Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/net.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* IPv4 over IEEE 1394, per RFC 2734
4
* IPv6 over IEEE 1394, per RFC 3146
5
*
6
* Copyright (C) 2009 Jay Fenlason <[email protected]>
7
*
8
* based on eth1394 by Ben Collins et al
9
*/
10
11
#include <linux/bug.h>
12
#include <linux/compiler.h>
13
#include <linux/delay.h>
14
#include <linux/device.h>
15
#include <linux/ethtool.h>
16
#include <linux/firewire.h>
17
#include <linux/firewire-constants.h>
18
#include <linux/highmem.h>
19
#include <linux/in.h>
20
#include <linux/ip.h>
21
#include <linux/jiffies.h>
22
#include <linux/mod_devicetable.h>
23
#include <linux/module.h>
24
#include <linux/moduleparam.h>
25
#include <linux/mutex.h>
26
#include <linux/netdevice.h>
27
#include <linux/skbuff.h>
28
#include <linux/slab.h>
29
#include <linux/spinlock.h>
30
31
#include <linux/unaligned.h>
32
#include <net/arp.h>
33
#include <net/firewire.h>
34
35
/* rx limits */
36
#define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
37
#define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
38
39
/* tx limits */
40
#define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
41
#define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
42
#define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
43
44
#define IEEE1394_BROADCAST_CHANNEL 31
45
#define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
46
#define IEEE1394_MAX_PAYLOAD_S100 512
47
#define FWNET_NO_FIFO_ADDR (~0ULL)
48
49
#define IANA_SPECIFIER_ID 0x00005eU
50
#define RFC2734_SW_VERSION 0x000001U
51
#define RFC3146_SW_VERSION 0x000002U
52
53
#define IEEE1394_GASP_HDR_SIZE 8
54
55
#define RFC2374_UNFRAG_HDR_SIZE 4
56
#define RFC2374_FRAG_HDR_SIZE 8
57
#define RFC2374_FRAG_OVERHEAD 4
58
59
#define RFC2374_HDR_UNFRAG 0 /* unfragmented */
60
#define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
61
#define RFC2374_HDR_LASTFRAG 2 /* last fragment */
62
#define RFC2374_HDR_INTFRAG 3 /* interior fragment */
63
64
static bool fwnet_hwaddr_is_multicast(u8 *ha)
65
{
66
return !!(*ha & 1);
67
}
68
69
/* IPv4 and IPv6 encapsulation header */
70
struct rfc2734_header {
71
u32 w0;
72
u32 w1;
73
};
74
75
#define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
76
#define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
77
#define fwnet_get_hdr_dg_size(h) ((((h)->w0 & 0x0fff0000) >> 16) + 1)
78
#define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
79
#define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
80
81
#define fwnet_set_hdr_lf(lf) ((lf) << 30)
82
#define fwnet_set_hdr_ether_type(et) (et)
83
#define fwnet_set_hdr_dg_size(dgs) (((dgs) - 1) << 16)
84
#define fwnet_set_hdr_fg_off(fgo) (fgo)
85
86
#define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
87
88
static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
89
unsigned ether_type)
90
{
91
hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
92
| fwnet_set_hdr_ether_type(ether_type);
93
}
94
95
static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
96
unsigned ether_type, unsigned dg_size, unsigned dgl)
97
{
98
hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
99
| fwnet_set_hdr_dg_size(dg_size)
100
| fwnet_set_hdr_ether_type(ether_type);
101
hdr->w1 = fwnet_set_hdr_dgl(dgl);
102
}
103
104
static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
105
unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
106
{
107
hdr->w0 = fwnet_set_hdr_lf(lf)
108
| fwnet_set_hdr_dg_size(dg_size)
109
| fwnet_set_hdr_fg_off(fg_off);
110
hdr->w1 = fwnet_set_hdr_dgl(dgl);
111
}
112
113
/* This list keeps track of what parts of the datagram have been filled in */
114
struct fwnet_fragment_info {
115
struct list_head fi_link;
116
u16 offset;
117
u16 len;
118
};
119
120
struct fwnet_partial_datagram {
121
struct list_head pd_link;
122
struct list_head fi_list;
123
struct sk_buff *skb;
124
/* FIXME Why not use skb->data? */
125
char *pbuf;
126
u16 datagram_label;
127
u16 ether_type;
128
u16 datagram_size;
129
};
130
131
static DEFINE_MUTEX(fwnet_device_mutex);
132
static LIST_HEAD(fwnet_device_list);
133
134
struct fwnet_device {
135
struct list_head dev_link;
136
spinlock_t lock;
137
enum {
138
FWNET_BROADCAST_ERROR,
139
FWNET_BROADCAST_RUNNING,
140
FWNET_BROADCAST_STOPPED,
141
} broadcast_state;
142
struct fw_iso_context *broadcast_rcv_context;
143
struct fw_iso_buffer broadcast_rcv_buffer;
144
void **broadcast_rcv_buffer_ptrs;
145
unsigned broadcast_rcv_next_ptr;
146
unsigned num_broadcast_rcv_ptrs;
147
unsigned rcv_buffer_size;
148
/*
149
* This value is the maximum unfragmented datagram size that can be
150
* sent by the hardware. It already has the GASP overhead and the
151
* unfragmented datagram header overhead calculated into it.
152
*/
153
unsigned broadcast_xmt_max_payload;
154
u16 broadcast_xmt_datagramlabel;
155
156
/*
157
* The CSR address that remote nodes must send datagrams to for us to
158
* receive them.
159
*/
160
struct fw_address_handler handler;
161
u64 local_fifo;
162
163
/* Number of tx datagrams that have been queued but not yet acked */
164
int queued_datagrams;
165
166
int peer_count;
167
struct list_head peer_list;
168
struct fw_card *card;
169
struct net_device *netdev;
170
};
171
172
struct fwnet_peer {
173
struct list_head peer_link;
174
struct fwnet_device *dev;
175
u64 guid;
176
177
/* guarded by dev->lock */
178
struct list_head pd_list; /* received partial datagrams */
179
unsigned pdg_size; /* pd_list size */
180
181
u16 datagram_label; /* outgoing datagram label */
182
u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
183
int node_id;
184
int generation;
185
unsigned speed;
186
};
187
188
/* This is our task struct. It's used for the packet complete callback. */
189
struct fwnet_packet_task {
190
struct fw_transaction transaction;
191
struct rfc2734_header hdr;
192
struct sk_buff *skb;
193
struct fwnet_device *dev;
194
195
int outstanding_pkts;
196
u64 fifo_addr;
197
u16 dest_node;
198
u16 max_payload;
199
u8 generation;
200
u8 speed;
201
u8 enqueued;
202
};
203
204
/*
205
* saddr == NULL means use device source address.
206
* daddr == NULL means leave destination address (eg unresolved arp).
207
*/
208
static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
209
unsigned short type, const void *daddr,
210
const void *saddr, unsigned len)
211
{
212
struct fwnet_header *h;
213
214
h = skb_push(skb, sizeof(*h));
215
put_unaligned_be16(type, &h->h_proto);
216
217
if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
218
memset(h->h_dest, 0, net->addr_len);
219
220
return net->hard_header_len;
221
}
222
223
if (daddr) {
224
memcpy(h->h_dest, daddr, net->addr_len);
225
226
return net->hard_header_len;
227
}
228
229
return -net->hard_header_len;
230
}
231
232
static int fwnet_header_cache(const struct neighbour *neigh,
233
struct hh_cache *hh, __be16 type)
234
{
235
struct net_device *net;
236
struct fwnet_header *h;
237
238
if (type == cpu_to_be16(ETH_P_802_3))
239
return -1;
240
net = neigh->dev;
241
h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
242
h->h_proto = type;
243
memcpy(h->h_dest, neigh->ha, net->addr_len);
244
245
/* Pairs with the READ_ONCE() in neigh_resolve_output(),
246
* neigh_hh_output() and neigh_update_hhs().
247
*/
248
smp_store_release(&hh->hh_len, FWNET_HLEN);
249
250
return 0;
251
}
252
253
/* Called by Address Resolution module to notify changes in address. */
254
static void fwnet_header_cache_update(struct hh_cache *hh,
255
const struct net_device *net, const unsigned char *haddr)
256
{
257
memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
258
}
259
260
static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
261
{
262
memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
263
264
return FWNET_ALEN;
265
}
266
267
static const struct header_ops fwnet_header_ops = {
268
.create = fwnet_header_create,
269
.cache = fwnet_header_cache,
270
.cache_update = fwnet_header_cache_update,
271
.parse = fwnet_header_parse,
272
};
273
274
/* FIXME: is this correct for all cases? */
275
static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
276
unsigned offset, unsigned len)
277
{
278
struct fwnet_fragment_info *fi;
279
unsigned end = offset + len;
280
281
list_for_each_entry(fi, &pd->fi_list, fi_link)
282
if (offset < fi->offset + fi->len && end > fi->offset)
283
return true;
284
285
return false;
286
}
287
288
/* Assumes that new fragment does not overlap any existing fragments */
289
static struct fwnet_fragment_info *fwnet_frag_new(
290
struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
291
{
292
struct fwnet_fragment_info *fi, *fi2, *new;
293
struct list_head *list;
294
295
list = &pd->fi_list;
296
list_for_each_entry(fi, &pd->fi_list, fi_link) {
297
if (fi->offset + fi->len == offset) {
298
/* The new fragment can be tacked on to the end */
299
/* Did the new fragment plug a hole? */
300
fi2 = list_entry(fi->fi_link.next,
301
struct fwnet_fragment_info, fi_link);
302
if (fi->offset + fi->len == fi2->offset) {
303
/* glue fragments together */
304
fi->len += len + fi2->len;
305
list_del(&fi2->fi_link);
306
kfree(fi2);
307
} else {
308
fi->len += len;
309
}
310
311
return fi;
312
}
313
if (offset + len == fi->offset) {
314
/* The new fragment can be tacked on to the beginning */
315
/* Did the new fragment plug a hole? */
316
fi2 = list_entry(fi->fi_link.prev,
317
struct fwnet_fragment_info, fi_link);
318
if (fi2->offset + fi2->len == fi->offset) {
319
/* glue fragments together */
320
fi2->len += fi->len + len;
321
list_del(&fi->fi_link);
322
kfree(fi);
323
324
return fi2;
325
}
326
fi->offset = offset;
327
fi->len += len;
328
329
return fi;
330
}
331
if (offset > fi->offset + fi->len) {
332
list = &fi->fi_link;
333
break;
334
}
335
if (offset + len < fi->offset) {
336
list = fi->fi_link.prev;
337
break;
338
}
339
}
340
341
new = kmalloc(sizeof(*new), GFP_ATOMIC);
342
if (!new)
343
return NULL;
344
345
new->offset = offset;
346
new->len = len;
347
list_add(&new->fi_link, list);
348
349
return new;
350
}
351
352
static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
353
struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
354
void *frag_buf, unsigned frag_off, unsigned frag_len)
355
{
356
struct fwnet_partial_datagram *new;
357
struct fwnet_fragment_info *fi;
358
359
new = kmalloc(sizeof(*new), GFP_ATOMIC);
360
if (!new)
361
goto fail;
362
363
INIT_LIST_HEAD(&new->fi_list);
364
fi = fwnet_frag_new(new, frag_off, frag_len);
365
if (fi == NULL)
366
goto fail_w_new;
367
368
new->datagram_label = datagram_label;
369
new->datagram_size = dg_size;
370
new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
371
if (new->skb == NULL)
372
goto fail_w_fi;
373
374
skb_reserve(new->skb, LL_RESERVED_SPACE(net));
375
new->pbuf = skb_put(new->skb, dg_size);
376
memcpy(new->pbuf + frag_off, frag_buf, frag_len);
377
list_add_tail(&new->pd_link, &peer->pd_list);
378
379
return new;
380
381
fail_w_fi:
382
kfree(fi);
383
fail_w_new:
384
kfree(new);
385
fail:
386
return NULL;
387
}
388
389
static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
390
u16 datagram_label)
391
{
392
struct fwnet_partial_datagram *pd;
393
394
list_for_each_entry(pd, &peer->pd_list, pd_link)
395
if (pd->datagram_label == datagram_label)
396
return pd;
397
398
return NULL;
399
}
400
401
402
static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
403
{
404
struct fwnet_fragment_info *fi, *n;
405
406
list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
407
kfree(fi);
408
409
list_del(&old->pd_link);
410
dev_kfree_skb_any(old->skb);
411
kfree(old);
412
}
413
414
static bool fwnet_pd_update(struct fwnet_peer *peer,
415
struct fwnet_partial_datagram *pd, void *frag_buf,
416
unsigned frag_off, unsigned frag_len)
417
{
418
if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
419
return false;
420
421
memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
422
423
/*
424
* Move list entry to beginning of list so that oldest partial
425
* datagrams percolate to the end of the list
426
*/
427
list_move_tail(&pd->pd_link, &peer->pd_list);
428
429
return true;
430
}
431
432
static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
433
{
434
struct fwnet_fragment_info *fi;
435
436
fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
437
438
return fi->len == pd->datagram_size;
439
}
440
441
/* caller must hold dev->lock */
442
static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
443
u64 guid)
444
{
445
struct fwnet_peer *peer;
446
447
list_for_each_entry(peer, &dev->peer_list, peer_link)
448
if (peer->guid == guid)
449
return peer;
450
451
return NULL;
452
}
453
454
/* caller must hold dev->lock */
455
static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
456
int node_id, int generation)
457
{
458
struct fwnet_peer *peer;
459
460
list_for_each_entry(peer, &dev->peer_list, peer_link)
461
if (peer->node_id == node_id &&
462
peer->generation == generation)
463
return peer;
464
465
return NULL;
466
}
467
468
/* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
469
static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
470
{
471
max_rec = min(max_rec, speed + 8);
472
max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
473
474
return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
475
}
476
477
478
static int fwnet_finish_incoming_packet(struct net_device *net,
479
struct sk_buff *skb, u16 source_node_id,
480
bool is_broadcast, u16 ether_type)
481
{
482
int status, len;
483
484
switch (ether_type) {
485
case ETH_P_ARP:
486
case ETH_P_IP:
487
#if IS_ENABLED(CONFIG_IPV6)
488
case ETH_P_IPV6:
489
#endif
490
break;
491
default:
492
goto err;
493
}
494
495
/* Write metadata, and then pass to the receive level */
496
skb->dev = net;
497
skb->ip_summed = CHECKSUM_NONE;
498
499
/*
500
* Parse the encapsulation header. This actually does the job of
501
* converting to an ethernet-like pseudo frame header.
502
*/
503
if (dev_hard_header(skb, net, ether_type,
504
is_broadcast ? net->broadcast : net->dev_addr,
505
NULL, skb->len) >= 0) {
506
struct fwnet_header *eth;
507
u16 *rawp;
508
__be16 protocol;
509
510
skb_reset_mac_header(skb);
511
skb_pull(skb, sizeof(*eth));
512
eth = (struct fwnet_header *)skb_mac_header(skb);
513
if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
514
if (memcmp(eth->h_dest, net->broadcast,
515
net->addr_len) == 0)
516
skb->pkt_type = PACKET_BROADCAST;
517
#if 0
518
else
519
skb->pkt_type = PACKET_MULTICAST;
520
#endif
521
} else {
522
if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
523
skb->pkt_type = PACKET_OTHERHOST;
524
}
525
if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) {
526
protocol = eth->h_proto;
527
} else {
528
rawp = (u16 *)skb->data;
529
if (*rawp == 0xffff)
530
protocol = htons(ETH_P_802_3);
531
else
532
protocol = htons(ETH_P_802_2);
533
}
534
skb->protocol = protocol;
535
}
536
537
len = skb->len;
538
status = netif_rx(skb);
539
if (status == NET_RX_DROP) {
540
net->stats.rx_errors++;
541
net->stats.rx_dropped++;
542
} else {
543
net->stats.rx_packets++;
544
net->stats.rx_bytes += len;
545
}
546
547
return 0;
548
549
err:
550
net->stats.rx_errors++;
551
net->stats.rx_dropped++;
552
553
dev_kfree_skb_any(skb);
554
555
return -ENOENT;
556
}
557
558
static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
559
int source_node_id, int generation,
560
bool is_broadcast)
561
{
562
struct sk_buff *skb;
563
struct net_device *net = dev->netdev;
564
struct rfc2734_header hdr;
565
unsigned lf;
566
unsigned long flags;
567
struct fwnet_peer *peer;
568
struct fwnet_partial_datagram *pd;
569
int fg_off;
570
int dg_size;
571
u16 datagram_label;
572
int retval;
573
u16 ether_type;
574
575
if (len <= RFC2374_UNFRAG_HDR_SIZE)
576
return 0;
577
578
hdr.w0 = be32_to_cpu(buf[0]);
579
lf = fwnet_get_hdr_lf(&hdr);
580
if (lf == RFC2374_HDR_UNFRAG) {
581
/*
582
* An unfragmented datagram has been received by the ieee1394
583
* bus. Build an skbuff around it so we can pass it to the
584
* high level network layer.
585
*/
586
ether_type = fwnet_get_hdr_ether_type(&hdr);
587
buf++;
588
len -= RFC2374_UNFRAG_HDR_SIZE;
589
590
skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
591
if (unlikely(!skb)) {
592
net->stats.rx_dropped++;
593
594
return -ENOMEM;
595
}
596
skb_reserve(skb, LL_RESERVED_SPACE(net));
597
skb_put_data(skb, buf, len);
598
599
return fwnet_finish_incoming_packet(net, skb, source_node_id,
600
is_broadcast, ether_type);
601
}
602
603
/* A datagram fragment has been received, now the fun begins. */
604
605
if (len <= RFC2374_FRAG_HDR_SIZE)
606
return 0;
607
608
hdr.w1 = ntohl(buf[1]);
609
buf += 2;
610
len -= RFC2374_FRAG_HDR_SIZE;
611
if (lf == RFC2374_HDR_FIRSTFRAG) {
612
ether_type = fwnet_get_hdr_ether_type(&hdr);
613
fg_off = 0;
614
} else {
615
ether_type = 0;
616
fg_off = fwnet_get_hdr_fg_off(&hdr);
617
}
618
datagram_label = fwnet_get_hdr_dgl(&hdr);
619
dg_size = fwnet_get_hdr_dg_size(&hdr);
620
621
if (fg_off + len > dg_size)
622
return 0;
623
624
spin_lock_irqsave(&dev->lock, flags);
625
626
peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
627
if (!peer) {
628
retval = -ENOENT;
629
goto fail;
630
}
631
632
pd = fwnet_pd_find(peer, datagram_label);
633
if (pd == NULL) {
634
while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
635
/* remove the oldest */
636
fwnet_pd_delete(list_first_entry(&peer->pd_list,
637
struct fwnet_partial_datagram, pd_link));
638
peer->pdg_size--;
639
}
640
pd = fwnet_pd_new(net, peer, datagram_label,
641
dg_size, buf, fg_off, len);
642
if (pd == NULL) {
643
retval = -ENOMEM;
644
goto fail;
645
}
646
peer->pdg_size++;
647
} else {
648
if (fwnet_frag_overlap(pd, fg_off, len) ||
649
pd->datagram_size != dg_size) {
650
/*
651
* Differing datagram sizes or overlapping fragments,
652
* discard old datagram and start a new one.
653
*/
654
fwnet_pd_delete(pd);
655
pd = fwnet_pd_new(net, peer, datagram_label,
656
dg_size, buf, fg_off, len);
657
if (pd == NULL) {
658
peer->pdg_size--;
659
retval = -ENOMEM;
660
goto fail;
661
}
662
} else {
663
if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
664
/*
665
* Couldn't save off fragment anyway
666
* so might as well obliterate the
667
* datagram now.
668
*/
669
fwnet_pd_delete(pd);
670
peer->pdg_size--;
671
retval = -ENOMEM;
672
goto fail;
673
}
674
}
675
} /* new datagram or add to existing one */
676
677
if (lf == RFC2374_HDR_FIRSTFRAG)
678
pd->ether_type = ether_type;
679
680
if (fwnet_pd_is_complete(pd)) {
681
ether_type = pd->ether_type;
682
peer->pdg_size--;
683
skb = skb_get(pd->skb);
684
fwnet_pd_delete(pd);
685
686
spin_unlock_irqrestore(&dev->lock, flags);
687
688
return fwnet_finish_incoming_packet(net, skb, source_node_id,
689
false, ether_type);
690
}
691
/*
692
* Datagram is not complete, we're done for the
693
* moment.
694
*/
695
retval = 0;
696
fail:
697
spin_unlock_irqrestore(&dev->lock, flags);
698
699
return retval;
700
}
701
702
static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
703
int tcode, int destination, int source, int generation,
704
unsigned long long offset, void *payload, size_t length,
705
void *callback_data)
706
{
707
struct fwnet_device *dev = callback_data;
708
int rcode;
709
710
if (destination == IEEE1394_ALL_NODES) {
711
// Although the response to the broadcast packet is not necessarily required, the
712
// fw_send_response() function should still be called to maintain the reference
713
// counting of the object. In the case, the call of function just releases the
714
// object as a result to decrease the reference counting.
715
rcode = RCODE_COMPLETE;
716
} else if (offset != dev->handler.offset) {
717
rcode = RCODE_ADDRESS_ERROR;
718
} else if (tcode != TCODE_WRITE_BLOCK_REQUEST) {
719
rcode = RCODE_TYPE_ERROR;
720
} else if (fwnet_incoming_packet(dev, payload, length,
721
source, generation, false) != 0) {
722
dev_err(&dev->netdev->dev, "incoming packet failure\n");
723
rcode = RCODE_CONFLICT_ERROR;
724
} else {
725
rcode = RCODE_COMPLETE;
726
}
727
728
fw_send_response(card, r, rcode);
729
}
730
731
static int gasp_source_id(__be32 *p)
732
{
733
return be32_to_cpu(p[0]) >> 16;
734
}
735
736
static u32 gasp_specifier_id(__be32 *p)
737
{
738
return (be32_to_cpu(p[0]) & 0xffff) << 8 |
739
(be32_to_cpu(p[1]) & 0xff000000) >> 24;
740
}
741
742
static u32 gasp_version(__be32 *p)
743
{
744
return be32_to_cpu(p[1]) & 0xffffff;
745
}
746
747
static void fwnet_receive_broadcast(struct fw_iso_context *context,
748
u32 cycle, size_t header_length, void *header, void *data)
749
{
750
struct fwnet_device *dev;
751
struct fw_iso_packet packet;
752
__be16 *hdr_ptr;
753
__be32 *buf_ptr;
754
int retval;
755
u32 length;
756
unsigned long offset;
757
unsigned long flags;
758
759
dev = data;
760
hdr_ptr = header;
761
length = be16_to_cpup(hdr_ptr);
762
763
spin_lock_irqsave(&dev->lock, flags);
764
765
offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
766
buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
767
if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
768
dev->broadcast_rcv_next_ptr = 0;
769
770
spin_unlock_irqrestore(&dev->lock, flags);
771
772
if (length > IEEE1394_GASP_HDR_SIZE &&
773
gasp_specifier_id(buf_ptr) == IANA_SPECIFIER_ID &&
774
(gasp_version(buf_ptr) == RFC2734_SW_VERSION
775
#if IS_ENABLED(CONFIG_IPV6)
776
|| gasp_version(buf_ptr) == RFC3146_SW_VERSION
777
#endif
778
))
779
fwnet_incoming_packet(dev, buf_ptr + 2,
780
length - IEEE1394_GASP_HDR_SIZE,
781
gasp_source_id(buf_ptr),
782
context->card->generation, true);
783
784
packet.payload_length = dev->rcv_buffer_size;
785
packet.interrupt = 1;
786
packet.skip = 0;
787
packet.tag = 3;
788
packet.sy = 0;
789
packet.header_length = IEEE1394_GASP_HDR_SIZE;
790
791
spin_lock_irqsave(&dev->lock, flags);
792
793
retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
794
&dev->broadcast_rcv_buffer, offset);
795
796
spin_unlock_irqrestore(&dev->lock, flags);
797
798
if (retval >= 0)
799
fw_iso_context_queue_flush(dev->broadcast_rcv_context);
800
else
801
dev_err(&dev->netdev->dev, "requeue failed\n");
802
}
803
804
static struct kmem_cache *fwnet_packet_task_cache;
805
806
static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
807
{
808
dev_kfree_skb_any(ptask->skb);
809
kmem_cache_free(fwnet_packet_task_cache, ptask);
810
}
811
812
/* Caller must hold dev->lock. */
813
static void dec_queued_datagrams(struct fwnet_device *dev)
814
{
815
if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
816
netif_wake_queue(dev->netdev);
817
}
818
819
static int fwnet_send_packet(struct fwnet_packet_task *ptask);
820
821
static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
822
{
823
struct fwnet_device *dev = ptask->dev;
824
struct sk_buff *skb = ptask->skb;
825
unsigned long flags;
826
bool free;
827
828
spin_lock_irqsave(&dev->lock, flags);
829
830
ptask->outstanding_pkts--;
831
832
/* Check whether we or the networking TX soft-IRQ is last user. */
833
free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
834
if (free)
835
dec_queued_datagrams(dev);
836
837
if (ptask->outstanding_pkts == 0) {
838
dev->netdev->stats.tx_packets++;
839
dev->netdev->stats.tx_bytes += skb->len;
840
}
841
842
spin_unlock_irqrestore(&dev->lock, flags);
843
844
if (ptask->outstanding_pkts > 0) {
845
u16 dg_size;
846
u16 fg_off;
847
u16 datagram_label;
848
u16 lf;
849
850
/* Update the ptask to point to the next fragment and send it */
851
lf = fwnet_get_hdr_lf(&ptask->hdr);
852
switch (lf) {
853
case RFC2374_HDR_LASTFRAG:
854
case RFC2374_HDR_UNFRAG:
855
default:
856
dev_err(&dev->netdev->dev,
857
"outstanding packet %x lf %x, header %x,%x\n",
858
ptask->outstanding_pkts, lf, ptask->hdr.w0,
859
ptask->hdr.w1);
860
BUG();
861
862
case RFC2374_HDR_FIRSTFRAG:
863
/* Set frag type here for future interior fragments */
864
dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
865
fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
866
datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
867
break;
868
869
case RFC2374_HDR_INTFRAG:
870
dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
871
fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
872
+ ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
873
datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
874
break;
875
}
876
877
if (ptask->dest_node == IEEE1394_ALL_NODES) {
878
skb_pull(skb,
879
ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
880
} else {
881
skb_pull(skb, ptask->max_payload);
882
}
883
if (ptask->outstanding_pkts > 1) {
884
fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
885
dg_size, fg_off, datagram_label);
886
} else {
887
fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
888
dg_size, fg_off, datagram_label);
889
ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
890
}
891
fwnet_send_packet(ptask);
892
}
893
894
if (free)
895
fwnet_free_ptask(ptask);
896
}
897
898
static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
899
{
900
struct fwnet_device *dev = ptask->dev;
901
unsigned long flags;
902
bool free;
903
904
spin_lock_irqsave(&dev->lock, flags);
905
906
/* One fragment failed; don't try to send remaining fragments. */
907
ptask->outstanding_pkts = 0;
908
909
/* Check whether we or the networking TX soft-IRQ is last user. */
910
free = ptask->enqueued;
911
if (free)
912
dec_queued_datagrams(dev);
913
914
dev->netdev->stats.tx_dropped++;
915
dev->netdev->stats.tx_errors++;
916
917
spin_unlock_irqrestore(&dev->lock, flags);
918
919
if (free)
920
fwnet_free_ptask(ptask);
921
}
922
923
static void fwnet_write_complete(struct fw_card *card, int rcode,
924
void *payload, size_t length, void *data)
925
{
926
struct fwnet_packet_task *ptask = data;
927
static unsigned long j;
928
static int last_rcode, errors_skipped;
929
930
if (rcode == RCODE_COMPLETE) {
931
fwnet_transmit_packet_done(ptask);
932
} else {
933
if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
934
dev_err(&ptask->dev->netdev->dev,
935
"fwnet_write_complete failed: %x (skipped %d)\n",
936
rcode, errors_skipped);
937
938
errors_skipped = 0;
939
last_rcode = rcode;
940
} else {
941
errors_skipped++;
942
}
943
fwnet_transmit_packet_failed(ptask);
944
}
945
}
946
947
static int fwnet_send_packet(struct fwnet_packet_task *ptask)
948
{
949
struct fwnet_device *dev;
950
unsigned tx_len;
951
struct rfc2734_header *bufhdr;
952
unsigned long flags;
953
bool free;
954
955
dev = ptask->dev;
956
tx_len = ptask->max_payload;
957
switch (fwnet_get_hdr_lf(&ptask->hdr)) {
958
case RFC2374_HDR_UNFRAG:
959
bufhdr = skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
960
put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
961
break;
962
963
case RFC2374_HDR_FIRSTFRAG:
964
case RFC2374_HDR_INTFRAG:
965
case RFC2374_HDR_LASTFRAG:
966
bufhdr = skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
967
put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
968
put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
969
break;
970
971
default:
972
BUG();
973
}
974
if (ptask->dest_node == IEEE1394_ALL_NODES) {
975
u8 *p;
976
int generation;
977
int node_id;
978
unsigned int sw_version;
979
980
/* ptask->generation may not have been set yet */
981
generation = dev->card->generation;
982
smp_rmb();
983
node_id = dev->card->node_id;
984
985
switch (ptask->skb->protocol) {
986
default:
987
sw_version = RFC2734_SW_VERSION;
988
break;
989
#if IS_ENABLED(CONFIG_IPV6)
990
case htons(ETH_P_IPV6):
991
sw_version = RFC3146_SW_VERSION;
992
#endif
993
}
994
995
p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
996
put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
997
put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
998
| sw_version, &p[4]);
999
1000
/* We should not transmit if broadcast_channel.valid == 0. */
1001
fw_send_request(dev->card, &ptask->transaction,
1002
TCODE_STREAM_DATA,
1003
fw_stream_packet_destination_id(3,
1004
IEEE1394_BROADCAST_CHANNEL, 0),
1005
generation, SCODE_100, 0ULL, ptask->skb->data,
1006
tx_len + 8, fwnet_write_complete, ptask);
1007
1008
spin_lock_irqsave(&dev->lock, flags);
1009
1010
/* If the AT work item already ran, we may be last user. */
1011
free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1012
if (!free)
1013
ptask->enqueued = true;
1014
else
1015
dec_queued_datagrams(dev);
1016
1017
spin_unlock_irqrestore(&dev->lock, flags);
1018
1019
goto out;
1020
}
1021
1022
fw_send_request(dev->card, &ptask->transaction,
1023
TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1024
ptask->generation, ptask->speed, ptask->fifo_addr,
1025
ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1026
1027
spin_lock_irqsave(&dev->lock, flags);
1028
1029
/* If the AT work item already ran, we may be last user. */
1030
free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1031
if (!free)
1032
ptask->enqueued = true;
1033
else
1034
dec_queued_datagrams(dev);
1035
1036
spin_unlock_irqrestore(&dev->lock, flags);
1037
1038
netif_trans_update(dev->netdev);
1039
out:
1040
if (free)
1041
fwnet_free_ptask(ptask);
1042
1043
return 0;
1044
}
1045
1046
static void fwnet_fifo_stop(struct fwnet_device *dev)
1047
{
1048
if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1049
return;
1050
1051
fw_core_remove_address_handler(&dev->handler);
1052
dev->local_fifo = FWNET_NO_FIFO_ADDR;
1053
}
1054
1055
static int fwnet_fifo_start(struct fwnet_device *dev)
1056
{
1057
int retval;
1058
1059
if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1060
return 0;
1061
1062
dev->handler.length = 4096;
1063
dev->handler.address_callback = fwnet_receive_packet;
1064
dev->handler.callback_data = dev;
1065
1066
retval = fw_core_add_address_handler(&dev->handler,
1067
&fw_high_memory_region);
1068
if (retval < 0)
1069
return retval;
1070
1071
dev->local_fifo = dev->handler.offset;
1072
1073
return 0;
1074
}
1075
1076
static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1077
{
1078
unsigned u;
1079
1080
if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1081
for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1082
kunmap(dev->broadcast_rcv_buffer.pages[u]);
1083
fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1084
}
1085
if (dev->broadcast_rcv_context) {
1086
fw_iso_context_destroy(dev->broadcast_rcv_context);
1087
dev->broadcast_rcv_context = NULL;
1088
}
1089
kfree(dev->broadcast_rcv_buffer_ptrs);
1090
dev->broadcast_rcv_buffer_ptrs = NULL;
1091
dev->broadcast_state = FWNET_BROADCAST_ERROR;
1092
}
1093
1094
static void fwnet_broadcast_stop(struct fwnet_device *dev)
1095
{
1096
if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1097
return;
1098
fw_iso_context_stop(dev->broadcast_rcv_context);
1099
__fwnet_broadcast_stop(dev);
1100
}
1101
1102
static int fwnet_broadcast_start(struct fwnet_device *dev)
1103
{
1104
struct fw_iso_context *context;
1105
int retval;
1106
unsigned num_packets;
1107
unsigned max_receive;
1108
struct fw_iso_packet packet;
1109
unsigned long offset;
1110
void **ptrptr;
1111
unsigned u;
1112
1113
if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1114
return 0;
1115
1116
max_receive = 1U << (dev->card->max_receive + 1);
1117
num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1118
1119
ptrptr = kmalloc_array(num_packets, sizeof(void *), GFP_KERNEL);
1120
if (!ptrptr) {
1121
retval = -ENOMEM;
1122
goto failed;
1123
}
1124
dev->broadcast_rcv_buffer_ptrs = ptrptr;
1125
1126
context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1127
IEEE1394_BROADCAST_CHANNEL,
1128
dev->card->link_speed, 8,
1129
fwnet_receive_broadcast, dev);
1130
if (IS_ERR(context)) {
1131
retval = PTR_ERR(context);
1132
goto failed;
1133
}
1134
1135
retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1136
FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1137
if (retval < 0)
1138
goto failed;
1139
1140
dev->broadcast_state = FWNET_BROADCAST_STOPPED;
1141
1142
for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1143
void *ptr;
1144
unsigned v;
1145
1146
ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1147
for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1148
*ptrptr++ = (void *) ((char *)ptr + v * max_receive);
1149
}
1150
dev->broadcast_rcv_context = context;
1151
1152
packet.payload_length = max_receive;
1153
packet.interrupt = 1;
1154
packet.skip = 0;
1155
packet.tag = 3;
1156
packet.sy = 0;
1157
packet.header_length = IEEE1394_GASP_HDR_SIZE;
1158
offset = 0;
1159
1160
for (u = 0; u < num_packets; u++) {
1161
retval = fw_iso_context_queue(context, &packet,
1162
&dev->broadcast_rcv_buffer, offset);
1163
if (retval < 0)
1164
goto failed;
1165
1166
offset += max_receive;
1167
}
1168
dev->num_broadcast_rcv_ptrs = num_packets;
1169
dev->rcv_buffer_size = max_receive;
1170
dev->broadcast_rcv_next_ptr = 0U;
1171
retval = fw_iso_context_start(context, -1, 0,
1172
FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1173
if (retval < 0)
1174
goto failed;
1175
1176
/* FIXME: adjust it according to the min. speed of all known peers? */
1177
dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1178
- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1179
dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1180
1181
return 0;
1182
1183
failed:
1184
__fwnet_broadcast_stop(dev);
1185
return retval;
1186
}
1187
1188
static void set_carrier_state(struct fwnet_device *dev)
1189
{
1190
if (dev->peer_count > 1)
1191
netif_carrier_on(dev->netdev);
1192
else
1193
netif_carrier_off(dev->netdev);
1194
}
1195
1196
/* ifup */
1197
static int fwnet_open(struct net_device *net)
1198
{
1199
struct fwnet_device *dev = netdev_priv(net);
1200
int ret;
1201
1202
ret = fwnet_broadcast_start(dev);
1203
if (ret)
1204
return ret;
1205
1206
netif_start_queue(net);
1207
1208
spin_lock_irq(&dev->lock);
1209
set_carrier_state(dev);
1210
spin_unlock_irq(&dev->lock);
1211
1212
return 0;
1213
}
1214
1215
/* ifdown */
1216
static int fwnet_stop(struct net_device *net)
1217
{
1218
struct fwnet_device *dev = netdev_priv(net);
1219
1220
netif_stop_queue(net);
1221
fwnet_broadcast_stop(dev);
1222
1223
return 0;
1224
}
1225
1226
static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1227
{
1228
struct fwnet_header hdr_buf;
1229
struct fwnet_device *dev = netdev_priv(net);
1230
__be16 proto;
1231
u16 dest_node;
1232
unsigned max_payload;
1233
u16 dg_size;
1234
u16 *datagram_label_ptr;
1235
struct fwnet_packet_task *ptask;
1236
struct fwnet_peer *peer;
1237
unsigned long flags;
1238
1239
spin_lock_irqsave(&dev->lock, flags);
1240
1241
/* Can this happen? */
1242
if (netif_queue_stopped(dev->netdev)) {
1243
spin_unlock_irqrestore(&dev->lock, flags);
1244
1245
return NETDEV_TX_BUSY;
1246
}
1247
1248
ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1249
if (ptask == NULL)
1250
goto fail;
1251
1252
skb = skb_share_check(skb, GFP_ATOMIC);
1253
if (!skb)
1254
goto fail;
1255
1256
/*
1257
* Make a copy of the driver-specific header.
1258
* We might need to rebuild the header on tx failure.
1259
*/
1260
memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1261
proto = hdr_buf.h_proto;
1262
1263
switch (proto) {
1264
case htons(ETH_P_ARP):
1265
case htons(ETH_P_IP):
1266
#if IS_ENABLED(CONFIG_IPV6)
1267
case htons(ETH_P_IPV6):
1268
#endif
1269
break;
1270
default:
1271
goto fail;
1272
}
1273
1274
skb_pull(skb, sizeof(hdr_buf));
1275
dg_size = skb->len;
1276
1277
/*
1278
* Set the transmission type for the packet. ARP packets and IP
1279
* broadcast packets are sent via GASP.
1280
*/
1281
if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
1282
max_payload = dev->broadcast_xmt_max_payload;
1283
datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1284
1285
ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1286
ptask->generation = 0;
1287
ptask->dest_node = IEEE1394_ALL_NODES;
1288
ptask->speed = SCODE_100;
1289
} else {
1290
union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest;
1291
__be64 guid = get_unaligned(&ha->uc.uniq_id);
1292
u8 generation;
1293
1294
peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1295
if (!peer)
1296
goto fail;
1297
1298
generation = peer->generation;
1299
dest_node = peer->node_id;
1300
max_payload = peer->max_payload;
1301
datagram_label_ptr = &peer->datagram_label;
1302
1303
ptask->fifo_addr = get_unaligned_be48(ha->uc.fifo);
1304
ptask->generation = generation;
1305
ptask->dest_node = dest_node;
1306
ptask->speed = peer->speed;
1307
}
1308
1309
ptask->hdr.w0 = 0;
1310
ptask->hdr.w1 = 0;
1311
ptask->skb = skb;
1312
ptask->dev = dev;
1313
1314
/* Does it all fit in one packet? */
1315
if (dg_size <= max_payload) {
1316
fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1317
ptask->outstanding_pkts = 1;
1318
max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1319
} else {
1320
u16 datagram_label;
1321
1322
max_payload -= RFC2374_FRAG_OVERHEAD;
1323
datagram_label = (*datagram_label_ptr)++;
1324
fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1325
datagram_label);
1326
ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1327
max_payload += RFC2374_FRAG_HDR_SIZE;
1328
}
1329
1330
if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1331
netif_stop_queue(dev->netdev);
1332
1333
spin_unlock_irqrestore(&dev->lock, flags);
1334
1335
ptask->max_payload = max_payload;
1336
ptask->enqueued = 0;
1337
1338
fwnet_send_packet(ptask);
1339
1340
return NETDEV_TX_OK;
1341
1342
fail:
1343
spin_unlock_irqrestore(&dev->lock, flags);
1344
1345
if (ptask)
1346
kmem_cache_free(fwnet_packet_task_cache, ptask);
1347
1348
if (skb != NULL)
1349
dev_kfree_skb(skb);
1350
1351
net->stats.tx_dropped++;
1352
net->stats.tx_errors++;
1353
1354
/*
1355
* FIXME: According to a patch from 2003-02-26, "returning non-zero
1356
* causes serious problems" here, allegedly. Before that patch,
1357
* -ERRNO was returned which is not appropriate under Linux 2.6.
1358
* Perhaps more needs to be done? Stop the queue in serious
1359
* conditions and restart it elsewhere?
1360
*/
1361
return NETDEV_TX_OK;
1362
}
1363
1364
static const struct ethtool_ops fwnet_ethtool_ops = {
1365
.get_link = ethtool_op_get_link,
1366
};
1367
1368
static const struct net_device_ops fwnet_netdev_ops = {
1369
.ndo_open = fwnet_open,
1370
.ndo_stop = fwnet_stop,
1371
.ndo_start_xmit = fwnet_tx,
1372
};
1373
1374
static void fwnet_init_dev(struct net_device *net)
1375
{
1376
net->header_ops = &fwnet_header_ops;
1377
net->netdev_ops = &fwnet_netdev_ops;
1378
net->watchdog_timeo = 2 * HZ;
1379
net->flags = IFF_BROADCAST | IFF_MULTICAST;
1380
net->features = NETIF_F_HIGHDMA;
1381
net->addr_len = FWNET_ALEN;
1382
net->hard_header_len = FWNET_HLEN;
1383
net->type = ARPHRD_IEEE1394;
1384
net->tx_queue_len = FWNET_TX_QUEUE_LEN;
1385
net->ethtool_ops = &fwnet_ethtool_ops;
1386
}
1387
1388
/* caller must hold fwnet_device_mutex */
1389
static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1390
{
1391
struct fwnet_device *dev;
1392
1393
list_for_each_entry(dev, &fwnet_device_list, dev_link)
1394
if (dev->card == card)
1395
return dev;
1396
1397
return NULL;
1398
}
1399
1400
static int fwnet_add_peer(struct fwnet_device *dev,
1401
struct fw_unit *unit, struct fw_device *device)
1402
{
1403
struct fwnet_peer *peer;
1404
1405
peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1406
if (!peer)
1407
return -ENOMEM;
1408
1409
dev_set_drvdata(&unit->device, peer);
1410
1411
peer->dev = dev;
1412
peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1413
INIT_LIST_HEAD(&peer->pd_list);
1414
peer->pdg_size = 0;
1415
peer->datagram_label = 0;
1416
peer->speed = device->max_speed;
1417
peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1418
1419
peer->generation = device->generation;
1420
smp_rmb();
1421
peer->node_id = device->node_id;
1422
1423
spin_lock_irq(&dev->lock);
1424
list_add_tail(&peer->peer_link, &dev->peer_list);
1425
dev->peer_count++;
1426
set_carrier_state(dev);
1427
spin_unlock_irq(&dev->lock);
1428
1429
return 0;
1430
}
1431
1432
static int fwnet_probe(struct fw_unit *unit,
1433
const struct ieee1394_device_id *id)
1434
{
1435
struct fw_device *device = fw_parent_device(unit);
1436
struct fw_card *card = device->card;
1437
struct net_device *net;
1438
bool allocated_netdev = false;
1439
struct fwnet_device *dev;
1440
union fwnet_hwaddr ha;
1441
int ret;
1442
1443
mutex_lock(&fwnet_device_mutex);
1444
1445
dev = fwnet_dev_find(card);
1446
if (dev) {
1447
net = dev->netdev;
1448
goto have_dev;
1449
}
1450
1451
net = alloc_netdev(sizeof(*dev), "firewire%d", NET_NAME_UNKNOWN,
1452
fwnet_init_dev);
1453
if (net == NULL) {
1454
mutex_unlock(&fwnet_device_mutex);
1455
return -ENOMEM;
1456
}
1457
1458
allocated_netdev = true;
1459
SET_NETDEV_DEV(net, card->device);
1460
dev = netdev_priv(net);
1461
1462
spin_lock_init(&dev->lock);
1463
dev->broadcast_state = FWNET_BROADCAST_ERROR;
1464
dev->broadcast_rcv_context = NULL;
1465
dev->broadcast_xmt_max_payload = 0;
1466
dev->broadcast_xmt_datagramlabel = 0;
1467
dev->local_fifo = FWNET_NO_FIFO_ADDR;
1468
dev->queued_datagrams = 0;
1469
INIT_LIST_HEAD(&dev->peer_list);
1470
dev->card = card;
1471
dev->netdev = net;
1472
1473
ret = fwnet_fifo_start(dev);
1474
if (ret < 0)
1475
goto out;
1476
dev->local_fifo = dev->handler.offset;
1477
1478
/*
1479
* default MTU: RFC 2734 cl. 4, RFC 3146 cl. 4
1480
* maximum MTU: RFC 2734 cl. 4.2, fragment encapsulation header's
1481
* maximum possible datagram_size + 1 = 0xfff + 1
1482
*/
1483
net->mtu = 1500U;
1484
net->min_mtu = ETH_MIN_MTU;
1485
net->max_mtu = 4096U;
1486
1487
/* Set our hardware address while we're at it */
1488
ha.uc.uniq_id = cpu_to_be64(card->guid);
1489
ha.uc.max_rec = dev->card->max_receive;
1490
ha.uc.sspd = dev->card->link_speed;
1491
put_unaligned_be48(dev->local_fifo, ha.uc.fifo);
1492
dev_addr_set(net, ha.u);
1493
1494
memset(net->broadcast, -1, net->addr_len);
1495
1496
ret = register_netdev(net);
1497
if (ret)
1498
goto out;
1499
1500
list_add_tail(&dev->dev_link, &fwnet_device_list);
1501
dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n",
1502
dev_name(card->device));
1503
have_dev:
1504
ret = fwnet_add_peer(dev, unit, device);
1505
if (ret && allocated_netdev) {
1506
unregister_netdev(net);
1507
list_del(&dev->dev_link);
1508
out:
1509
fwnet_fifo_stop(dev);
1510
free_netdev(net);
1511
}
1512
1513
mutex_unlock(&fwnet_device_mutex);
1514
1515
return ret;
1516
}
1517
1518
/*
1519
* FIXME abort partially sent fragmented datagrams,
1520
* discard partially received fragmented datagrams
1521
*/
1522
static void fwnet_update(struct fw_unit *unit)
1523
{
1524
struct fw_device *device = fw_parent_device(unit);
1525
struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1526
int generation;
1527
1528
generation = device->generation;
1529
1530
spin_lock_irq(&peer->dev->lock);
1531
peer->node_id = device->node_id;
1532
peer->generation = generation;
1533
spin_unlock_irq(&peer->dev->lock);
1534
}
1535
1536
static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1537
{
1538
struct fwnet_partial_datagram *pd, *pd_next;
1539
1540
spin_lock_irq(&dev->lock);
1541
list_del(&peer->peer_link);
1542
dev->peer_count--;
1543
set_carrier_state(dev);
1544
spin_unlock_irq(&dev->lock);
1545
1546
list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1547
fwnet_pd_delete(pd);
1548
1549
kfree(peer);
1550
}
1551
1552
static void fwnet_remove(struct fw_unit *unit)
1553
{
1554
struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1555
struct fwnet_device *dev = peer->dev;
1556
struct net_device *net;
1557
int i;
1558
1559
mutex_lock(&fwnet_device_mutex);
1560
1561
net = dev->netdev;
1562
1563
fwnet_remove_peer(peer, dev);
1564
1565
if (list_empty(&dev->peer_list)) {
1566
unregister_netdev(net);
1567
1568
fwnet_fifo_stop(dev);
1569
1570
for (i = 0; dev->queued_datagrams && i < 5; i++)
1571
ssleep(1);
1572
WARN_ON(dev->queued_datagrams);
1573
list_del(&dev->dev_link);
1574
1575
free_netdev(net);
1576
}
1577
1578
mutex_unlock(&fwnet_device_mutex);
1579
}
1580
1581
static const struct ieee1394_device_id fwnet_id_table[] = {
1582
{
1583
.match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1584
IEEE1394_MATCH_VERSION,
1585
.specifier_id = IANA_SPECIFIER_ID,
1586
.version = RFC2734_SW_VERSION,
1587
},
1588
#if IS_ENABLED(CONFIG_IPV6)
1589
{
1590
.match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1591
IEEE1394_MATCH_VERSION,
1592
.specifier_id = IANA_SPECIFIER_ID,
1593
.version = RFC3146_SW_VERSION,
1594
},
1595
#endif
1596
{ }
1597
};
1598
1599
static struct fw_driver fwnet_driver = {
1600
.driver = {
1601
.owner = THIS_MODULE,
1602
.name = KBUILD_MODNAME,
1603
.bus = &fw_bus_type,
1604
},
1605
.probe = fwnet_probe,
1606
.update = fwnet_update,
1607
.remove = fwnet_remove,
1608
.id_table = fwnet_id_table,
1609
};
1610
1611
static const u32 rfc2374_unit_directory_data[] = {
1612
0x00040000, /* directory_length */
1613
0x1200005e, /* unit_specifier_id: IANA */
1614
0x81000003, /* textual descriptor offset */
1615
0x13000001, /* unit_sw_version: RFC 2734 */
1616
0x81000005, /* textual descriptor offset */
1617
0x00030000, /* descriptor_length */
1618
0x00000000, /* text */
1619
0x00000000, /* minimal ASCII, en */
1620
0x49414e41, /* I A N A */
1621
0x00030000, /* descriptor_length */
1622
0x00000000, /* text */
1623
0x00000000, /* minimal ASCII, en */
1624
0x49507634, /* I P v 4 */
1625
};
1626
1627
static struct fw_descriptor rfc2374_unit_directory = {
1628
.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1629
.key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1630
.data = rfc2374_unit_directory_data
1631
};
1632
1633
#if IS_ENABLED(CONFIG_IPV6)
1634
static const u32 rfc3146_unit_directory_data[] = {
1635
0x00040000, /* directory_length */
1636
0x1200005e, /* unit_specifier_id: IANA */
1637
0x81000003, /* textual descriptor offset */
1638
0x13000002, /* unit_sw_version: RFC 3146 */
1639
0x81000005, /* textual descriptor offset */
1640
0x00030000, /* descriptor_length */
1641
0x00000000, /* text */
1642
0x00000000, /* minimal ASCII, en */
1643
0x49414e41, /* I A N A */
1644
0x00030000, /* descriptor_length */
1645
0x00000000, /* text */
1646
0x00000000, /* minimal ASCII, en */
1647
0x49507636, /* I P v 6 */
1648
};
1649
1650
static struct fw_descriptor rfc3146_unit_directory = {
1651
.length = ARRAY_SIZE(rfc3146_unit_directory_data),
1652
.key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1653
.data = rfc3146_unit_directory_data
1654
};
1655
#endif
1656
1657
static int __init fwnet_init(void)
1658
{
1659
int err;
1660
1661
err = fw_core_add_descriptor(&rfc2374_unit_directory);
1662
if (err)
1663
return err;
1664
1665
#if IS_ENABLED(CONFIG_IPV6)
1666
err = fw_core_add_descriptor(&rfc3146_unit_directory);
1667
if (err)
1668
goto out;
1669
#endif
1670
1671
fwnet_packet_task_cache = kmem_cache_create("packet_task",
1672
sizeof(struct fwnet_packet_task), 0, 0, NULL);
1673
if (!fwnet_packet_task_cache) {
1674
err = -ENOMEM;
1675
goto out2;
1676
}
1677
1678
err = driver_register(&fwnet_driver.driver);
1679
if (!err)
1680
return 0;
1681
1682
kmem_cache_destroy(fwnet_packet_task_cache);
1683
out2:
1684
#if IS_ENABLED(CONFIG_IPV6)
1685
fw_core_remove_descriptor(&rfc3146_unit_directory);
1686
out:
1687
#endif
1688
fw_core_remove_descriptor(&rfc2374_unit_directory);
1689
1690
return err;
1691
}
1692
module_init(fwnet_init);
1693
1694
static void __exit fwnet_cleanup(void)
1695
{
1696
driver_unregister(&fwnet_driver.driver);
1697
kmem_cache_destroy(fwnet_packet_task_cache);
1698
#if IS_ENABLED(CONFIG_IPV6)
1699
fw_core_remove_descriptor(&rfc3146_unit_directory);
1700
#endif
1701
fw_core_remove_descriptor(&rfc2374_unit_directory);
1702
}
1703
module_exit(fwnet_cleanup);
1704
1705
MODULE_AUTHOR("Jay Fenlason <[email protected]>");
1706
MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146");
1707
MODULE_LICENSE("GPL");
1708
MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1709
1710