395
// local destination never runs in any type of IRQ context.
396
scoped_guard(spinlock_irqsave, &card->transactions.lock)
397
tlabel = allocate_tlabel(card);
398
if (tlabel < 0) {
399
if (!with_tstamp) {
400
callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
401
} else {
402
// Timestamping on behalf of hardware.
403
u32 curr_cycle_time = 0;
404
u32 tstamp;
405
406
(void)fw_card_read_cycle_time(card, &curr_cycle_time);
407
tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
408
409
callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
410
callback_data);
411
}
412
return;
413
}
414
415
t->node_id = destination_id;
416
t->tlabel = tlabel;
417
t->card = card;
418
t->is_split_transaction = false;
419
timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
420
t->callback = callback;
421
t->with_tstamp = with_tstamp;
422
t->callback_data = callback_data;
423
t->packet.callback = transmit_complete_callback;
424
425
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
426
// local destination never runs in any type of IRQ context.
427
scoped_guard(spinlock_irqsave, &card->lock) {
428
// The node_id field of fw_card can be updated when handling SelfIDComplete.
429
fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id,
430
generation, speed, offset, payload, length);
431
}
432
433
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
434
// local destination never runs in any type of IRQ context.
435
scoped_guard(spinlock_irqsave, &card->transactions.lock)
436
list_add_tail(&t->link, &card->transactions.list);
437
438
// Safe with no lock, since the index field of fw_card is immutable once assigned.
439
trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
440
t->packet.header, payload,
441
tcode_is_read_request(tcode) ? 0 : length / 4);
442
443
card->driver->send_request(card, &t->packet);
444
}
445
EXPORT_SYMBOL_GPL(__fw_send_request);
446
447
struct transaction_callback_data {
448
struct completion done;
449
void *payload;
450
int rcode;
451
};
452
453
static void transaction_callback(struct fw_card *card, int rcode,
454
void *payload, size_t length, void *data)
455
{
456
struct transaction_callback_data *d = data;
457
458
if (rcode == RCODE_COMPLETE)
459
memcpy(d->payload, payload, length);
460
d->rcode = rcode;
461
complete(&d->done);
462
}
463
464
/**
465
* fw_run_transaction() - send request and sleep until transaction is completed
466
* @card: card interface for this request
467
* @tcode: transaction code
468
* @destination_id: destination node ID, consisting of bus_ID and phy_ID
469
* @generation: bus generation in which request and response are valid
470
* @speed: transmission speed
471
* @offset: 48bit wide offset into destination's address space
472
* @payload: data payload for the request subaction
473
* @length: length of the payload, in bytes
474
*
475
* Returns the RCODE. See fw_send_request() for parameter documentation.
476
* Unlike fw_send_request(), @data points to the payload of the request or/and
477
* to the payload of the response. DMA mapping restrictions apply to outbound
478
* request payloads of >= 8 bytes but not to inbound response payloads.
479
*/
480
int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
481
int generation, int speed, unsigned long long offset,
482
void *payload, size_t length)
483
{
484
struct transaction_callback_data d;
485
struct fw_transaction t;
486
487
timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
488
init_completion(&d.done);
489
d.payload = payload;
490
fw_send_request(card, &t, tcode, destination_id, generation, speed,
491
offset, payload, length, transaction_callback, &d);
492
wait_for_completion(&d.done);
493
timer_destroy_on_stack(&t.split_timeout_timer);
494
495
return d.rcode;
496
}
497
EXPORT_SYMBOL(fw_run_transaction);
498
499
static DEFINE_MUTEX(phy_config_mutex);
500
static DECLARE_COMPLETION(phy_config_done);
501
502
static void transmit_phy_packet_callback(struct fw_packet *packet,
503
struct fw_card *card, int status)
504
{
505
trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
506
packet->timestamp);
507
complete(&phy_config_done);
508
}
509
510
static struct fw_packet phy_config_packet = {
511
.header_length = 12,
512
.payload_length = 0,
513
.speed = SCODE_100,
514
.callback = transmit_phy_packet_callback,
515
};
516
517
void fw_send_phy_config(struct fw_card *card,
518
int node_id, int generation, int gap_count)
519
{
520
long timeout = msecs_to_jiffies(100);
521
u32 data = 0;
522
523
phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
524
525
if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
526
phy_packet_phy_config_set_root_id(&data, node_id);
527
phy_packet_phy_config_set_force_root_node(&data, true);
528
}
529
530
if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
531
gap_count = card->driver->read_phy_reg(card, 1);
532
if (gap_count < 0)
533
return;
534
535
gap_count &= 63;
536
if (gap_count == 63)
537
return;
538
}
539
phy_packet_phy_config_set_gap_count(&data, gap_count);
540
phy_packet_phy_config_set_gap_count_optimization(&data, true);
541
542
guard(mutex)(&phy_config_mutex);
543
544
async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
545
phy_config_packet.header[1] = data;
546
phy_config_packet.header[2] = ~data;
547
phy_config_packet.generation = generation;
548
reinit_completion(&phy_config_done);
549
550
trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
551
phy_config_packet.generation, phy_config_packet.header[1],
552
phy_config_packet.header[2]);
553
554
card->driver->send_request(card, &phy_config_packet);
555
wait_for_completion_timeout(&phy_config_done, timeout);
556
}
557
558
static struct fw_address_handler *lookup_overlapping_address_handler(
559
struct list_head *list, unsigned long long offset, size_t length)
560
{
561
struct fw_address_handler *handler;
562
563
list_for_each_entry_rcu(handler, list, link) {
564
if (handler->offset < offset + length &&
565
offset < handler->offset + handler->length)
566
return handler;
567
}
568
569
return NULL;
570
}
571
572
static bool is_enclosing_handler(struct fw_address_handler *handler,
573
unsigned long long offset, size_t length)
574
{
575
return handler->offset <= offset &&
576
offset + length <= handler->offset + handler->length;
577
}
578
579
static struct fw_address_handler *lookup_enclosing_address_handler(
580
struct list_head *list, unsigned long long offset, size_t length)
581
{
582
struct fw_address_handler *handler;
583
584
list_for_each_entry_rcu(handler, list, link) {
585
if (is_enclosing_handler(handler, offset, length))
586
return handler;
587
}
588
589
return NULL;
590
}
591
592
static DEFINE_SPINLOCK(address_handler_list_lock);
593
static LIST_HEAD(address_handler_list);
594
595
const struct fw_address_region fw_high_memory_region =
596
{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
597
EXPORT_SYMBOL(fw_high_memory_region);
598
599
static const struct fw_address_region low_memory_region =
600
{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
601
602
#if 0
603
const struct fw_address_region fw_private_region =
604
{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
605
const struct fw_address_region fw_csr_region =
606
{ .start = CSR_REGISTER_BASE,
607
.end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
608
const struct fw_address_region fw_unit_space_region =
609
{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
610
#endif /* 0 */
611
612
static void complete_address_handler(struct kref *kref)
613
{
614
struct fw_address_handler *handler = container_of(kref, struct fw_address_handler, kref);
615
616
complete(&handler->done);
617
}
618
619
static void get_address_handler(struct fw_address_handler *handler)
620
{
621
kref_get(&handler->kref);
622
}
623
624
static int put_address_handler(struct fw_address_handler *handler)
625
{
626
return kref_put(&handler->kref, complete_address_handler);
627
}
628
629
/**
630
* fw_core_add_address_handler() - register for incoming requests
631
* @handler: callback
632
* @region: region in the IEEE 1212 node space address range
633
*
634
* region->start, ->end, and handler->length have to be quadlet-aligned.
635
*
636
* When a request is received that falls within the specified address range, the specified callback
637
* is invoked. The parameters passed to the callback give the details of the particular request.
638
* The callback is invoked in the workqueue context in most cases. However, if the request is
639
* initiated by the local node, the callback is invoked in the initiator's context.
640
*
641
* To be called in process context.
642
* Return value: 0 on success, non-zero otherwise.
643
*
644
* The start offset of the handler's address region is determined by
645
* fw_core_add_address_handler() and is returned in handler->offset.
646
*
647
* Address allocations are exclusive, except for the FCP registers.
648
*/
649
int fw_core_add_address_handler(struct fw_address_handler *handler,
650
const struct fw_address_region *region)
651
{
652
struct fw_address_handler *other;
653
int ret = -EBUSY;
654
655
if (region->start & 0xffff000000000003ULL ||
656
region->start >= region->end ||
657
region->end > 0x0001000000000000ULL ||
658
handler->length & 3 ||
659
handler->length == 0)
660
return -EINVAL;
661
662
guard(spinlock)(&address_handler_list_lock);
663
664
handler->offset = region->start;
665
while (handler->offset + handler->length <= region->end) {
666
if (is_in_fcp_region(handler->offset, handler->length))
667
other = NULL;
668
else
669
other = lookup_overlapping_address_handler
670
(&address_handler_list,
671
handler->offset, handler->length);
672
if (other != NULL) {
673
handler->offset += other->length;
674
} else {
675
init_completion(&handler->done);
676
kref_init(&handler->kref);
677
list_add_tail_rcu(&handler->link, &address_handler_list);
678
ret = 0;
679
break;
680
}
681
}
682
683
return ret;
684
}
685
EXPORT_SYMBOL(fw_core_add_address_handler);
686
687
/**
688
* fw_core_remove_address_handler() - unregister an address handler
689
* @handler: callback
690
*
691
* To be called in process context.
692
*
693
* When fw_core_remove_address_handler() returns, @handler->callback() is
694
* guaranteed to not run on any CPU anymore.
695
*/
696
void fw_core_remove_address_handler(struct fw_address_handler *handler)
697
{
698
scoped_guard(spinlock, &address_handler_list_lock)
699
list_del_rcu(&handler->link);
700
701
synchronize_rcu();
702
703
if (!put_address_handler(handler))
704
wait_for_completion(&handler->done);
705
}
706
EXPORT_SYMBOL(fw_core_remove_address_handler);
707
708
struct fw_request {
709
struct kref kref;
710
struct fw_packet response;
711
u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
712
int ack;
713
u32 timestamp;
714
u32 length;
715
u32 data[];
716
};
717
718
void fw_request_get(struct fw_request *request)
719
{
720
kref_get(&request->kref);
721
}
722
723
static void release_request(struct kref *kref)
724
{
725
struct fw_request *request = container_of(kref, struct fw_request, kref);
726
727
kfree(request);
728
}
729
730
void fw_request_put(struct fw_request *request)
731
{
732
kref_put(&request->kref, release_request);
733
}
734
735
static void free_response_callback(struct fw_packet *packet,
736
struct fw_card *card, int status)
737
{
738
struct fw_request *request = container_of(packet, struct fw_request, response);
739
740
trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
741
packet->speed, status, packet->timestamp);
742
743
// Decrease the reference count since not at in-flight.
744
fw_request_put(request);
745
746
// Decrease the reference count to release the object.
747
fw_request_put(request);
748
}
749
750
int fw_get_response_length(struct fw_request *r)
751
{
752
int tcode, ext_tcode, data_length;
753
754
tcode = async_header_get_tcode(r->request_header);
755
756
switch (tcode) {
757
case TCODE_WRITE_QUADLET_REQUEST:
758
case TCODE_WRITE_BLOCK_REQUEST:
759
return 0;
760
761
case TCODE_READ_QUADLET_REQUEST:
762
return 4;
763
764
case TCODE_READ_BLOCK_REQUEST:
765
data_length = async_header_get_data_length(r->request_header);
766
return data_length;
767
768
case TCODE_LOCK_REQUEST:
769
ext_tcode = async_header_get_extended_tcode(r->request_header);
770
data_length = async_header_get_data_length(r->request_header);
771
switch (ext_tcode) {
772
case EXTCODE_FETCH_ADD:
773
case EXTCODE_LITTLE_ADD:
774
return data_length;
775
default:
776
return data_length / 2;
777
}
778
779
default:
780
WARN(1, "wrong tcode %d\n", tcode);
781
return 0;
782
}
783
}
784
785
void fw_fill_response(struct fw_packet *response, u32 *request_header,
786
int rcode, void *payload, size_t length)
787
{
788
int tcode, tlabel, extended_tcode, source, destination;
789
790
tcode = async_header_get_tcode(request_header);
791
tlabel = async_header_get_tlabel(request_header);
792
source = async_header_get_destination(request_header); // Exchange.
793
destination = async_header_get_source(request_header); // Exchange.
794
extended_tcode = async_header_get_extended_tcode(request_header);
795
796
async_header_set_retry(response->header, RETRY_1);
797
async_header_set_tlabel(response->header, tlabel);
798
async_header_set_destination(response->header, destination);
799
async_header_set_source(response->header, source);
800
async_header_set_rcode(response->header, rcode);
801
response->header[2] = 0; // The field is reserved.
802
803
switch (tcode) {
804
case TCODE_WRITE_QUADLET_REQUEST:
805
case TCODE_WRITE_BLOCK_REQUEST:
806
async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
807
response->header_length = 12;
808
response->payload_length = 0;
809
break;
810
811
case TCODE_READ_QUADLET_REQUEST:
812
async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
813
if (payload != NULL)
814
async_header_set_quadlet_data(response->header, *(u32 *)payload);
815
else
816
async_header_set_quadlet_data(response->header, 0);
817
response->header_length = 16;
818
response->payload_length = 0;
819
break;
820
821
case TCODE_READ_BLOCK_REQUEST:
822
case TCODE_LOCK_REQUEST:
823
async_header_set_tcode(response->header, tcode + 2);
824
async_header_set_data_length(response->header, length);
825
async_header_set_extended_tcode(response->header, extended_tcode);
826
response->header_length = 16;
827
response->payload = payload;
828
response->payload_length = length;
829
break;
830
831
default:
832
WARN(1, "wrong tcode %d\n", tcode);
833
}
834
835
response->payload_mapped = false;
836
}
837
EXPORT_SYMBOL(fw_fill_response);
838
839
static u32 compute_split_timeout_timestamp(struct fw_card *card,
840
u32 request_timestamp)
841
__must_hold(&card->split_timeout.lock)
842
{
843
unsigned int cycles;
844
u32 timestamp;
845
846
lockdep_assert_held(&card->split_timeout.lock);
847
848
cycles = card->split_timeout.cycles;
849
cycles += request_timestamp & 0x1fff;
850
851
timestamp = request_timestamp & ~0x1fff;
852
timestamp += (cycles / 8000) << 13;
853
timestamp |= cycles % 8000;
854
855
return timestamp;
856
}
857
858
static struct fw_request *allocate_request(struct fw_card *card,
859
struct fw_packet *p)
860
{
861
struct fw_request *request;
862
u32 *data, length;
863
int request_tcode;
864
865
request_tcode = async_header_get_tcode(p->header);
866
switch (request_tcode) {
867
case TCODE_WRITE_QUADLET_REQUEST:
868
data = &p->header[3];
869
length = 4;
870
break;
871
872
case TCODE_WRITE_BLOCK_REQUEST:
873
case TCODE_LOCK_REQUEST:
874
data = p->payload;
875
length = async_header_get_data_length(p->header);
876
break;
877
878
case TCODE_READ_QUADLET_REQUEST:
879
data = NULL;
880
length = 4;
881
break;
882
883
case TCODE_READ_BLOCK_REQUEST:
884
data = NULL;
885
length = async_header_get_data_length(p->header);
886
break;
887
888
default:
889
fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
890
p->header[0], p->header[1], p->header[2]);
891
return NULL;
892
}
893
894
request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
895
if (request == NULL)
896
return NULL;
897
kref_init(&request->kref);
898
899
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
900
// local destination never runs in any type of IRQ context.
901
scoped_guard(spinlock_irqsave, &card->split_timeout.lock)
902
request->response.timestamp = compute_split_timeout_timestamp(card, p->timestamp);
903
904
request->response.speed = p->speed;
905
request->response.generation = p->generation;
906
request->response.ack = 0;
907
request->response.callback = free_response_callback;
908
request->ack = p->ack;
909
request->timestamp = p->timestamp;
910
request->length = length;
911
if (data)
912
memcpy(request->data, data, length);
913
914
memcpy(request->request_header, p->header, sizeof(p->header));
915
916
return request;
917
}
918
919
/**
920
* fw_send_response: - send response packet for asynchronous transaction.
921
* @card: interface to send the response at.
922
* @request: firewire request data for the transaction.
923
* @rcode: response code to send.
924
*
925
* Submit a response packet into the asynchronous response transmission queue. The @request
926
* is going to be released when the transmission successfully finishes later.
927
*/
928
void fw_send_response(struct fw_card *card,
929
struct fw_request *request, int rcode)
930
{
931
u32 *data = NULL;
932
unsigned int data_length = 0;
933
934
/* unified transaction or broadcast transaction: don't respond */
935
if (request->ack != ACK_PENDING ||
936
HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
937
fw_request_put(request);
938
return;
939
}
940
941
if (rcode == RCODE_COMPLETE) {
942
data = request->data;
943
data_length = fw_get_response_length(request);
944
}
945
946
fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
947
948
// Increase the reference count so that the object is kept during in-flight.
949
fw_request_get(request);
950
951
trace_async_response_outbound_initiate((uintptr_t)request, card->index,
952
request->response.generation, request->response.speed,
953
request->response.header, data,
954
data ? data_length / 4 : 0);
955
956
card->driver->send_response(card, &request->response);
957
}
958
EXPORT_SYMBOL(fw_send_response);
959
960
/**
961
* fw_get_request_speed() - returns speed at which the @request was received
962
* @request: firewire request data
963
*/
964
int fw_get_request_speed(struct fw_request *request)
965
{
966
return request->response.speed;
967
}
968
EXPORT_SYMBOL(fw_get_request_speed);
969
970
/**
971
* fw_request_get_timestamp: Get timestamp of the request.
972
* @request: The opaque pointer to request structure.
973
*
974
* Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
975
* timestamp consists of the low order 3 bits of second field and the full 13 bits of count
976
* field of isochronous cycle time register.
977
*
978
* Returns: timestamp of the request.
979
*/
980
u32 fw_request_get_timestamp(const struct fw_request *request)
981
{
982
return request->timestamp;
983
}
984
EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
985
986
static void handle_exclusive_region_request(struct fw_card *card,
987
struct fw_packet *p,
988
struct fw_request *request,
989
unsigned long long offset)
990
{
991
struct fw_address_handler *handler;
992
int tcode, destination, source;
993
994
destination = async_header_get_destination(p->header);
995
source = async_header_get_source(p->header);
996
tcode = async_header_get_tcode(p->header);
997
if (tcode == TCODE_LOCK_REQUEST)
998
tcode = 0x10 + async_header_get_extended_tcode(p->header);
999
1000
scoped_guard(rcu) {
1001
handler = lookup_enclosing_address_handler(&address_handler_list, offset,
1002
request->length);
1003
if (handler)
1004
get_address_handler(handler);
1005
}
1006
1007
if (!handler) {
1008
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1009
return;
1010
}
1011
1012
// Outside the RCU read-side critical section. Without spinlock. With reference count.
1013
handler->address_callback(card, request, tcode, destination, source, p->generation, offset,
1014
request->data, request->length, handler->callback_data);
1015
put_address_handler(handler);
1016
}
1017
1018
// To use kmalloc allocator efficiently, this should be power of two.
1019
#define BUFFER_ON_KERNEL_STACK_SIZE 4
1020
1021
static void handle_fcp_region_request(struct fw_card *card,
1022
struct fw_packet *p,
1023
struct fw_request *request,
1024
unsigned long long offset)
1025
{
1026
struct fw_address_handler *buffer_on_kernel_stack[BUFFER_ON_KERNEL_STACK_SIZE];
1027
struct fw_address_handler *handler, **handlers;
1028
int tcode, destination, source, i, count, buffer_size;
1029
1030
if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
1031
offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
1032
request->length > 0x200) {
1033
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1034
1035
return;
1036
}
1037
1038
tcode = async_header_get_tcode(p->header);
1039
destination = async_header_get_destination(p->header);
1040
source = async_header_get_source(p->header);
1041
1042
if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
1043
tcode != TCODE_WRITE_BLOCK_REQUEST) {
1044
fw_send_response(card, request, RCODE_TYPE_ERROR);
1045
1046
return;
1047
}
1048
1049
count = 0;
1050
handlers = buffer_on_kernel_stack;
1051
buffer_size = ARRAY_SIZE(buffer_on_kernel_stack);
1052
scoped_guard(rcu) {
1053
list_for_each_entry_rcu(handler, &address_handler_list, link) {
1054
if (is_enclosing_handler(handler, offset, request->length)) {
1055
if (count >= buffer_size) {
1056
int next_size = buffer_size * 2;
1057
struct fw_address_handler **buffer_on_kernel_heap;
1058
1059
if (handlers == buffer_on_kernel_stack)
1060
buffer_on_kernel_heap = NULL;
1061
else
1062
buffer_on_kernel_heap = handlers;
1063
1064
buffer_on_kernel_heap =
1065
krealloc_array(buffer_on_kernel_heap, next_size,
1066
sizeof(*buffer_on_kernel_heap), GFP_ATOMIC);
1067
// FCP is used for purposes unrelated to significant system
1068
// resources (e.g. storage or networking), so allocation
1069
// failures are not considered so critical.
1070
if (!buffer_on_kernel_heap)
1071
break;
1072
1073
if (handlers == buffer_on_kernel_stack) {
1074
memcpy(buffer_on_kernel_heap, buffer_on_kernel_stack,
1075
sizeof(buffer_on_kernel_stack));
1076
}
1077
1078
handlers = buffer_on_kernel_heap;
1079
buffer_size = next_size;
1080
}
1081
get_address_handler(handler);
1082
handlers[count++] = handler;
1083
}
1084
}
1085
}
1086
1087
for (i = 0; i < count; ++i) {
1088
handler = handlers[i];
1089
handler->address_callback(card, request, tcode, destination, source,
1090
p->generation, offset, request->data,
1091
request->length, handler->callback_data);
1092
put_address_handler(handler);
1093
}
1094
1095
if (handlers != buffer_on_kernel_stack)
1096
kfree(handlers);
1097
1098
fw_send_response(card, request, RCODE_COMPLETE);
1099
}
1100
1101
void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
1102
{
1103
struct fw_request *request;
1104
unsigned long long offset;
1105
unsigned int tcode;
1106
1107
if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
1108
return;
1109
1110
tcode = async_header_get_tcode(p->header);
1111
if (tcode_is_link_internal(tcode)) {
1112
trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
1113
p->header[1], p->header[2]);
1114
fw_cdev_handle_phy_packet(card, p);
1115
return;
1116
}
1117
1118
request = allocate_request(card, p);
1119
if (request == NULL) {
1120
/* FIXME: send statically allocated busy packet. */
1121
return;
1122
}
1123
1124
trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
1125
p->ack, p->timestamp, p->header, request->data,
1126
tcode_is_read_request(tcode) ? 0 : request->length / 4);
1127
1128
offset = async_header_get_offset(p->header);
1129
1130
if (!is_in_fcp_region(offset, request->length))
1131
handle_exclusive_region_request(card, p, request, offset);
1132
else
1133
handle_fcp_region_request(card, p, request, offset);
1134
1135
}
1136
EXPORT_SYMBOL(fw_core_handle_request);
1137
1138
void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1139
{
1140
struct fw_transaction *t = NULL;
1141
u32 *data;
1142
size_t data_length;
1143
int tcode, tlabel, source, rcode;
1144
1145
tcode = async_header_get_tcode(p->header);
1146
tlabel = async_header_get_tlabel(p->header);
1147
source = async_header_get_source(p->header);
1148
rcode = async_header_get_rcode(p->header);
1149
1150
// FIXME: sanity check packet, is length correct, does tcodes
1151
// and addresses match to the transaction request queried later.
1152
//
1153
// For the tracepoints event, let us decode the header here against the concern.
1154
1155
switch (tcode) {
1156
case TCODE_READ_QUADLET_RESPONSE:
1157
data = (u32 *) &p->header[3];
1158
data_length = 4;
1159
break;
1160
1161
case TCODE_WRITE_RESPONSE:
1162
data = NULL;
1163
data_length = 0;
1164
break;
1165
1166
case TCODE_READ_BLOCK_RESPONSE:
1167
case TCODE_LOCK_RESPONSE:
1168
data = p->payload;
1169
data_length = async_header_get_data_length(p->header);
1170
break;
1171
1172
default:
1173
/* Should never happen, this is just to shut up gcc. */
1174
data = NULL;
1175
data_length = 0;
1176
break;
1177
}
1178
1179
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
1180
// local destination never runs in any type of IRQ context.
1181
scoped_guard(spinlock_irqsave, &card->transactions.lock) {
1182
t = find_and_pop_transaction_entry(card,
1183
iter->node_id == source && iter->tlabel == tlabel);
1184
}
1185
1186
trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1187
p->timestamp, p->header, data, data_length / 4);
1188
1189
if (!t) {
1190
fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1191
source, tlabel);
1192
return;
1193
}
1194
1195
/*
1196
* The response handler may be executed while the request handler
1197
* is still pending. Cancel the request handler.
1198
*/
1199
card->driver->cancel_packet(card, &t->packet);
1200
1201
if (!t->with_tstamp) {
1202
t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1203
} else {
1204
t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1205
data_length, t->callback_data);
1206
}
1207
}
1208
EXPORT_SYMBOL(fw_core_handle_response);
1209
1210
/**
1211
* fw_rcode_string - convert a firewire result code to an error description
1212
* @rcode: the result code
1213
*/
1214
const char *fw_rcode_string(int rcode)
1215
{
1216
static const char *const names[] = {
1217
[RCODE_COMPLETE] = "no error",
1218
[RCODE_CONFLICT_ERROR] = "conflict error",
1219
[RCODE_DATA_ERROR] = "data error",
1220
[RCODE_TYPE_ERROR] = "type error",
1221
[RCODE_ADDRESS_ERROR] = "address error",
1222
[RCODE_SEND_ERROR] = "send error",
1223
[RCODE_CANCELLED] = "timeout",
1224
[RCODE_BUSY] = "busy",
1225
[RCODE_GENERATION] = "bus reset",
1226
[RCODE_NO_ACK] = "no ack",
1227
};
1228
1229
if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1230
return names[rcode];
1231
else
1232
return "unknown";
1233
}
1234
EXPORT_SYMBOL(fw_rcode_string);
1235
1236
static const struct fw_address_region topology_map_region =
1237
{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1238
.end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1239
1240
static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1241
int tcode, int destination, int source, int generation,
1242
unsigned long long offset, void *payload, size_t length,
1243
void *callback_data)
1244
{
1245
int start;
1246
1247
if (!tcode_is_read_request(tcode)) {
1248
fw_send_response(card, request, RCODE_TYPE_ERROR);
1249
return;
1250
}
1251
1252
if ((offset & 3) > 0 || (length & 3) > 0) {
1253
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1254
return;
1255
}
1256
1257
start = (offset - topology_map_region.start) / 4;
1258
1259
// NOTE: This can be without irqsave when we can guarantee that fw_send_request() for local
1260
// destination never runs in any type of IRQ context.
1261
scoped_guard(spinlock_irqsave, &card->topology_map.lock)
1262
memcpy(payload, &card->topology_map.buffer[start], length);
1263
1264
fw_send_response(card, request, RCODE_COMPLETE);
1265
}
1266
1267
static struct fw_address_handler topology_map = {
1268
.length = 0x400,
1269
.address_callback = handle_topology_map,
1270
};
1271
1272
static const struct fw_address_region registers_region =
1273
{ .start = CSR_REGISTER_BASE,
1274
.end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1275
1276
static void update_split_timeout(struct fw_card *card)
1277
__must_hold(&card->split_timeout.lock)
1278
{
1279
unsigned int cycles;
1280
1281
cycles = card->split_timeout.hi * 8000 + (card->split_timeout.lo >> 19);
1282
1283
/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1284
cycles = clamp(cycles, 800u, 3u * 8000u);
1285
1286
card->split_timeout.cycles = cycles;
1287
card->split_timeout.jiffies = isoc_cycles_to_jiffies(cycles);
1288
}
1289
1290
static void handle_registers(struct fw_card *card, struct fw_request *request,
1291
int tcode, int destination, int source, int generation,
1292
unsigned long long offset, void *payload, size_t length,
1293
void *callback_data)
1294
{
1295
int reg = offset & ~CSR_REGISTER_BASE;
1296
__be32 *data = payload;
1297
int rcode = RCODE_COMPLETE;
1298
1299
switch (reg) {
1300
case CSR_PRIORITY_BUDGET:
1301
if (!card->priority_budget_implemented) {
1302
rcode = RCODE_ADDRESS_ERROR;
1303
break;
1304
}
1305
fallthrough;
1306
1307
case CSR_NODE_IDS:
1308
/*
1309
* per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1310
* and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1311
*/
1312
fallthrough;
1313
1314
case CSR_STATE_CLEAR:
1315
case CSR_STATE_SET:
1316
case CSR_CYCLE_TIME:
1317
case CSR_BUS_TIME:
1318
case CSR_BUSY_TIMEOUT:
1319
if (tcode == TCODE_READ_QUADLET_REQUEST)
1320
*data = cpu_to_be32(card->driver->read_csr(card, reg));
1321
else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1322
card->driver->write_csr(card, reg, be32_to_cpu(*data));
1323
else
1324
rcode = RCODE_TYPE_ERROR;
1325
break;
1326
1327
case CSR_RESET_START:
1328
if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1329
card->driver->write_csr(card, CSR_STATE_CLEAR,
1330
CSR_STATE_BIT_ABDICATE);
1331
else
1332
rcode = RCODE_TYPE_ERROR;
1333
break;
1334
1335
case CSR_SPLIT_TIMEOUT_HI:
1336
if (tcode == TCODE_READ_QUADLET_REQUEST) {
1337
*data = cpu_to_be32(card->split_timeout.hi);
1338
} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1339
// NOTE: This can be without irqsave when we can guarantee that
1340
// __fw_send_request() for local destination never runs in any type of IRQ
1341
// context.
1342
scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
1343
card->split_timeout.hi = be32_to_cpu(*data) & 7;
1344
update_split_timeout(card);
1345
}
1346
} else {
1347
rcode = RCODE_TYPE_ERROR;
1348
}
1349
break;
1350
1351
case CSR_SPLIT_TIMEOUT_LO:
1352
if (tcode == TCODE_READ_QUADLET_REQUEST) {
1353
*data = cpu_to_be32(card->split_timeout.lo);
1354
} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1355
// NOTE: This can be without irqsave when we can guarantee that
1356
// __fw_send_request() for local destination never runs in any type of IRQ
1357
// context.
1358
scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
1359
card->split_timeout.lo = be32_to_cpu(*data) & 0xfff80000;
1360
update_split_timeout(card);
1361
}
1362
} else {
1363
rcode = RCODE_TYPE_ERROR;
1364
}
1365
break;
1366
1367
case CSR_MAINT_UTILITY:
1368
if (tcode == TCODE_READ_QUADLET_REQUEST)
1369
*data = card->maint_utility_register;
1370
else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1371
card->maint_utility_register = *data;
1372
else
1373
rcode = RCODE_TYPE_ERROR;
1374
break;
1375
1376
case CSR_BROADCAST_CHANNEL:
1377
if (tcode == TCODE_READ_QUADLET_REQUEST)
1378
*data = cpu_to_be32(card->broadcast_channel);
1379
else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1380
card->broadcast_channel =
1381
(be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1382
BROADCAST_CHANNEL_INITIAL;
1383
else
1384
rcode = RCODE_TYPE_ERROR;
1385
break;
1386
1387
case CSR_BUS_MANAGER_ID:
1388
case CSR_BANDWIDTH_AVAILABLE:
1389
case CSR_CHANNELS_AVAILABLE_HI:
1390
case CSR_CHANNELS_AVAILABLE_LO:
1391
/*
1392
* FIXME: these are handled by the OHCI hardware and
1393
* the stack never sees these request. If we add
1394
* support for a new type of controller that doesn't
1395
* handle this in hardware we need to deal with these
1396
* transactions.
1397
*/
1398
BUG();
1399
break;
1400
1401
default:
1402
rcode = RCODE_ADDRESS_ERROR;
1403
break;
1404
}
1405
1406
fw_send_response(card, request, rcode);
1407
}
1408
1409
static struct fw_address_handler registers = {
1410
.length = 0x400,
1411
.address_callback = handle_registers,
1412
};
1413
1414
static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1415
int tcode, int destination, int source, int generation,
1416
unsigned long long offset, void *payload, size_t length,
1417
void *callback_data)
1418
{
1419
/*
1420
* This catches requests not handled by the physical DMA unit,
1421
* i.e., wrong transaction types or unauthorized source nodes.
1422
*/
1423
fw_send_response(card, request, RCODE_TYPE_ERROR);
1424
}
1425
1426
static struct fw_address_handler low_memory = {
1427
.length = FW_MAX_PHYSICAL_RANGE,
1428
.address_callback = handle_low_memory,
1429
};
1430
1431
MODULE_AUTHOR("Kristian Hoegsberg <[email protected]>");
1432
MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1433
MODULE_LICENSE("GPL");
1434
1435
static const u32 vendor_textual_descriptor[] = {
1436
/* textual descriptor leaf () */
1437
0x00060000,
1438
0x00000000,
1439
0x00000000,
1440
0x4c696e75, /* L i n u */
1441
0x78204669, /* x F i */
1442
0x72657769, /* r e w i */
1443
0x72650000, /* r e */
1444
};
1445
1446
static const u32 model_textual_descriptor[] = {
1447
/* model descriptor leaf () */
1448
0x00030000,
1449
0x00000000,
1450
0x00000000,
1451
0x4a756a75, /* J u j u */
1452
};
1453
1454
static struct fw_descriptor vendor_id_descriptor = {
1455
.length = ARRAY_SIZE(vendor_textual_descriptor),
1456
.immediate = 0x03001f11,
1457
.key = 0x81000000,
1458
.data = vendor_textual_descriptor,
1459
};
1460
1461
static struct fw_descriptor model_id_descriptor = {
1462
.length = ARRAY_SIZE(model_textual_descriptor),
1463
.immediate = 0x17023901,
1464
.key = 0x81000000,
1465
.data = model_textual_descriptor,
1466
};
1467
1468
static int __init fw_core_init(void)
1469
{
1470
int ret;
1471
1472
fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM | WQ_UNBOUND,
1473
0);
1474
if (!fw_workqueue)
1475
return -ENOMEM;
1476
1477
ret = bus_register(&fw_bus_type);
1478
if (ret < 0) {
1479
destroy_workqueue(fw_workqueue);
1480
return ret;
1481
}
1482
1483
fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1484
if (fw_cdev_major < 0) {
1485
bus_unregister(&fw_bus_type);
1486
destroy_workqueue(fw_workqueue);
1487
return fw_cdev_major;
1488
}
1489
1490
fw_core_add_address_handler(&topology_map, &topology_map_region);
1491
fw_core_add_address_handler(&registers, &registers_region);
1492
fw_core_add_address_handler(&low_memory, &low_memory_region);
1493
fw_core_add_descriptor(&vendor_id_descriptor);
1494
fw_core_add_descriptor(&model_id_descriptor);
1495
1496
return 0;
1497
}
1498
1499
static void __exit fw_core_cleanup(void)
1500
{
1501
unregister_chrdev(fw_cdev_major, "firewire");
1502
bus_unregister(&fw_bus_type);
1503
destroy_workqueue(fw_workqueue);
1504
xa_destroy(&fw_device_xa);
1505
}
1506
1507
module_init(fw_core_init);
1508
module_exit(fw_core_cleanup);
1509
1510